OPINION

Using second-person neuroscience to elucidate the mechanisms of social interaction

Abstract

Although a large proportion of our lives are spent participating in social interactions, the investigation of the neural mechanisms supporting these interactions has largely been restricted to situations of social observation — that is, situations in which an individual observes a social stimulus without opportunity for interaction. In recent years, efforts have been made to develop a truly social, or ‘second-person’, neuroscientific approach to these investigations in which neural processes are examined within the context of a real-time reciprocal social interaction. These developments have helped to elucidate the behavioural and neural mechanisms of social interactions; however, further theoretical and methodological innovations are still needed. Findings to date suggest that the neural mechanisms supporting social interaction differ from those involved in social observation and highlight a role of the so-called ‘mentalizing network’ as important in this distinction. Taking social interaction seriously may also be particularly important for the advancement of the neuroscientific study of different psychiatric conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Single-brain and dual-brain approaches in second-person neuroscience.
Fig. 2: The mentalizing network in social interaction.

References

  1. 1.

    Schurz, M. et al. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 42, 9–34 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Schilbach, L. et al. Toward a second-person neuroscience. Behav. Brain 36, 393–414 (2013).

    Article  Google Scholar 

  3. 3.

    Schippers, M. B. et al. Mapping the information flow from one brain to another during gestural communication. Proc. Natl Acad. Sci. USA 107, 9388–9393 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Anders, S. et al. Flow of affective information between communicating brains. Neuroimage 54, 439–446 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Montague, P. R. et al. Hyperscanning: simultaneous fMRI during linked social interactions. Neuroimage 1164, 1159–1164 (2002).

    Article  Google Scholar 

  6. 6.

    King-Casas, B. et al. Getting to know you: reputation and trust in a two-person economic exchange. Science 308, 78–83 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Chiu, P. H. et al. Self responses along cingulate cortex reveal quantitative neural phenotype for high-functioning autism. Neuron 57, 463–473 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    King-Casas, B. et al. The rupture and repair in borderline personality disorder. Science 321, 806–811 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Hirsch, J. et al. Frontal temporal and parietal systems synchronize within and across brains during live eye-to-eye contact. Neuroimage 157, 314–330 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Kinreich, S. et al. Brain-to-brain synchrony during naturalistic social interactions. Sci. Rep. 7, 1–12 (2017).

    Article  CAS  Google Scholar 

  11. 11.

    Bilek, E. et al. Information flow between interacting human brains: Identification, validation, and relationship to social expertise. Proc. Natl Acad. Sci. USA 112, 5207–5212 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Saito, D. N. et al. ‘Stay tuned’: inter-individual neural synchronization during mutual gaze and joint attention. Front. Integr. Neurosci. 4, 127 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Yun, K., Watanabe, K. & Shimojo, S. Interpersonal body and neural synchronization as a marker of implicit social interaction. Sci. Rep. 2, 1–8 (2012).

    Article  CAS  Google Scholar 

  14. 14.

    Schilbach, L. et al. Being with virtual others: neural correlates of social interaction. Neuropsychologia 44, 718–730 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Kampe, K. K. W., Frith, C. D. & Frith, U. ‘Hey John’: signals conveying communicative intention toward the self activate brain regions associated with ‘mentalizing,’ regardless of modality. J. Neurosci. 23, 5258–5263 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Redcay, E., Velnoskey, K. R. & Rowe, M. L. Perceived communicative intent in gesture and language modulates the superior temporal sulcus. Hum. Brain Mapp. 37, 3444–3461 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Redcay, E. & Carlson, T. A. Rapid neural discrimination of communicative gestures. Soc. Cogn. Affect. Neurosci. 10, 545–551 (2013).

    Article  Google Scholar 

  18. 18.

    Ferrari, P. F. et al. Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. Eur. J. Neurosci. 17, 1703–1714 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Tylén, K. et al. Interaction versus observation: distinctive modes of social cognition in human brain and behavior? A combined fMRI and eye-tracking study. Front. Hum. Neurosci. 6, 331 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Ciaramidaro, A. et al. Do you mean me? Communicative intentions recruit the mirror and the mentalizing system. Soc. Cogn. Affect. Neurosci. 9, 909–916 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Nagels, A. et al. Feeling addressed! The role of body orientation and co-speech gesture in social communication. Hum. Brain Mapp. 36, 1925–1936 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Rice, K. & Redcay, E. Interaction matters: a perceived social partner alters the neural response to human speech. Neuroimage 129, 480–488 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Redcay, E. et al. Communicative signals promote object recognition memory and modulate the posterior superior temporal sulcus. J. Cogn. Neurosci. 28, 8–19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    von dem Hagen, E. A. H. et al. Direct gaze elicits atypical activation of the theory-of-mind network in autism spectrum conditions. Cereb. Cortex 24, 1485–1492 (2014).

    Article  Google Scholar 

  25. 25.

    Morris, J. P., Pelphrey, K. A. & McCarthy, G. Regional brain activation evoked when approaching a virtual human on a virtual walk. J. Cogn. Neurosci. 17, 1744–1752 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Saggar, M. et al. Revealing the neural networks associated with processing of natural social interaction and the related effects of actor-orientation and face-visibility. Neuroimage 84, 656–648 (2014).

    Article  Google Scholar 

  27. 27.

    Pfeiffer, U. J. et al. Why we interact: on the functional role of the striatum in the subjective experience of social interaction. Neuroimage 101, 124–137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Alkire, D. et al. Social interaction recruits mentalizing and reward systems in middle childhood. Hum. Brain Mapp. 39, 3928–3942 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kuhlen, A. K. et al. Brains in dialogue: decoding neural preparation of speaking to a conversational partner. Soc. Cogn. Affect. Neurosci. 12, 871–880 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Redcay, E. et al. Live face-to-face interaction during fMRI: a new tool for social cognitive neuroscience. Neuroimage 50, 1639–1647 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Rice, K., Moraczewski, D. & Redcay, E. Perceived live interaction modulates the developing social brain. Soc. Cogn. Affect. Neurosci. 11, 1354–1362 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Schuwerk, T. et al. The rTPJ’s overarching cognitive function in networks for attention and theory of mind. Soc. Cogn. Affect. Neurosci. 12, 157–168 (2017).

    Article  Google Scholar 

  33. 33.

    Pönkänen, L. M. et al. Does it make a difference if I have an eye contact with you or with your picture? An ERP study. Soc. Cogn. Affect. Neurosci. 6, 486–494 (2011).

    Article  Google Scholar 

  34. 34.

    Wykowska, A. et al. Beliefs about the minds of others influence how we process sensory information. PLOS ONE 9, e94339 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Cavallo, A. et al. When gaze opens the channel for communication: integrative role of IFG and MPFC. Neuroimage 119, 63–69 (2015).

    Article  Google Scholar 

  36. 36.

    Coan, J. A., Schaefer, H. S. & Davidson, R. J. Lending a hand: social regulation of the neural response to threat. Psychol. Sci. 17, 1032–1039 (2006).

    Article  Google Scholar 

  37. 37.

    Kokal, I., Gazzola, V. & Keysers, C. Acting together in and beyond the mirror neuron system. Neuroimage 47, 2046–2056 (2009).

    Article  Google Scholar 

  38. 38.

    Koike, T., Tanabe, H. C. & Sadato, N. Hyperscanning neuroimaging technique to reveal the “two-in-one” system in social interactions. Neurosci. Res. 90, 25–32 (2015).

    Article  Google Scholar 

  39. 39.

    Dumas, G. et al. Inter-brain synchronization during social interaction. PLOS ONE 5, e12166 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Jiang, J. et al. Leader emergence through interpersonal neural synchronization. Proc. Natl Acad. Sci. USA 112, 4274–4279 (2015).

    Article  CAS  Google Scholar 

  41. 41.

    Koike, T. et al. Neural substrates of shared attention as social memory: a hyperscanning functional magnetic resonance imaging study. Neuroimage 125, 401–412 (2016).

    Article  Google Scholar 

  42. 42.

    Bruner, J. Child’s Talk: Learning to Use Language (Norton, 1983).

  43. 43.

    Verga, L. & Kotz, S. A. How relevant is social interaction in second language learning? Front. Hum. Neurosci. 7, 550 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Brennan, S. E. & Hanna, J. E. Partner-specific adaptation in dialog. Top. Cogn. Sci. 1, 274–291 (2009).

    Article  Google Scholar 

  45. 45.

    Giles, H., Coupland, N. & Coupland, J. in Contexts of Accommodation (eds Giles, H., Coupland, J. & Coupland, N.) 1–68 (Cambridge Univ. Press, 1992).

  46. 46.

    Schockley, K., Santana, M. & Fowler, C. A. Mutual interpersonal postural constraints are involved in cooperative conversation. J. Exp. Psychol. Hum. Percept. Perform. 29, 326–332 (2003).

    Article  Google Scholar 

  47. 47.

    Niedenthal, P. et al. The simulation of smiles (SIMS) model: embodied simulation and the meaning of facial expression. Behav. Brain Sci. 33, 417–433 (2010).

    Article  Google Scholar 

  48. 48.

    Richardson, D. C., Dale, R. & Kirkham, N. Z. The art of conversation is coordination. Psychol. Sci. 18, 407–413 (2007).

    Article  Google Scholar 

  49. 49.

    Leander, N. P., Chartrand, T. L. & Wood, W. Mind your mannerisms: behavioral mimicry elicits stereotype conformity. J. Exp. Soc. Psychol. 47, 195–201 (2011).

    Article  Google Scholar 

  50. 50.

    Bolis, D. et al. Beyond autism: introducing the dialectical misattunement hypothesis and a Bayesian account of intersubjectivity. Psychopathology 50, 355–372 (2018).

    Article  Google Scholar 

  51. 51.

    Campbell-Meiklejohn, D. K. et al. How the opinion of others affects our valuation of objects. Curr. Biol. 20, 1165–1170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Klucharev, V. et al. Reinforcement learning signal predicts social conformity. Neuron 61, 140–151 (2009).

    Article  CAS  Google Scholar 

  53. 53.

    Liu, D. et al. Interactive brain activity: review and progress on EEG-based hyperscanning in social interactions. Front. Psychol. 9, 1–11 (2018).

    Article  Google Scholar 

  54. 54.

    Szymanski, C. et al. Teams on the same wavelength perform better: inter-brain phase synchronization constitutes a neural substrate for social facilitation. Neuroimage 152, 425–436 (2017).

    Article  Google Scholar 

  55. 55.

    Dikker, S. et al. Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Curr. Biol. 27, 1375–1380 (2017).

    Article  CAS  Google Scholar 

  56. 56.

    Tognoli, E. et al. The phi complex as a neuromarker of human social coordination. Proc. Natl Acad. Sci. USA 104, 8190–8195 (2007).

    Article  CAS  Google Scholar 

  57. 57.

    Konvalinka, I. et al. Frontal alpha oscillations distinguish leaders from followers: multivariate decoding of mutually interacting brains. Neuroimage 94, 79–88 (2014).

    Article  Google Scholar 

  58. 58.

    Redcay, E. & Saxe, R. in Agency and Joint Attention (eds Terrace, H. S. & Metacalfe, J.) (Oxford Univ. Press, 2013).

  59. 59.

    Caruana, N., Brock, J. & Woolgar, A. A frontotemporoparietal network common to initiating and responding to joint attention bids. Neuroimage 108, 34–46 (2015).

    Article  Google Scholar 

  60. 60.

    Gordon, I. et al. Social, reward, and attention brain networks are involved when online bids for joint attention are met with congruent versus incongruent responses. Soc. Neurosci. 8, 544–554 (2013).

    Article  Google Scholar 

  61. 61.

    Oberwelland, E. et al. Look into my eyes: investigating joint attention using interactive eye-tracking and fMRI in a developmental sample. Neuroimage 130, 248–260 (2016).

    Article  CAS  Google Scholar 

  62. 62.

    Redcay, E., Kleiner, M. & Saxe, R. Look at this: the neural correlates of initiating and responding to bids for joint attention. Front. Hum. Neurosci. 6, 1–14 (2012).

    Article  Google Scholar 

  63. 63.

    Schilbach, L. et al. Minds made for sharing: initiating joint attention recruits reward-related neurocircuitry. J. Cogn. Neurosci. 22, 2702–2715 (2010).

    Article  Google Scholar 

  64. 64.

    Wagner, U. et al. Beautiful friendship: social sharing of emotions improves subjective feelings and activates the neural reward circuitry. Soc. Cogn. Affect. Neurosci. 10, 80–808 (2015).

    Article  Google Scholar 

  65. 65.

    Mundy, P. A review of joint attention and social-cognitive brain systems in typical development and autism spectrum disorder. Eur. J. Neurosci. 47, 497–514 (2018).

    Article  Google Scholar 

  66. 66.

    Garrod, S. & Pickering, M. J. Why is conversation so easy? Trends Cogn. Sci. 8, 8–11 (2004).

    Article  Google Scholar 

  67. 67.

    Pickering, M. J. & Garrod, S. An integrated theory of language production and comprehension. Behav. Brain Sci. 36, 329–347 (2013).

    Article  Google Scholar 

  68. 68.

    Rilling, J. K. et al. The neural correlates of theory of mind within interpersonal interactions. Neuroimage 22, 1694–1703 (2004).

    Article  Google Scholar 

  69. 69.

    Kircher, T. et al. Online mentalising investigated with functional MRI. Neurosci. Lett. 454, 176–181 (2009).

    Article  CAS  Google Scholar 

  70. 70.

    Gallagher, H. L. et al. Imaging the intentional stance in a competitive game. Neuroimage 16, 814–821 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Carter, R. M. et al. A distinct role of the temporal-parietal junction in predicting socially guided decisions. Science 336, 109–111 (2012).

    Article  CAS  Google Scholar 

  72. 72.

    Hill, C. A. et al. A causal account of the brain network computations underlying strategic social behavior. Nat. Neurosci. 20, 1142–1149 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Tang, H. et al. Interpersonal brain synchronization in the right temporo-parietal junction during face-to-face economic exchange. Soc. Cogn. Affect. Neurosci. 11, 23–32 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Takahashi, H. et al. Different impressions of other agents obtained through social interaction uniquely modulate dorsal and ventral pathway activities in the social human brain. Cortex 58, 289–300 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Bellucci, G. et al. Neural signatures of trust in reciprocity: a coordinate-based meta-analysis. Hum. Brain Mapp. 38, 1233–1248 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Xiang, T. et al. Computational phenotyping of two-person interactions reveals differential neural response to depth-of-thought. PLOS Comput. Biol. 8, 0–8 (2012).

    Article  CAS  Google Scholar 

  77. 77.

    Yoshida, W. et al. Cooperation and heterogeneity of the autistic mind. J. Neurosci. 30, 8815–8818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Koshelev, M. et al. Biosensor approach to psychopathology classification. PLOS Comput. Biol. 6, e1000966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    De Vico Fallani, F. et al. Defecting or not defecting: how to ‘read’ human behavior during cooperative games by EEG measurements. PLOS ONE 5, e14187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Diaconescu, A. O. et al. Inferring on the intentions of others by hierarchical Bayesian learning. PLOS Comput. Biol. 10, e1003810 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Wang, H., Braun, C. & Enck, P. How the brain reacts to social stress (exclusion) — a scoping review. Neurosci. Biobehav. Rev. 80, 80–88 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Müller-Pinzler, L. et al. Neural pathways of embarrassment and their modulation by social anxiety. Neuroimage 119, 252–261 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Schmalzle, R. et al. Brain connectivity dynamics during social interaction reflect social network structure. Proc. Natl Acad. Sci. USA 114, 5153–5158 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Preller, K. H. et al. Functional changes of the reward system underlie blunted response to social gaze in cocaine users. Proc. Natl Acad. Sci. USA 111, 2842–2847 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Parkinson, C., Kleinbaum, A. M. & Wheatley, T. Similar neural responses predict friendship. Nat. Commun. 9, 1–13 (2018).

    Article  CAS  Google Scholar 

  86. 86.

    Gallese, V. & Goldman, A. Mirror neurons and the simulation theory of mind-reading. Trends Cogn. Sci. 2, 493–501 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Thioux, M., Gazzola, V. & Keysers, C. Action understanding: how, what, and why. Curr. Biol. 18, 431–434 (2008).

    Article  CAS  Google Scholar 

  88. 88.

    de Lange, F. P. et al. Complementary systems for understanding action intentions. Curr. Biol. 18, 454–457 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Spunt, R. P., Satpute, A. B. & Lieberman, M. D. Identifying the what, why, and how of an observed action: an fMRI study of mentalizing and mechanizing during action observation. J. Cogn. Neurosci. 23, 63–74 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Frith, U. & Frith, C. The biological basis of social interaction. Curr. Dir. Psychol. Sci. 10, 151–155 (2001).

    Article  Google Scholar 

  91. 91.

    Grossmann, T. The development of social brain functions in infancy. Psychol. Bull. 141, 1266–1287 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Redcay, E. & Warnell, K. R. in Advances in Child Development and Behavior Vol. 54 (ed. Benson, J. B.) 1–44 (Elsevier, 2018).

  93. 93.

    Sliwa, J. & Freiwald, W. A. A dedicated network for social interaction processing in the primate brain. Science 749, 745–749 (2017).

    Article  CAS  Google Scholar 

  94. 94.

    Tomasello, M. How children come to understand false beliefs: a shared intentionality account. Proc. Natl Acad. Sci. USA 115, 8491–8498 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Schippers, M. B. et al. Playing charades in the fMRI: are mirror and/or mentalizing areas involved in gestural communication? PLOS ONE 4, e6801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Zaki, J. & Ochsner, K. The need for a cognitive neuroscience of naturalistic social cognition. Ann. NY Acad. Sci. 1167, 16–30 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Sperduti, M. et al. Mirror neuron system and mentalizing system connect during online social interaction. Cogn. Process. 15, 307–316 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Spengler, S., Von Cramon, D. Y. & Brass, M. Control of shared representations relies on key processes involved in mental state attribution. Hum. Brain Mapp. 30, 3704–3718 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Wang, Y., Ramsey, R. & Hamilton, A. F. The control mimicry eye contact is mediated medial prefrontal cortex. J. Neurosci. 31, 12001–10 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Warnell, K. R., Sadikova, E. & Redcay, E. Let’s chat: developmental neural bases of social motivation during real-time peer interaction. Dev. Sci. 21, e12581 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Konvalinka, I. & Roepstorff, A. The two-brain approach: how can mutually interacting brains teach us something about social interaction? Front. Hum. Neurosci. 6, 215 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Hasson, U. & Frith, C. D. Mirroring and beyond: coupled dynamics as a generalized framework for modelling social interactions. Phil. Trans. R. Soc. B 371, 20150366 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Sänger, J., Müller, V. & Lindenberger, U. Intra- and interbrain synchronization and network properties when playing guitar in duets. Front. Hum. Neurosci. 6, 312 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Montague, P. R. et al. Computational psychiatry. Trends Cogn. Sci. 16, 72–80 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Jasmin, K. et al. Overt social interaction and resting state in young adult males with autism: core and contextual neural features. Brain 142, 808–822 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Murray, L. & Trevarthen, C. in Social Perception in Infancy (eds Field, T. M. & Fox, N. A.) 177–198 (ABlex, 1985).

  107. 107.

    Feldman, R. Parent-infant synchrony: a biobehavioral model of mutual influences in the formation of affiliative bonds. Monogr. Soc. Res. Child Dev. 77, 42–51 (2012).

    Article  Google Scholar 

  108. 108.

    Kuhl, P. K., Tsao, F.-M. & Liu, H.-M. Foreign-language experience in infancy: effects of short-term exposure and social interaction on phonetic learning. Proc. Natl Acad. Sci. USA 100, 9096–9101 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Lytle, S. R., Garcia-Sierra, A. & Kuhl, P. K. Two are better than one: infant language learning from video improves in the presence of peers. Proc. Natl Acad. Sci. USA 115, 9859–9866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Kirschner, S. & Tomasello, M. Joint drumming: social context facilitates synchronization in preschool children. J. Exp. Child Psychol. 102, 299–314 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Leong, V. et al. Speaker gaze increases information coupling between infant and adult brains. Proc. Natl Acad. Sci. USA 114, 13290–13295 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Liao, Y. et al. EEG imaging of toddlers during dyadic turn-taking: Mu-rhythm modulation while producing or observing social actions. Neuroimage 112, 52–60 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Pan, Y. et al. Cooperation in lovers: Axiangn fNIRS-based hyperscanning study. Hum. Brain Mapp. 38, 831–841 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Goldstein, P. et al. Brain-to-brain coupling during handholding is associated with pain reduction. Proc. Natl Acad. Sci. USA 115, E2528–E2537 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Fareri, D. S. et al. Social network modulation of reward-related signals. J. Neurosci. 32, 9045–9052 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Clark, H. H., Schreuder, R. & Buttrick, S. Common ground and the understanding of demonstrative reference. J. Verbal Learning Verbal Behav. 22, 245–258 (1983).

    Article  Google Scholar 

  117. 117.

    Hasson, U. et al. Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends Cogn. Sci. 16, 113–120 (2012).

    Article  Google Scholar 

  118. 118.

    Yeshurun, Y. et al. Same story, different story: the neural representation of interpretive frameworks. Psychol. Sci. 28, 307–319 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Lahnakoski, J. M. et al. Synchronous brain activity across individuals underlies shared psychological perspectives. Neuroimage 100, 316–324 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Nummenmaa, L. et al. Emotions promote social interaction by synchronizing brain activity across individuals. Proc. Natl Acad. Sci. USA 109, 9599–9604 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Golland, Y. et al. Neural dynamics underlying emotional transmissions between individuals. Soc. Cogn. Affect. Neurosci. 12, 1249–1260 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Schilbach, L. et al. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the ‘default system’ of the brain. Consci. Cogn. 17, 457–467 (2008).

    Article  Google Scholar 

  123. 123.

    Schilbach, L. Towards a second-person neuropsychiatry. Phil. Trans. R. Soc. B 371, 20150081 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Lu, J. et al. Single stimulus fMRI produces a neural individual difference measure for autism spectrum disorder. Clin. Psychol. Sci. 3, 422–432 (2016).

    Article  Google Scholar 

  125. 125.

    Komeda, H. et al. Autistic empathy toward autistic others. Soc. Cogn. Affect. Neurosci. 10, 145–152 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Edey, R. et al. Interaction takes two: typical adults exhibit mind-blindness towards those with autism spectrum disorder. J. Abnorm. Psychol. 125, 879–885 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Bolis, D. & Schilbach, L. Observing and participating in social interactions: action perception and action control across the autistic spectrum. Dev. Cogn. Neurosci. 29, 168–175 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Parpart, H. et al. Schematherapy-informed social interaction training: an intervention approach for adults with high-functioning autism [German]. Psychotherapeut 63, 235–242 (2018).

    Article  Google Scholar 

  129. 129.

    Kennedy, D. P. & Adolphs, R. The social brain in psychiatric and neurological disorders. Trends Cogn. Sci. 16, 559–572 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Alkire, M.-L. Brandi, J. Lahnakoski, D. Moraczewski, K. Warnell and Y. Xiao for critical comments on the manuscript. The authors are also grateful to the referees for their valuable suggestions. E.R.’s contributions to this paper were supported in part by grants from the US National Institutes of Health (NIH; R01MH107441, R01MH112517 and P01 HD064653). L.S. was funded by a grant from the Max Planck Society for an Independent Max Planck Research Group. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or the Max Planck Society.

Reviewer information

Nature Reviews Neuroscience thanks C. Frith, R. Montague and N. Sadato for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Elizabeth Redcay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Redcay, E., Schilbach, L. Using second-person neuroscience to elucidate the mechanisms of social interaction. Nat Rev Neurosci 20, 495–505 (2019). https://doi.org/10.1038/s41583-019-0179-4

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing