Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

A cross-disorder connectome landscape of brain dysconnectivity

Abstract

Many human brain disorders are associated with characteristic alterations in the structural and functional connectivity of the brain. In this article, we explore how commonalities and differences in connectome alterations can reveal relationships across disorders. We survey recent literature on connectivity changes in neurological and psychiatric disorders in the context of key organizational principles of the human connectome and observe that several disturbances to network properties of the human brain have a common role in a wide range of brain disorders and point towards potentially shared network mechanisms underpinning disorders. We hypothesize that the distinct dimensions along which connectome networks are organized (for example, ‘modularity’ and ‘integration’) provide a general coordinate system that allows description and categorization of relationships between seemingly disparate disorders. We outline a cross-disorder ‘connectome landscape of dysconnectivity’ along these principal dimensions of network organization that may place shared connectome alterations between brain disorders in a common framework.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modular and hub organization of the human connectome-shaping disease processes.
Fig. 2: Connectome landscape of dysconnectivity.

Similar content being viewed by others

References

  1. Sporns, O., Tononi, G. & Kotter, R. The human connectome: a structural description of the human brain. PLOS Comput. Biol. 1, e42 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sporns, O. Discovering the Human Connectome (MIT Press, Cambridge, 2012).

  3. van den Heuvel, M. P. & Fornito, A. Brain networks in schizophrenia. Neuropsychol. Rev. 24, 32–48 (2014).

    Article  PubMed  Google Scholar 

  4. Fornito, A., Zalesky, A. & Breakspear, M. The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159–172 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. van den Heuvel, M. P., Bullmore, E. T. & Sporns, O. Comparative connectomics. Trends Cogn. Sci. 20, 345–361 (2016).

    Article  PubMed  Google Scholar 

  6. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Avena-Koenigsberger, A., Misic, B. & Sporns, O. Communication dynamics in complex brain networks. Nat. Rev. Neurosci. 19, 17–33 (2017).

    Article  PubMed  CAS  Google Scholar 

  8. Horn, A. et al. The structural-functional connectome and the default mode network of the human brain. Neuroimage 102, 142–151 (2014).

    Article  PubMed  Google Scholar 

  9. Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLOS Biol. 6, e159 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. van den Heuvel, M. P. et al. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum. Brain Mapp. 30, 3127–3141 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang, K. & Sejnowski, T. J. A universal scaling law between gray matter and white matter of cerebral cortex. Proc. Natl Acad. Sci. USA 97, 5621–5626 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693–697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Birnbaum, R. & Weinberger, D. R. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat. Rev. Neurosci. 18, 727–740 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Silbersweig, D. A. & Rauch, S. L. Neuroimaging in psychiatry: a quarter century of progress. Harv. Rev. Psychiatry 25, 195–197 (2017).

    Article  PubMed  Google Scholar 

  15. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaiser, M. The potential of the human connectome as a biomarker of brain disease. Front. Hum. Neurosci. 7, 484 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Petrella, J. R. Use of graph theory to evaluate brain networks: a clinical tool for a small world? Radiology 259, 317–320 (2011).

    Article  PubMed  Google Scholar 

  18. Pasquini, L. et al. Individual correspondence of amyloid-beta and intrinsic connectivity in the posterior default mode network across stages of Alzheimer’s disease. J. Alzheimers Dis. 58, 763–773 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Jung, M. et al. Default mode network in young male adults with autism spectrum disorder: relationship with autism spectrum traits. Int. J. Psychophysiol. 94, 212–212 (2014).

    Article  Google Scholar 

  20. Whitfield-Gabrieli, S. et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc. Natl Acad. Sci. USA 106, 1279–1284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wise, T. et al. Instability of default mode network connectivity in major depression: a two-sample confirmation study. Transl Psychiatry 7, e1105 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chenji, S. et al. Investigating default mode and sensorimotor network connectivity in amyotrophic lateral sclerosis. PLOS ONE 11, e0157443 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lee, K. et al. Disruption, emergence and lateralization of brain network hubs in mesial temporal lobe epilepsy. Neuroimage Clin. 20, 71–84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rudie, J. D. et al. Altered functional and structural brain network organization in autism. Neuroimage Clin. 2, 79–94 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lord, A. et al. Changes in community structure of resting state functional connectivity in unipolar depression. PLOS ONE 7, e41282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vaessen, M. J. et al. Abnormal modular organization of functional networks in cognitively impaired children with frontal lobe epilepsy. Cereb. Cortex 23, 1997–2006 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Alexander-Bloch, A. F. et al. Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front. Syst. Neurosci. 4, 147 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhan, L. et al. Baseline connectome modular abnormalities in the childhood phase of a longitudinal study on individuals with chromosome 22q11.2 deletion syndrome. Hum. Brain Mapp. 39, 232–248 (2018).

    Article  PubMed  Google Scholar 

  29. Waller, L. et al. Evaluating the replicability, specificity, and generalizability of connectome fingerprints. Neuroimage 158, 371–377 (2017).

    Article  PubMed  Google Scholar 

  30. Grisanzio, K. A. et al. Transdiagnostic symptom clusters and associations with brain, behavior, and daily function in mood, anxiety, and trauma disorders. JAMA Psychiatry 75, 201–209 (2018).

    Article  PubMed  Google Scholar 

  31. Insel, T. et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

    Article  PubMed  Google Scholar 

  32. Kraemer, H. C., Noda, A. & O’Hara, R. Categorical versus dimensional approaches to diagnosis: methodological challenges. J. Psychiatr. Res. 38, 17–25 (2004).

    Article  PubMed  Google Scholar 

  33. Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Foss-Feig, J. H. et al. Searching for cross-diagnostic convergence: neural mechanisms governing excitation and inhibition balance in schizophrenia and autism spectrum disorders. Biol. Psychiatry 81, 848–861 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Coleman, K. & Pierre, P. J. Assessing anxiety in nonhuman primates. ILAR J. 55, 333–346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McTeague, L. M. et al. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am. J. Psychiatry 174, 676–685 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bota, M., Dong, H. W. & Swanson, L. W. Combining collation and annotation efforts toward completion of the rat and mouse connectomes in BAMS. Front. Neuroinform. 6, 2 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chiang, A. S. et al. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1–11 (2010).

    Article  PubMed  CAS  Google Scholar 

  39. Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hilger, K. et al. Intelligence is associated with the modular structure of intrinsic brain networks. Sci. Rep. 7, 16088 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Stevens, A. A. et al. Functional brain network modularity captures inter- and intra-individual variation in working memory capacity. PLOS ONE 7, e30468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao, Q. et al. Extraversion and neuroticism relate to topological properties of resting-state brain networks. Front. Hum. Neurosci. 7, 257 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. Adelstein, J. S. et al. Personality is reflected in the brain’s intrinsic functional architecture. PLOS ONE 6, e27633 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).

    Article  PubMed  Google Scholar 

  45. van den Heuvel, M. P. & Sporns, O. An anatomical substrate for integration among functional networks in human cortex. J. Neurosci. 33, 14489–14500 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Gomez-Gardenes, J. et al. From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex. PLOS ONE 5, e12313 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. van den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 11 (2011).

    Google Scholar 

  48. Collin, G. et al. Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb. Cortex 24, 2258–2267 (2014).

    Article  PubMed  Google Scholar 

  49. Zamora-Lopez, G., Zhou, C. & Kurths, J. Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front. Neuroinform. 4, 1 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. van den Heuvel, M. P. et al. High-cost, high-capacity backbone for global brain communication. Proc. Natl Acad. Sci. USA 109, 11372–11377 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Senden, M. et al. Rich club organization supports a diverse set of functional network configurations. Neuroimage 96, 174–182 (2014).

    Article  PubMed  Google Scholar 

  52. Baggio, H. C. et al. Rich club organization and cognitive performance in healthy older participants. J. Cogn. Neurosci. 27, 1801–1810 (2015).

    Article  PubMed  Google Scholar 

  53. Seidlitz, J. et al. Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97, 231–247 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Daianu, M. et al. Disrupted rich club network in behavioral variant frontotemporal dementia and early-onset Alzheimer’s disease. Hum. Brain Mapp. 37, 868–883 (2016).

    Article  PubMed  Google Scholar 

  55. Ray, S. et al. Structural and functional connectivity of the human brain in autism spectrum disorders and attention-deficit/hyperactivity disorder: a rich club-organization study. Hum. Brain Mapp. 35, 6032–6048 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rubinov, M. Constraints and spandrels of interareal connectomes. Nat. Commun. 7, 13812 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, Y. et al. Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems. PLOS Comput. Biol. 9, e1002937 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sporns, O. & Betzel, R. F. Modular brain networks. Annu. Rev. Psychol. 67, 613–640 (2016).

    Article  PubMed  Google Scholar 

  59. Kaiser, M. & Varier, S. Evolution and development of brain networks: from Caenorhabditis elegans to Homo sapiens. Network 22, 143–147 (2011).

    Article  PubMed  Google Scholar 

  60. Chen, Y. et al. Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency. PLOS Comput. Biol. 13, e1005776 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. de Haan, W. et al. Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease. PLOS Comput. Biol. 8, e1002582 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29, 1860–1873 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Verstraete, E. et al. Structural brain network imaging shows expanding disconnection of the motor system in amyotrophic lateral sclerosis. Hum. Brain Mapp. 35, 1351–1361 (2014).

    Article  PubMed  Google Scholar 

  64. Harrington, D. L. et al. Network topology and functional connectivity disturbances precede the onset of Huntington’s disease. Brain 138, 2332–2346 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pedersen, M. et al. The dynamics of functional connectivity in neocortical focal epilepsy. Neuroimage Clin. 15, 209–214 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Uddin, L. Q., Supekar, K. & Menon, V. Reconceptualizing functional brain connectivity in autism from a developmental perspective. Front. Hum. Neurosci. 7, 458 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Courchesne, E. & Pierce, K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr. Opin. Neurobiol. 15, 225–230 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Griffa, A. et al. Characterizing the connectome in schizophrenia with diffusion spectrum imaging. Hum. Brain Mapp. 36, 354–366 (2015).

    Article  PubMed  Google Scholar 

  69. Lynall, M. E. et al. Functional connectivity and brain networks in schizophrenia. J. Neurosci. 30, 9477–9487 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. van den Heuvel, M. P. et al. Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry 70, 783–792 (2013).

    Article  PubMed  Google Scholar 

  71. Wang, F. et al. Abnormal corpus callosum integrity in bipolar disorder: a diffusion tensor imaging study. Biol. Psychiatry 64, 730–733 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Roberts, G. et al. Structural dysconnectivity of key cognitive and emotional hubs in young people at high genetic risk for bipolar disorder. Mol. Psychiatry 23, 413–421 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Filippi, M. et al. Assessment of system dysfunction in the brain through MRI-based connectomics. Lancet Neurol. 12, 1189–1199 (2013).

    Article  PubMed  Google Scholar 

  74. Griffa, A. et al. Structural connectomics in brain diseases. Neuroimage 80, 515–526 (2013).

    Article  PubMed  Google Scholar 

  75. Stam, C. J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Crossley, N. A. et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137, 2382–2395 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Martin, G. Network analysis and the connectopathies: current research and future approaches. Nonlinear Dynam. Psychol. Life Sci. 16, 79–90 (2012).

    Google Scholar 

  78. Toga, A. W. & Thompson, P. M. Connectopathy in ageing and dementia. Brain 137, 3104–3106 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Seeley, W. W. et al. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Verstraete, E. et al. Impaired structural motor connectome in amyotrophic lateral sclerosis. PLOS ONE 6, e24239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou, J. et al. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73, 1216–1227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cope, T. E. et al. Tau burden and the functional connectome in Alzheimer’s disease and progressive supranuclear palsy. Brain 141, 550–567 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zeighami, Y. et al. Network structure of brain atrophy in de novo Parkinson’s disease. eLife 4, e08440 (2015).

    Article  PubMed Central  Google Scholar 

  85. Schulthess, I. et al. Functional connectivity changes resemble patterns of pTDP-43 pathology in amyotrophic lateral sclerosis. Sci. Rep. 6, 38391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Visanji, N. P. et al. Iron deficiency in parkinsonism: region-specific iron dysregulation in Parkinson’s disease and multiple system atrophy. J. Parkinsons Dis. 3, 523–537 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Brettschneider, J. et al. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat. Rev. Neurosci. 16, 109–120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schmidt, R. et al. Simulating disease propagation across white matter connectome reveals anatomical substrate for neuropathology staging in amyotrophic lateral sclerosis. Neuroimage 124, 762–769 (2016).

    Article  PubMed  Google Scholar 

  89. Yau, Y. et al. Network connectivity determines cortical thinning in early Parkinson’s disease progression. Nat. Commun. 9, 12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vidal, C. N. et al. Dynamically spreading frontal and cingulate deficits mapped in adolescents with schizophrenia. Arch. Gen. Psychiatry 63, 25–34 (2006).

    Article  PubMed  Google Scholar 

  91. Cauda, F. et al. The morphometric co-atrophy networking of schizophrenia, autistic and obsessive spectrum disorders. Hum. Brain Mapp. 39, 1898–1928 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Raj, A. & Powell, F. Models of network spread and network degeneration in brain disorders. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 788–797 (2018).

    PubMed  Google Scholar 

  93. Sala-Llonch, R., Bartres-Faz, D. & Junque, C. Reorganization of brain networks in aging: a review of functional connectivity studies. Front. Psychol. 6, 663 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hilgetag, C. C. et al. The primate connectome in context: principles of connections of the cortical visual system. Neuroimage 134, 685–702 (2016).

    Article  PubMed  Google Scholar 

  95. Beul, S. F., Grant, S. & Hilgetag, C. C. A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Struct. Funct. 220, 3167–3184 (2015).

    Article  PubMed  Google Scholar 

  96. van den Heuvel, M. P. et al. Multimodal analysis of cortical chemoarchitecture and macroscale fMRI resting-state functional connectivity. Hum. Brain Mapp. 37, 3103–3113 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Arnatkeviciute, A. et al. Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome. PLOS Comput. Biol. 14, e1005989 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Scholtens, L. H. et al. Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome. J. Neurosci. 34, 12192–12205 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. van den Heuvel, M. P. et al. Bridging cytoarchitectonics and connectomics in human cerebral cortex. J. Neurosci. 35, 13943–13948 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Elston, G. N. Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb. Cortex 13, 1124–1138 (2003).

    Article  PubMed  Google Scholar 

  101. Vaishnavi, S. N. et al. Regional aerobic glycolysis in the human brain. Proc. Natl Acad. Sci. USA 107, 17757–17762 (2011).

    Article  Google Scholar 

  102. Fulcher, B. D. & Fornito, A. A transcriptional signature of hub connectivity in the mouse connectome. Proc. Natl Acad. Sci. USA 113, 1435–1440 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Iturria-Medina, Y. & Evans, A. C. On the central role of brain connectivity in neurodegenerative disease progression. Front. Aging Neurosci. 7, 90 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Jones, D. T. et al. Tau, amyloid, and cascading network failure across the Alzheimer’s disease spectrum. Cortex 97, 143–159 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Jones, D. T. et al. Cascading network failure across the Alzheimer’s disease spectrum. Brain 139, 547–562 (2016).

    Article  PubMed  Google Scholar 

  106. Pahwa, S., Scoglio, C. & Scala, A. Abruptness of cascade failures in power grids. Sci. Rep. 4, 3694 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. de Lange, S. C. et al. Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/360586v1 (2018).

  108. Senden, M. et al. Task-related effective connectivity reveals that the cortical rich club gates cortex-wide communication. Hum. Brain Mapp. 39, 1246–1262 (2018).

    Article  PubMed  Google Scholar 

  109. Vertes, P. E. et al. Simple models of human brain functional networks. Proc. Natl Acad. Sci. USA 109, 5868–5873 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fair, D. A. et al. Functional brain networks develop from a “local to distributed” organization. PLOS Comput. Biol. 5, e1000381 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Wolf, D. A. & Mash, E. J. (eds) Behavioral and Emotional Disorders in Adolescents: Nature, Assessment, and Treatment (Guilford Press, 2008).

  112. Luby, J. L. et al. Early childhood depression and alterations in the trajectory of gray matter maturation in middle childhood and early adolescence. JAMA Psychiatry 73, 31–38 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Avena-Koenigsberger, A. et al. Network morphospace. J. R. Soc. Interface 12, 20140881 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Menke, R. A. L. et al. Increased functional connectivity common to symptomatic amyotrophic lateral sclerosis and those at genetic risk. J. Neurol. Neurosurg. Psychiatry 87, 580–588 (2016).

    Article  PubMed  Google Scholar 

  115. Grefkes, C. & Fink, G. R. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 134, 1264–1276 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Li, Y. X. et al. Alterations in spontaneous brain activity and functional network reorganization following surgery in children with medically refractory epilepsy: a resting-state functional magnetic resonance imaging study. Front. Neurol. 8, 374 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Mohammadi, B. et al. Functional neuroimaging at different disease stages reveals distinct phases of neuroplastic changes in amyotrophic lateral sclerosis. Hum. Brain Mapp. 32, 750–758 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Filippi, M. et al. Brain network connectivity differs in early-onset neurodegenerative dementia. Neurology 89, 1764–1772 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Douaud, G. et al. Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain 134, 3470–3479 (2011).

    Article  PubMed  Google Scholar 

  120. Hillary, F. G. & Grafman, J. H. Injured brains and adaptive networks: the benefits and costs of hyperconnectivity. Trends Cogn. Sci. 21, 385–401 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. de Haan, W. et al. Altering neuronal excitability to preserve network connectivity in a computational model of Alzheimer’s disease. PLOS Comput. Biol. 13, e1005707 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Liu, J. et al. Enhanced interhemispheric functional connectivity compensates for anatomical connection damages in subcortical stroke. Stroke 46, 1045–1051 (2015).

    Article  PubMed  Google Scholar 

  123. Zhang, H. Y. et al. Resting brain connectivity: changes during the progress of Alzheimer disease. Radiology 256, 598–606 (2010).

    Article  PubMed  Google Scholar 

  124. Dima, D., Roberts, R. E. & Frangou, S. Connectomic markers of disease expression, genetic risk and resilience in bipolar disorder. Transl Psychiatry 6, e706 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Braun, U. et al. From maps to multi-dimensional network mechanisms of mental disorders. Neuron 97, 14–31 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cuthbert, B. N. The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry 13, 28–35 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. van der Burgh, H. K. et al. Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. Neuroimage Clin. 13, 361–369 (2017).

    Article  PubMed  Google Scholar 

  128. Scholtens, L. H. & van den Heuvel, M. P. Multimodal connectomics in psychiatry: bridging scales from micro to macro. Biol. Psychiatry 3, 767–776 (2018).

    Google Scholar 

  129. Kotov, R. et al. New dimensions in the quantitative classification of mental illness. Arch. Gen. Psychiatry 68, 1003–1011 (2011).

    Article  PubMed  Google Scholar 

  130. Miranda-Dominguez, O. et al. Connectotyping: model based fingerprinting of the functional connectome. PLOS ONE 9, e111048 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. O’Donoghue, S. et al. Anatomical dysconnectivity in bipolar disorder compared with schizophrenia: A selective review of structural network analyses using diffusion MRI. J. Affect. Disord. 209, 217–228 (2017).

    Article  PubMed  Google Scholar 

  132. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Thompson, P. M. et al. ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. Neuroimage 145, 389–408 (2017).

    Article  PubMed  Google Scholar 

  134. Jack, C. R. Jr et al. The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27, 685–691 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Mirzaei, G., Adeli, A. & Adeli, H. Imaging and machine learning techniques for diagnosis of Alzheimer’s disease. Rev. Neurosci. 27, 857–870 (2016).

    Article  PubMed  Google Scholar 

  136. Simpraga, S. et al. EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease. Sci. Rep. 7, 5775 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Brown, M. R. et al. ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Front. Syst. Neurosci. 6, 69 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Schnack, H. G. et al. Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. Neuroimage 84, 299–306 (2014).

    Article  PubMed  Google Scholar 

  139. Salvador, R. et al. Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis. PLOS ONE 12, e0175683 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Weng, S. F. et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLOS ONE 12, e0174944 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Ramasubbu, R. et al. Accuracy of automated classification of major depressive disorder as a function of symptom severity. Neuroimage Clin. 12, 320–331 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Doucet, G. E. et al. The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder. Am. J. Psychiatry 174, 1214–1222 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Schmidt, A. et al. Structural network disorganization in subjects at clinical high risk for psychosis. Schizophr. Bull. 43, 583–591 (2017).

    PubMed  Google Scholar 

  144. Collin, G. et al. Affected anatomical rich club and structural-functional coupling in young offspring of schizophrenia and bipolar disorder patients. Biol. Psychiatry 82, 746–755 (2017).

    Article  PubMed  Google Scholar 

  145. Deco, G. et al. Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16, 430–439 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Sanz Leon, P. et al. The Virtual Brain: a simulator of primate brain network dynamics. Front. Neuroinform. 7, 10 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Grayson, D. S. et al. The rhesus monkey connectome predicts disrupted functional networks resulting from pharmacogenetic inactivation of the amygdala. Neuron 91, 453–466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Silasi, G. & Murphy, T. H. Stroke and the connectome: how connectivity guides therapeutic intervention. Neuron 83, 1354–1368 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Alstott, J. et al. Modeling the impact of lesions in the human brain. PLOS Comput. Biol. 5, e1000408 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Aerts, H. et al. Brain networks under attack: robustness properties and the impact of lesions. Brain 139, 3063–3083 (2016).

    Article  PubMed  Google Scholar 

  151. Ellegood, J. et al. Analysis of neuroanatomical differences in mice with genetically modified serotonin transporters assessed by structural magnetic resonance imaging. Mol. Autism 9, 24 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Mechling, A. E. et al. Deletion of the mu opioid receptor gene in mice reshapes the reward-aversion connectome. Proc. Natl Acad. Sci. USA 113, 11603–11608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Grandjean, J. et al. Chronic psychosocial stress in mice leads to changes in brain functional connectivity and metabolite levels comparable to human depression. Neuroimage 142, 544–552 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Whitfield-Gabrieli, S. et al. Brain connectomics predict response to treatment in social anxiety disorder. Mol. Psychiatry 21, 680–685 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Sanz-Arigita, E. J. et al. Loss of ‘small-world’ networks in Alzheimer’s disease: graph analysis of FMRI resting-state functional connectivity. PLOS ONE 5, e13788 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Stam, C. J. & Reijneveld, J. C. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys. 1, 3 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Chen, G. et al. Modular reorganization of brain resting state networks and its independent validation in Alzheimer’s disease patients. Front. Hum. Neurosci. 7, 456 (2013).

    PubMed  PubMed Central  Google Scholar 

  159. Prescott, J. W. et al. The Alzheimer structural connectome: changes in cortical network topology with increased amyloid plaque burden. Radiology 273, 175–184 (2014).

    Article  PubMed  Google Scholar 

  160. Castellazzi, G. et al. A comprehensive assessment of resting state networks: bidirectional modification of functional integrity in cerebro-cerebellar networks in dementia. Front. Neurosci. 8, 223 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Pineda-Pardo, J. A. et al. Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment. Neuroimage 101, 765–777 (2014).

    Article  PubMed  Google Scholar 

  162. Zhu, D. J. et al. Connectome-scale assessments of structural and functional connectivity in MCI. Hum. Brain Mapp. 35, 2911–2923 (2014).

    Article  PubMed  Google Scholar 

  163. Wang, J. H. et al. Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease. Biol. Psychiatry 73, 472–481 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Odish, O. F. F. et al. Dynamics of the connectome in Huntington’s disease: a longitudinal diffusion MRI study. Neuroimage Clin. 9, 32–43 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  165. McColgan, P. et al. Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington’s disease. Brain 138, 3327–3344 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Tinaz, S. et al. Changes in functional organization and white matter integrity in the connectome in Parkinson’s disease. Neuroimage Clin. 13, 395–404 (2017).

    Article  PubMed  Google Scholar 

  167. Lee, S. E. et al. Network degeneration and dysfunction in presymptomatic C9ORF72 expansion carriers. Neuroimage Clin. 14, 286–297 (2017).

    Article  PubMed  Google Scholar 

  168. de Albuquerque, M. et al. Longitudinal evaluation of cerebral and spinal cord damage in amyotrophic lateral sclerosis. Neuroimage Clin. 14, 269–276 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Shu, N. et al. Disrupted topological organization of structural and functional brain connectomes in clinically isolated syndrome and multiple sclerosis. Sci. Rep. 6, 29383 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Liu, Y. et al. Functional brain network alterations in clinically isolated syndrome and multiple sclerosis: a graph-based connectome study. Radiology 282, 534–541 (2017).

    Article  PubMed  Google Scholar 

  171. Kocevar, G. et al. Graph theory-based brain connectivity for automatic classification of multiple sclerosis clinical courses. Front. Neurosci. 10, 478 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Burns, S. P. et al. A network analysis of the dynamics of seizure. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 4684–4687 (2012).

    Google Scholar 

  173. Bernhardt, B. C., Bonilha, L. & Gross, D. W. Network analysis for a network disorder: the emerging role of graph theory in the study of epilepsy. Epilepsy Behav. 50, 162–170 (2015).

    Article  PubMed  Google Scholar 

  174. Bonilha, L. et al. The brain connectome as a personalized biomarker of seizure outcomes after temporal lobectomy. Neurology 84, 1846–1853 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Just, M. A. et al. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127, 1811–1821 (2004).

    Article  PubMed  Google Scholar 

  176. Mevel, K. & Fransson, P. The functional brain connectome of the child and autism spectrum disorders. Acta Paediatr. 105, 1024–1035 (2016).

    Article  PubMed  Google Scholar 

  177. Zalesky, A. et al. Disrupted axonal fiber connectivity in schizophrenia. Biol. Psychiatry 69, 80–89 (2011).

    Article  PubMed  Google Scholar 

  178. Kelly, S. et al. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. Mol. Psychiatry 23, 1261–1269 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Klauser, P. et al. White matter disruptions in schizophrenia are spatially widespread and topologically converge on brain network hubs. Schizophr. Bull. 43, 425–435 (2017).

    PubMed  Google Scholar 

  180. Collin, G. et al. Impaired rich club connectivity in unaffected siblings of schizophrenia patients. Schizophr. Bull. 40, 438–448 (2014).

    Article  PubMed  Google Scholar 

  181. Calhoun, V. D. et al. Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder. Front. Psychiatry 2, 75 (2011).

    PubMed  Google Scholar 

  182. Colibazzi, T. et al. Aberrant temporal connectivity in persons at clinical high risk for psychosis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 696–705 (2017).

    PubMed  PubMed Central  Google Scholar 

  183. Yu, Q. et al. Disrupted correlation between low frequency power and connectivity strength of resting state brain networks in schizophrenia. Schizophr. Res. 143, 165–171 (2013).

    Article  PubMed  Google Scholar 

  184. Lo, C. Y. Z. et al. Randomization and resilience of brain functional networks as systems-level endophenotypes of schizophrenia. Proc. Natl Acad. Sci. USA 112, 9123–9128 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  185. Sun, Y. et al. Modular-level alterations of structure-function coupling in schizophrenia connectome. Hum. Brain Mapp. 38, 2008–2025 (2017).

    Article  PubMed  Google Scholar 

  186. Sarrazin, S. et al. Corpus callosum area in patients with bipolar disorder with and without psychotic features: an international multicentre study. J. Psychiatry Neurosci. 40, 352–359 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Collin, G. et al. Brain network analysis reveals affected connectome structure in bipolar I disorder. Hum. Brain Mapp. 37, 122–134 (2016).

    Article  PubMed  Google Scholar 

  188. Ajilore, O. et al. Connectome signatures of neurocognitive abnormalities in euthymic bipolar I disorder. Neuropsychopharmacology 39, S227–S228 (2014).

    Google Scholar 

  189. Lois, G. et al. Large-scale network functional interactions during distraction and reappraisal in remitted bipolar and unipolar patients. Bipolar Disord. 19, 487–495 (2017).

    Article  PubMed  Google Scholar 

  190. Wang, Y. et al. Topologically convergent and divergent functional connectivity patterns in unmedicated unipolar depression and bipolar disorder. Transl Psychiatry 7, e1165 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Korgaonkar, M. S. et al. Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biol. Psychiatry 76, 567–574 (2014).

    Article  PubMed  Google Scholar 

  192. Satterthwaite, T. D. et al. Dimensional depression severity in women with major depression and post-traumatic stress disorder correlates with fronto-amygdalar hypoconnectivty. Mol. Psychiatry 21, 894–902 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Tagliazucchi, E. & van Someren, E. J. W. The large-scale functional connectivity correlates of consciousness and arousal during the healthy and pathological human sleep cycle. Neuroimage 160, 55–72 (2017).

    Article  PubMed  Google Scholar 

  195. Shine, J. M. et al. The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92, 544–554 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Xia, C. H. et al. Linked dimensions of psychopathology and connectivity in functional brain networks. Nat. Commun. 9, 3003 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Elliot, M. L. et al. A connectome-wide functional signature of transdiagnostic risk for mental illness. Biol. Psychiatry 84, 452–459 (2017).

    Article  Google Scholar 

  198. Yoon, Y. B. et al. Altered fronto-temporal functional connectivity in individuals at ultra-high-risk of developing psychosis. PLOS ONE 10, e0135347 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Mitchell, P. et al. Structural dysconnectivity of key cognitive and emotional hubs in young people at high genetic risk for bipolar disorder. Biol. Psychiatry 81, S318–S319 (2017).

    Article  Google Scholar 

  200. Kaufmann, T. et al. Delayed stabilization and individualization in connectome development are related to psychiatric disorders. Nat. Neurosci. 20, 513–515 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. Mueller, S. et al. Individual variability in functional connectivity architecture of the human brain. Neuron 77, 586–595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wook Yoo, S. et al. A network flow-based analysis of cognitive reserve in normal ageing and Alzheimer’s disease. Sci. Rep. 5, 10057 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Bozzali, M. et al. The impact of cognitive reserve on brain functional connectivity in Alzheimer’s disease. J. Alzheimers Dis. 44, 243–250 (2015).

    Article  PubMed  Google Scholar 

  204. Brickman, A. M. et al. White matter hyperintensities and cognition: testing the reserve hypothesis. Neurobiol. Aging 32, 1588–1598 (2011).

    Article  PubMed  Google Scholar 

  205. Ganella, E. P. et al. Risk and resilience brain networks in treatment-resistant schizophrenia. Schizophr. Res. 193, 284–292 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Griffa and A. Zalesky for helpful comments and discussions on earlier versions of the manuscript. M.P.v.d.H. was funded by VIDI (NWO-VIDI 452-16-015) and ALWopen (ALWOP.179) grants from the Netherlands Organization for Scientific Research and by a fellowship from MQ. O.S. was supported by the US National Institutes of Health (grant R01 AT009036-01).

Reviewer information

Nature Reviews Neuroscience thanks D. Fair and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors both researched data for article, provided substantial contributions to discussion of its content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Martijn P. van den Heuvel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van den Heuvel, M.P., Sporns, O. A cross-disorder connectome landscape of brain dysconnectivity. Nat Rev Neurosci 20, 435–446 (2019). https://doi.org/10.1038/s41583-019-0177-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-019-0177-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing