Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The human imagination: the cognitive neuroscience of visual mental imagery

Abstract

Mental imagery can be advantageous, unnecessary and even clinically disruptive. With methodological constraints now overcome, research has shown that visual imagery involves a network of brain areas from the frontal cortex to sensory areas, overlapping with the default mode network, and can function much like a weak version of afferent perception. Imagery vividness and strength range from completely absent (aphantasia) to photo-like (hyperphantasia). Both the anatomy and function of the primary visual cortex are related to visual imagery. The use of imagery as a tool has been linked to many compound cognitive processes and imagery plays both symptomatic and mechanistic roles in neurological and mental disorders and treatments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A top-down general model of voluntary mental imagery: a reverse hierarchy.
Fig. 2: Graphical depiction showing the two streams — bottom-up perception and top-down voluntary imagery.
Fig. 3: Mapping out the different types of visual imagery — voluntary, involuntary (associative) and involuntary (local perceptual).
Fig. 4: Theoretical representation of visual imagery of a square, showing possible interaction between the strength of the top-down imagery signal and noise in the visual cortex.
Fig. 5: Graphical depiction of the cognitive processes related to mental imagery.

References

  1. 1.

    Zeman, A., Dewar, M. & Della Sala, S. Lives without imagery — congenital aphantasia. Cortex 73, 378–380 (2015). This article documents and coins the term aphantasia, described as the complete lack of visual imagery ability.

    Google Scholar 

  2. 2.

    Pearson, J. & Westbrook, F. Phantom perception: voluntary and involuntary non-retinal vision. Trends Cogn. Sci. 19, 278–284 (2015). This opinion paper proposes a unifying framework for both voluntary and involuntary imagery.

    Google Scholar 

  3. 3.

    Pearson, J., Naselaris, T., Holmes, E. A. & Kosslyn, S. M. Mental imagery: functional mechanisms and clinical applications. Trends Cogn. Sci. 19, 590–602 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Egeth, H. E. & Yantis, S. Visual attention: control, representation, and time course. Annu. Rev. Psychol. 48, 269–297 (1997).

    CAS  Google Scholar 

  5. 5.

    Dijkstra, N., Zeidman, P., Ondobaka, S., Gerven, M. A. J. & Friston, K. Distinct top-down and bottom-up brain connectivity during visual perception and imagery. Sci. Rep. 7, 5677 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Dentico, D. et al. Reversal of cortical information flow during visual imagery as compared to visual perception. Neuroimage 100, 237–243 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Schlegel, A. et al. Network structure and dynamics of the mental workspace. Proc. Natl Acad. Sci. USA 110, 16277–16282 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Ranganath, C. & D’Esposito, M. Directing the mind’s eye: prefrontal, inferior and medial temporal mechanisms for visual working memory. Curr. Opin. Neurobiol. 15, 175–182 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Yomogida, Y. Mental visual synthesis is originated in the fronto-temporal network of the left hemisphere. Cereb. Cortex 14, 1376–1383 (2004).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Ishai, A., Ungerleider, L. G. & Haxby, J. V. Distributed neural systems for the generation of visual images. Neuron 28, 979–990 (2000).

    CAS  Google Scholar 

  11. 11.

    Goebel, R., Khorram-Sefat, D., Muckli, L., Hacker, H. & Singer, W. The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur. J. Neurosci. 10, 1563–1573 (1998).

    CAS  Google Scholar 

  12. 12.

    Mellet, E. et al. Functional anatomy of spatial mental imagery generated from verbal instructions. J. Neurosci. 16, 6504–6512 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    O’Craven, K. M. & Kanwisher, N. Mental imagery of faces and places activates corresponding stimulus- specific brain regions. J. Cogn. Neurosci. 12, 1013–1023 (2000).

    Google Scholar 

  14. 14.

    Kosslyn, S. M., Ganis, G. & Thompson, W. L. Neural foundations of imagery. Nat. Rev. Neurosci. 2, 635–642 (2001).

    CAS  Google Scholar 

  15. 15.

    Hassabis, D., Kumaran, D. & Maguire, E. A. Using imagination to understand the neural basis of episodic memory. J. Neurosci. 27, 14365–14374 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Bird, C. M., Capponi, C., King, J. A., Doeller, C. F. & Burgess, N. Establishing the boundaries: the hippocampal contribution to imagining scenes. J. Neurosci. 30, 11688–11695 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hassabis, D., Kumaran, D., Vann, S. D. & Maguire, E. A. Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl Acad. Sci. USA 104, 1726–1731 (2007).

    CAS  Google Scholar 

  18. 18.

    Kreiman, G., Koch, C. & Fried, I. Imagery neurons in the human brain. Nature 408, 357–361 (2000).

    CAS  Google Scholar 

  19. 19.

    Maguire, E. A., Vargha-Khadem, F. & Hassabis, D. Imagining fictitious and future experiences: evidence from developmental amnesia. Neuropsychologia 48, 3187–3192 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Kim, S. et al. Sparing of spatial mental imagery in patients with hippocampal lesions. Learn. Mem. 20, 657–663 (2013).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Pearson, J. & Kosslyn, S. M. The heterogeneity of mental representation: ending the imagery debate. Proc. Natl Acad. Sci. USA 112, 10089–10092 (2015). This paper proposes an end to the ‘imagery debate’ based on the discussed evidence that imagery can be represented in the brain in a depictive manner.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    D’Esposito, M. et al. A functional MRI study of mental image generation. Neuropsychologia 35, 725–730 (1997).

    Google Scholar 

  23. 23.

    Knauff, M., Kassubek, J., Mulack, T. & Greenlee, M. W. Cortical activation evoked by visual mental imagery as measured by fMRI. Neuroreport 11, 3957–3962 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Trojano, L. et al. Matching two imagined clocks: the functional anatomy of spatial analysis in the absence of visual stimulation. Cereb. Cortex 10, 473–481 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Wheeler, M. E., Petersen, S. E. & Buckner, R. L. Memory’s echo: vivid remembering reactivates sensory-specific cortex. Proc. Natl Acad. Sci. USA 97, 11125 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Formisano, E. et al. Tracking the mind’s image in the brain I: time-resolved fMRI during visuospatial mental imagery. Neuron 35, 185–194 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Sack, A. T. et al. Tracking the mind’s image in the brain II: transcranial magnetic stimulation reveals parietal asymmetry in visuospatial imagery. Neuron 35, 195–204 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Le Bihan, D. et al. Activation of human primary visual cortex during visual recall: a magnetic resonance imaging study. Proc. Natl Acad. Sci. USA 90, 11802–11805 (1993).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Sabbah, P. et al. Functional magnetic resonance imaging at 1.5T during sensorimotor and cognitive task. Eur. Neurol. 35, 131–136 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Chen, W. et al. Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. Neuroreport 9, 3669–3674 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ishai, A. Visual imagery of famous faces: effects of memory and attention revealed by fMRI. Neuroimage 17, 1729–1741 (2002).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Ganis, G., Thompson, W. L. & Kosslyn, S. M. Brain areas underlying visual mental imagery and visual perception: an fMRI study. Cogn. Brain Res. 20, 226–241 (2004).

    Google Scholar 

  33. 33.

    Klein, I., Paradis, A. L., Poline, J. B., Kossly, S. M. & Le Bihan, D. Transient activity in the human calcarine cortex during visual-mental imagery: an event-related fMRI study. J. Cogn. Neurosci. 12 (Suppl. 2), 15–23 (2000).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Lambert, S., Sampaio, E., Scheiber, C. & Mauss, Y. Neural substrates of animal mental imagery: calcarine sulcus and dorsal pathway involvement — an fMRI study. Brain Res. 924, 176–183 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Cui, X., Jeter, C. B., Yang, D., Montague, P. R. & Eagleman, D. M. Vividness of mental imagery: individual variability can be measured objectively. Vision Res. 47, 474–478 (2007).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Amedi, A., Malach, R. & Pascual-Leone, A. Negative BOLD differentiates visual imagery and perception. Neuron 48, 859–872 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Reddy, L., Tsuchiya, N. & Serre, T. Reading the mind’s eye: decoding category information during mental imagery. Neuroimage 50, 818–825 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Dijkstra, N., Bosch, S. E. & van Gerven, M. A. J. Vividness of visual imagery depends on the neural overlap with perception in visual areas. J. Neurosci. 37, 1367–1373 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kosslyn, S. M. & Thompson, W. L. When is early visual cortex activated during visual mental imagery? Psychol. Bull. 129, 723–746 (2003).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C. & de Lange, F. P. Shared representations for working memory and mental imagery in early visual cortex. Curr. Biol. 23, 1427–1431 (2013). This paper shows that both imagery and visual working memory can be decoded in the brain based on training on either, showing evidence of a common brain representation.

    CAS  Google Scholar 

  41. 41.

    Koenig-Robert, R. & Pearson, J. Decoding the contents and strength of imagery before volitional engagement. Sci. Rep. 9, 3504 (2019). This paper shows that the content and vividness of a mental image can be decoded in the brain up to 11 seconds before an individual decides which pattern to imagine.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Naselaris, T., Olman, C. A., Stansbury, D. E., Ugurbil, K. & Gallant, J. L. A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes. Neuroimage 105, 215–228 (2015). This study shows that mental imagery content can be decoded in the early visual cortex when the decoding model is based on depictive perceptual features.

    Google Scholar 

  43. 43.

    Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

    CAS  Google Scholar 

  44. 44.

    Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).

    CAS  Google Scholar 

  45. 45.

    Østby, Y. et al. Mental time travel and default-mode network functional connectivity in the developing brain. Proc. Natl Acad. Sci. USA 109, 16800–16804 (2012).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain’s default network. Neuron 65, 550–562 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306 (2007).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Gerlach, K. D., Spreng, R. N., Gilmore, A. W. & Schacter, D. L. Solving future problems: default network and executive activity associated with goal-directed mental simulations. Neuroimage 55, 1816–1824 (2011).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Levine, D. N., Warach, J. & Farah, M. Two visual systems in mental imagery. Neurology 35, 1010 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Keogh, R. & Pearson, J. The blind mind: no sensory visual imagery in aphantasia. Cortex 105, 53–60 (2017).

    Google Scholar 

  51. 51.

    Sakai, K. & Miyashita, Y. Neural organization for the long-term memory of paired associates. Nature 354, 152–155 (1991).

    CAS  Google Scholar 

  52. 52.

    Messinger, A., Squire, L. R., Zola, S. M. & Albright, T. D. Neuronal representations of stimulus associations develop in the temporal lobe during learning. Proc. Natl Acad. Sci. USA 98, 12239–12244 (2001).

    CAS  Google Scholar 

  53. 53.

    Schlack, A. & Albright, T. D. Remembering visual motion: neural correlates of associative plasticity and motion recall in cortical area MT. Neuron 53, 881–890 (2007).

    CAS  Google Scholar 

  54. 54.

    Bannert, M. M. & Bartels, A. Decoding the yellow of a gray banana. Curr. Biol. 23, 2268–2272 (2013).

    CAS  Google Scholar 

  55. 55.

    Hansen, T., Olkkonen, M., Walter, S. & Gegenfurtner, K. R. Memory modulates color appearance. Nat. Neurosci. 9, 1367–1368 (2006).

    CAS  Google Scholar 

  56. 56.

    Meng, M., Remus, D. A. & Tong, F. Filling-in of visual phantoms in the human brain. Nat. Neurosci. 8, 1248–1254 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Sasaki, Y. & Watanabe, T. The primary visual cortex fills in color. Proc. Natl Acad. Sci. USA 101, 18251–18256 (2004).

    CAS  Google Scholar 

  58. 58.

    Kok, P., Failing, M. F. & de Lange, F. P. Prior expectations evoke stimulus templates in the primary visual cortex. J. Cogn. Neurosci. 26, 1546–1554 (2014).

    Google Scholar 

  59. 59.

    Bergmann, J., Genc, E., Kohler, A., Singer, W. & Pearson, J. Smaller primary visual cortex is associated with stronger, but less precise mental imagery. Cereb. Cortex 26, 3838–3850 (2016). This study shows that stronger but less precise imagery is associated with a smaller primary and secondary visual cortex.

    Google Scholar 

  60. 60.

    Stensaas, S. S., Eddington, D. K. & Dobelle, W. H. The topography and variability of the primary visual cortex in man. J. Neurosurg. 40, 747–755 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Song, C., Schwarzkopf, D. S. & Rees, G. Variability in visual cortex size reflects tradeoff between local orientation sensitivity and global orientation modulation. Nat. Commun. 4, 1–10 (2013).

    Google Scholar 

  62. 62.

    Dorph-Petersen, K.-A., Pierri, J. N., Wu, Q., Sampson, A. R. & Lewis, D. A. Primary visual cortex volume and total neuron number are reduced in schizophrenia. J. Comp. Neurol. 501, 290–301 (2007).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Sack, A. T., van de Ven, V. G., Etschenberg, S., Schatz, D. & Linden, D. E. J. Enhanced vividness of mental imagery as a trait marker of schizophrenia? Schizophr. Bull. 31, 97–104 (2005).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Maróthi, R. & Kéri, S. Enhanced mental imagery and intact perceptual organization in schizotypal personality disorder. Psychiatry Res. 259, 433–438 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Morina, N., Leibold, E. & Ehring, T. Vividness of general mental imagery is associated with the occurrence of intrusive memories. J. Behav. Ther. Exp. Psychiatry 44, 221–226 (2013).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Chao, L. L., Lenoci, M. & Neylan, T. C. Effects of post-traumatic stress disorder on occipital lobe function and structure. Neuroreport 23, 412–419 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Tavanti, M. et al. Evidence of diffuse damage in frontal and occipital cortex in the brain of patients with post-traumatic stress disorder. Neurol. Sci. 33, 59–68 (2011).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Kavanagh, D. J., Andrade, J. & May, J. Imaginary relish and exquisite torture: the elaborated intrusion theory of desire. Psychol. Rev. 112, 446–467 (2005).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Ersche, K. D. et al. Abnormal brain structure implicated in stimulant drug addiction. Science 335, 601–604 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Song, C., Schwarzkopf, D. S., Kanai, R. & Rees, G. Reciprocal anatomical relationship between primary sensory and prefrontal cortices in the human brain. J. Neurosci. 31, 9472–9480 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Panizzon, M. S. et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb. Cortex 19, 2728–2735 (2009).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Winkler, A. M. et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53, 1135–1146 (2010).

    Google Scholar 

  73. 73.

    Bakken, T. E. et al. Association of common genetic variants in GPCPD1 with scaling of visual cortical surface area in humans. Proc. Natl Acad. Sci. USA 109, 3985–3990 (2012).

    CAS  Google Scholar 

  74. 74.

    Pearson, J., Rademaker, R. L. & Tong, F. Evaluating the mind’s eye: the metacognition of visual imagery. Psychol. Sci. 22, 1535–1542 (2011).

    Google Scholar 

  75. 75.

    Rademaker, R. L. & Pearson, J. Training visual imagery: improvements of metacognition, but not imagery strength. Front. Psychol. 3, 224 (2012).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Pearson, J. New directions in mental-imagery research: the binocular-rivalry technique and decoding fMRI patterns. Curr. Dir. Psychol. Sci. 23, 178–183 (2014).

    Google Scholar 

  77. 77.

    Keogh, R., Bergmann, J. & Pearson, J. Cortical excitability controls the strength of mental imagery. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/093690v1 (2016).

  78. 78.

    Terhune, D. B., Tai, S., Cowey, A., Popescu, T. & Kadosh, R. C. Enhanced cortical excitability in grapheme-color synesthesia and its modulation. Curr. Biol. 21, 2006–2009 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Chiou, R., Rich, A. N., Rogers, S. & Pearson, J. Exploring the functional nature of synaesthetic colour: dissociations from colour perception and imagery. Cognition 177, 107–121 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).

    CAS  Google Scholar 

  81. 81.

    Wassell, J., Rogers, S. L., Felmingam, K. L., Bryant, R. A. & Pearson, J. Biological psychology. Biol. Psychol. 107, 61–68 (2015).

    Google Scholar 

  82. 82.

    Kraehenmann, R. et al. LSD increases primary process thinking via serotonin 2A receptor activation. Front. Pharmacol. 8, 418–419 (2017).

    Google Scholar 

  83. 83.

    Pearson, J., Clifford, C. W. G. & Tong, F. The functional impact of mental imagery on conscious perception. Curr. Biol. 18, 982–986 (2008). This study shows that the content of visual imagery can bias or prime subsequent binocular rivalry; this paper was the basis for using binocular rivalry as a measurement tool for imagery.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Ishai, A. & Sagi, D. Common mechanisms of visual imagery and perception. Science 268, 1772–1774 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Tartaglia, E. M., Bamert, L., Mast, F. W. & Herzog, M. H. Human perceptual learning by mental imagery. Curr. Biol. 19, 2081–2085 (2009). This study shows that training with a purely imaged visual stimulus transfers to improve performance in perceptual tasks.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Lewis, D. E., O’Reilly, M. J. & Khuu, S. K. Conditioning the mind’s eye associative learning with voluntary mental imagery. Clin. Psychol. Sci. 1, 390–400 (2013).

    Google Scholar 

  87. 87.

    Laeng, B. & Sulutvedt, U. The eye pupil adjusts to imaginary light. Psychol. Sci. 25, 188–197 (2014).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Brascamp, J. W., Knapen, T. H. J., Kanai, R., van Ee, R. & van den Berg, A. V. Flash suppression and flash facilitation in binocular rivalry. J. Vis. 7, 12 (2007).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Tanaka, Y. & Sagi, D. A perceptual memory for low-contrast visual signals. Proc. Natl Acad. Sci. USA 95, 12729–12733 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Chang, S., Lewis, D. E. & Pearson, J. The functional effects of color perception and color imagery. J. Vis. 13, 4 (2013).

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Slotnick, S. D., Thompson, W. L. & Kosslyn, S. M. Visual mental imagery induces retinotopically organized activation of early visual areas. Cereb. Cortex 15, 1570–1583 (2005).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Thirion, B. et al. Inverse retinotopy: inferring the visual content of images from brain activation patterns. Neuroimage 33, 1104–1116 (2006).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Horikawa, T. & Kamitani, Y. Generic decoding of seen and imagined objects using hierarchical visual features. Nat. Commun. 8, 15037 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Keogh, R. & Pearson, J. Mental imagery and visual working memory. PLOS ONE 6, e29221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Keogh, R. & Pearson, J. The sensory strength of voluntary visual imagery predicts visual working memory capacity. J. Vis. 14, 7 (2014).

    Google Scholar 

  96. 96.

    Aydin, C. The differential contributions of visual imagery constructs on autobiographical thinking. Memory 26, 189–200 (2017).

    Google Scholar 

  97. 97.

    Schacter, D. L. et al. The future of memory: remembering, imagining, and the brain. Neuron 76, 677–694 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Tong, F. Imagery and visual working memory: one and the same? Trends Cogn. Sci. 17, 489–490 (2013).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Berger, G. H. & Gaunitz, S. C. Self-rated imagery and encoding strategies in visual memory. Br. J. Psychol. 70, 21–24 (1979).

    CAS  Google Scholar 

  100. 100.

    Harrison, S. A. & Tong, F. Decoding reveals the contents of visual working memory in early visual areas. Nature 458, 632–635 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Borst, G., Ganis, G., Thompson, W. L. & Kosslyn, S. M. Representations in mental imagery and working memory: evidence from different types of visual masks. Mem. Cognit. 40, 204–217 (2011).

    Google Scholar 

  102. 102.

    Kang, M.-S., Hong, S. W., Blake, R. & Woodman, G. F. Visual working memory contaminates perception. Psychon Bull. Rev. 18, 860–869 (2011).

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Keogh, R. & Pearson, J. The perceptual and phenomenal capacity of mental imagery. Cognition 162, 124–132 (2017). This study shows a new method to measure the capacity function of visual imagery and shows that it is quite limited.

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Luck, S. J. & Vogel, E. K. Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends Cogn. Sci. 17, 391–400 (2013).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Pearson, J. & Keogh, R. Redefining visual working memory: a cognitive-strategy, brain-region approach. Curr. Dir. Psychol. Sci. 28, 266–273 (2019).

    Google Scholar 

  106. 106.

    Greenberg, D. L. & Knowlton, B. J. The role of visual imagery in autobiographical memory. Mem. Cognit. 42, 922–934 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Sheldon, S., Amaral, R. & Levine, B. Individual differences in visual imagery determine how event information is remembered. Memory 25, 360–369 (2017).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    D’Argembeau, A. & Van der Linden, M. Individual differences in the phenomenology of mental time travel: the effect of vivid visual imagery and emotion regulation strategies. Conscious Cogn. 15, 342–350 (2006).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Vannucci, M., Pelagatti, C., Chiorri, C. & Mazzoni, G. Visual object imagery and autobiographical memory: object Imagers are better at remembering their personal past. Memory 24, 455–470 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Galton, F. Statistics of mental imagery. Mind 5, 301–318 (1880). This paper was the first formal empirical paper investing imagery vividness, including the first report of what is now called aphantasia.

    Google Scholar 

  111. 111.

    Holmes, E. A. & Mathews, A. Mental imagery in emotion and emotional disorders. Clin. Psychol. Rev. 30, 349–362 (2010).

    Google Scholar 

  112. 112.

    Hackmann, A., Bennett-Levy, J. & Holmes, E. A. Oxford Guide to Imagery in Cognitive Therapy (Oxford Univ. Press, 2011).

  113. 113.

    Blackwell, S. E. et al. Positive imagery-based cognitive bias modification as a web-based treatment tool for depressed adults: a randomized controlled trial. Clin. Psychol. Sci. 3, 91–111 (2015).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Crane, C., Shah, D., Barnhofer, T. & Holmes, E. A. Suicidal imagery in a previously depressed community sample. Clin. Psychol. Psychother. 19, 57–69 (2011).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Hales, S. A., Deeprose, C., Goodwin, G. M. & Holmes, E. A. Cognitions in bipolar affective disorder and unipolar depression: imagining suicide. Bipolar Disord. 13, 651–661 (2011).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Holmes, E. A. et al. Mood stability versus mood instability in bipolar disorder: a possible role for emotional mental imagery. Behav. Res. Ther. 49, 707–713 (2011).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Tiggemann, M. & Kemps, E. The phenomenology of food cravings: the role of mental imagery. Appetite 45, 305–313 (2005).

    CAS  Google Scholar 

  118. 118.

    Connor, J. P. et al. Addictive behaviors. Addict. Behav. 39, 721–724 (2014).

    Google Scholar 

  119. 119.

    May, J., Andrade, J., Panabokke, N. & Kavanagh, D. Visuospatial tasks suppress craving for cigarettes. Behav. Res. Ther. 48, 476–485 (2010).

    Google Scholar 

  120. 120.

    Michael, T., Ehlers, A., Halligan, S. L. & Clark, D. M. Unwanted memories of assault: what intrusion characteristics are associated with PTSD? Behav. Res. Ther. 43, 613–628 (2005).

    CAS  Google Scholar 

  121. 121.

    Holmes, E. A., James, E. L., Kilford, E. J. & Deeprose, C. Key steps in developing a cognitive vaccine against traumatic flashbacks: visuospatial tetris versus verbal pub quiz. PLOS ONE 5, e13706 (2010).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Shine, J. M. et al. Imagine that: elevated sensory strength of mental imagery in individuals with Parkinson’s disease and visual hallucinations. Proc. R. Soc. B 282, 20142047 (2014).

    Google Scholar 

  123. 123.

    Foa, E. B., Steketee, G., Turner, R. M. & Fischer, S. C. Effects of imaginal exposure to feared disasters in obsessive-compulsive checkers. Behav. Res. Ther. 18, 449–455 (1980).

    CAS  Google Scholar 

  124. 124.

    Hunt, M. & Fenton, M. Imagery rescripting versus in vivo exposure in the treatment of snake fear. J. Behav. Ther. Exp. Psychiatry 38, 329–344 (2007).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Holmes, E. A. & Mathews, A. Mental imagery and emotion: a special relationship? Emotion 5, 489–497 (2005).

    PubMed  PubMed Central  Google Scholar 

  126. 126.

    Zeman, A. Z. J. et al. Loss of imagery phenomenology with intact visuo-spatial task performance: a case of ‘blind imagination’. Neuropsychologia 48, 145–155 (2010).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Ungerleider, L. G. & Haxby, J. V. ‘What’ and ‘where’ in the human brain. Curr. Opin. Neurobiol. 4, 157–165 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Jacobs, C., Schwarzkopf, D. S. & Silvanto, J. Visual working memory performance in aphantasia. Cortex 105, 61–73 (2017).

    Google Scholar 

  129. 129.

    Gray, C. R. & Gummerman, K. The enigmatic eidetic image: a critical examination of methods, data, and theories. Psychol. Bull. 82, 383–407 (1975).

    CAS  Google Scholar 

  130. 130.

    Stromeyer, C. F. & Psotka, J. The detailed texture of eidetic images. Nature 225, 346–349 (1970).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Haber, R. N. Twenty years of haunting eidetic imagery: where’s the ghost? Behav. Brain Sci. 2, 616–617 (1979).

    Google Scholar 

  132. 132.

    Allport, G. W. Eidetic imagery. Br. J. Psychol. 15, 99–120 (1924).

    Google Scholar 

  133. 133.

    Kwok, E. L., Leys, G., Koenig-Robert, R. & Pearson, J. Measuring thought-control failure: sensory mechanisms and individual differences. Psychol. Sci. 57, 811–821 (2019). This study shows that, even when people think they have successfully suppressed a mental image, it is still actually there and biases subsequent perception (a possible candidate for unconscious imagery).

    Google Scholar 

  134. 134.

    Kosslyn, S. M. Image and Mind (Harvard Univ. Press, 1980).

  135. 135.

    Kosslyn, S. M. Mental images and the brain. Cogn. Neuropsychol. 22, 333–347 (2005).

    Google Scholar 

  136. 136.

    Pylyshyn, Z. W. What the mind’s eye tells the mind’s brain: a critique of mental imagery. Psychol. Bull. 80, 1–24 (1973).

    Google Scholar 

  137. 137.

    Pylyshyn, Z. Return of the mental image: are there really pictures in the brain? Trends Cogn. Sci. 7, 113–118 (2003). This review provides an updated summary of the imagery debate.

    Google Scholar 

  138. 138.

    Chang, S. & Pearson, J. The functional effects of prior motion imagery and motion perception. Cortex 105, 83–96 (2017).

    Google Scholar 

  139. 139.

    Stokes, M., Thompson, R., Cusack, R. & Duncan, J. Top-down activation of shape-specific population codes in visual cortex during mental imagery. J. Neurosci. 29, 1565–1572 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Amit, E. & Greene, J. D. You see, the ends don’t justify the means: visual imagery and moral judgment. Psychol. Sci. 23, 861–868 (2012).

    Google Scholar 

  141. 141.

    Dobson, M. & Markham, R. Imagery ability and source monitoring: implications for eyewitness memory. Br. J. Psychol. 84, 111–118 (1993).

    Google Scholar 

  142. 142.

    Gonsalves, B. et al. Neural evidence that vivid imagining can lead to false remembering. Psychol. Sci. 15, 655–660 (2004).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Bird, C. M., Bisby, J. A. & Burgess, N. The hippocampus and spatial constraints on mental imagery. Front. Hum. Neurosci. 6, 142 (2012).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Jones, L. & Stuth, G. The uses of mental imagery in athletics: an overview. Appl. Prev. Psychol. 6, 101–115 (1997).

    Google Scholar 

  145. 145.

    Dils, A. T. & Boroditsky, L. Visual motion aftereffect from understanding motion language. Proc. Natl Acad. Sci. USA 107, 16396–16400 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Christian, B. M., Miles, L. K., Parkinson, C. & Macrae, C. N. Visual perspective and the characteristics of mind wandering. Front. Psychol. 4, 699 (2013).

    PubMed  PubMed Central  Google Scholar 

  147. 147.

    Palmiero, M., Cardi, V. & Belardinelli, M. O. The role of vividness of visual mental imagery on different dimensions of creativity. Creat. Res. J. 23, 372–375 (2011).

    Google Scholar 

Download references

Acknowledgements

The author thanks R. Keogh, R. Koenig-Robert and A. Dawes for helpful feedback and discussion on this paper. This paper, and some of the work discussed in it, was supported by Australian National Health and Medical Research Council grants APP1024800, APP1046198 and APP1085404, a Career Development Fellowship APP1049596 and an Australian Research Council discovery project grant DP140101560.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joel Pearson.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review informationNature Reviews Neuroscience thanks D. Kavanagh, J. Hohwy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Reverse directionality

The reverse direction of neural information flow, for example, from the top-down, as opposed to the bottom-up.

Voxel-wise models of perception

Magnetic resonance imaging and functional magnetic resonance imaging decoding methods that are constrained by or based on individual voxel responses to perception, which are then used to decode imagery.

Spatial transformations

Transformations in a spatial domain.

Qualia

The conscious sense or feeling of something, different from detection.

Schizotypal personality disorder

A mental disorder characterized by social anxiety, thought disorder, paranoid ideation, derealization and transient psychosis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pearson, J. The human imagination: the cognitive neuroscience of visual mental imagery. Nat Rev Neurosci 20, 624–634 (2019). https://doi.org/10.1038/s41583-019-0202-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing