Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease

Abstract

Alzheimer disease (AD) is a major cause of age-related dementia. We do not fully understand AD aetiology and pathogenesis, but oxidative damage is a key component. The brain mostly uses glucose for energy, but in AD and amnestic mild cognitive impairment glucose metabolism is dramatically decreased, probably owing, at least in part, to oxidative damage to enzymes involved in glycolysis, the tricarboxylic acid cycle and ATP biosynthesis. Consequently, ATP-requiring processes for cognitive function are impaired, and synaptic dysfunction and neuronal death result, with ensuing thinning of key brain areas. We summarize current research on the interplay and sequence of these processes and suggest potential pharmacological interventions to retard AD progression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic diagrams of the biochemistry of glucose catabolism and ATP synthesis and their oxidative dysfunction in AD and aMCI brains.
Fig. 2: Schematic representation of biochemical events associated with insulin binding to its receptor, leading to activation of mTORC1 with subsequent inhibition of autophagy and development of insulin resistance.
Fig. 3: Schematic drawings of the three components of the proteostasis network in brain cells.

References

  1. 1.

    Nelson, P. T., Braak, H. & Markesbery, W. R. Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J. Neuropathol. Exp. Neurol. 68, 1–14 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Martins, R. N. et al. Alzheimer’s disease: a journey from amyloid peptides and oxidative stress, to biomarker technologies and disease prevention strategies—gains from AIBL and DIAN cohort studies. J. Alzheimers Dis. 62, 965–992 (2018). This article provides a detailed review of how cohort studies have contributed to our understanding of AD.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Markesbery, W. R. Neuropathologic alterations in mild cognitive impairment: a review. J. Alzheimers Dis. 19, 221–228 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Landau, S. M. & Frosch, M. P. Tracking the earliest pathological changes in Alzheimer disease. Neurology 82, 878–883 (2014).

    Google Scholar 

  5. 5.

    Weise, C. M. et al. Left lateralized cerebral glucose metabolism declines in amyloid-β positive persons with mild cognitive impairment. Neuroimage. Clin. 20, 286–296 (2018).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Croteau, E. et al. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp. Gerontol. 107, 18–26 (2018).

    CAS  PubMed  Google Scholar 

  7. 7.

    Arnold, S. E. et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol. 14, 168–181 (2018). This paper is an excellent review of the links between AD, dysfunctional glucose metabolism and diabetes.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine 5th edn (Oxford Univ. Press, 2015). This book provides a thorough and detailed summary of the role of ROS and antioxidants in human health and disease, including neurodegenerative diseases.

  9. 9.

    Butterfield, D. A., Di Domenico, F. & Barone, E. Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim. Biophys. Acta 1842, 1693–1706 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Cheignin, C. et al. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 14, 450–464 (2018).

    Google Scholar 

  11. 11.

    Halliwell, B. Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97, 1634–1658 (2006).

    CAS  PubMed  Google Scholar 

  12. 12.

    Butterfield, D. A. & Boyd-Kimball, D. Oxidative stress, amyloid β-peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer’s disease. J. Alzheimers Dis. 62, 1345–1367 (2018). This paper highlights the role of Aβ42 oligomers in oxidative stress in aMCI and AD brains in in vitro and in vivo models and how redox proteomics-mediated identification of oxidatively modified key brain proteins is correlated with glucose dysmetabolism, dysfunction of the proteostasis network, activation of mTORC1 and altered protein phosphorylation, all contributing to neuronal death.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Nourooz-Zadeh, J., Liu, E. H., Yhlen, B., Anggard, E. E. & Halliwell, B. F4-isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer’s disease. J. Neurochem. 72, 734–740 (1999).

    CAS  PubMed  Google Scholar 

  14. 14.

    Di Domenico, F. et al. Oxidative signature of cerebrospinal fluid from mild cognitive impairment and Alzheimer disease. Free Radic. Biol. Med. 91, 1–9 (2015).

    PubMed  Google Scholar 

  15. 15.

    Di Domenico, F., Tramutola, A. & Butterfield, D. A. Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of Alzheimer disease and other selected age-related neurodegenerative disorders. Free Radic. Biol. Med. 111, 253–261 (2017).

    PubMed  Google Scholar 

  16. 16.

    Lauderback, C. M. et al. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: Role of Aβ1-42. J. Neurochem. 78, 413–416 (2001).

    CAS  PubMed  Google Scholar 

  17. 17.

    Martins, R. N., Harper, C. G., Stokes, G. B. & Masters, C. L. Increased cerebral glucose-6-phosphate dehydrogenase activity in Alzheimer’s disease may reflect oxidative stress. J. Neurochem. 46, 1042–1045 (1986).

    CAS  PubMed  Google Scholar 

  18. 18.

    Smith, M. A., Richey Harris, P. L., Sayre, L. M., Beckman, J. S. & Perry, G. Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J. Neurosci. 15, 2653–2657 (1997).

    Google Scholar 

  19. 19.

    Hensley, K. et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J. Neurochem. 65, 2146–2156 (1995).

    CAS  PubMed  Google Scholar 

  20. 20.

    Butterfield, D. A. et al. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol. Dis. 22, 223–232 (2006).

    CAS  PubMed  Google Scholar 

  21. 21.

    Butterfield, D. A. et al. Elevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment. Neurosci. Lett. 397, 170–173 (2006).

    CAS  PubMed  Google Scholar 

  22. 22.

    Sultana, R., Perluigi, M. & Butterfield, D. A. Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic. Biol. Med. 62, 157–169 (2013). This paper describes the mechanisms of lipid peroxidation in AD and MCI brains, with resulting HNE covalently modifying and causing dysfunction in brain proteins involved in glucose metabolism and in the synaptic remodelling needed for effective neurotransmission, as revealed by redox proteomics.

    CAS  PubMed  Google Scholar 

  23. 23.

    Bradley, M. A., Markesbery, W. R. & Lovell, M. A. Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic. Biol. Med. 48, 1570–1576 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Reed, T. T., Pierce, W. M., Turner, D. M., Markesbery, W. R. & Butterfield, D. A. Proteomic identification of nitrated brain proteins in early Alzheimer’s disease inferior parietal lobule. J. Cell. Mol. Med. 13, 2019–2029 (2009).

    PubMed  Google Scholar 

  25. 25.

    Sultana, R. et al. Proteomic identification of nitrated brain proteins in amnestic mild cognitive impairment. J. Cell. Mol. Med. 11, 839–851 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Lyras, L., Cairns, N. J., Jenner, A., Jenner, P. & Halliwell, B. An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease. J. Neurochem. 68, 2061–2069 (1997).

    CAS  PubMed  Google Scholar 

  27. 27.

    Santos, R. X. et al. Nuclear and mitochondrial DNA oxidation in Alzheimer’s disease. Free Radic. Res. 46, 565–576 (2012).

    CAS  PubMed  Google Scholar 

  28. 28.

    Abolhassani, N. et al. Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer’s disease brain. Mech. Ageing Dev. 161, 95–104 (2017).

    CAS  PubMed  Google Scholar 

  29. 29.

    Shan, X. & Lin, C. L. Quantification of oxidized RNAs in Alzheimer’s disease. Neurobiol. Aging 27, 657–662 (2006).

    CAS  PubMed  Google Scholar 

  30. 30.

    Nunomura, A. et al. RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathol. 118, 151–166 (2009).

    CAS  PubMed  Google Scholar 

  31. 31.

    Li, S. et al. Soluble oligomers of amyloid β-protein facilitate hippocampal long term depression by disrupting glutamate uptake. Neuron 62, 788–801 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Bereczki, E. et al. Synaptic markers of cognitive decline in neurodegenerative diseases: a proteomic approach. Brain 141, 582–595 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Yang, T., Li, S., Xu, H., Walsh, D. M. & Selkoe, D. J. Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J. Neurosci. 37, 152–163 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Di Domenico, F., Barone, E., Perluigi, M. & Butterfield, D. A. The triangle of death in Alzheimer’s disease brain: the aberrant cross-talk among energy metabolism, mammalian target of rapamycin signaling, and protein homeostasis revealed by redox proteomics. Antioxid. Redox Signal. 26, 364–387 (2017). This paper demonstrates the utility of redox proteomics to increase our understanding of molecular processes involved in neurodegeneration in the pathogenesis and progression of AD.

    PubMed  Google Scholar 

  35. 35.

    Reed, T. et al. Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol. Dis. 30, 107–120 (2008).

    CAS  PubMed  Google Scholar 

  36. 36.

    Neth, B. J. & Craft, S. Insulin resistance and Alzheimer’s disease: bioenergetic linkages. Front. Aging Neurosci. 9, 345 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Lee, J. et al. SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer’s disease. Aging Cell 17, e12679 (2018).

    Google Scholar 

  38. 38.

    Bezprozvanny, I. & Mattson, M. P. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci. 31, 454–463 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Pirollet, F., Margolis, R. L. & Job, D. Ca2+-calmodulin regulated effectors of microtubule stability in neuronal tissues. Biochim. Biophys. Acta 1160, 113–119 (1992).

    CAS  PubMed  Google Scholar 

  40. 40.

    Tramutola, A. et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment, and late-stage AD. J. Neurochem. 133, 739–749 (2015). This paper contains the first report of mTORC1 activation and consequent markers of insulin resistance and inhibition of autophagy in brains of subjects with aMCI, consistent with the notion that mTORC1 activation occurs well before dementia in the progression of AD and reflects glucose dysmetabolism early in the disease.

    CAS  PubMed  Google Scholar 

  41. 41.

    Di Domenico, F. et al. mTOR in Down syndrome: role in Aβ and Tau neuropathology and transition to redox Alzheimer disease-like dementia. Free Radic. Biol. Med. 114, 94–101 (2018).

    PubMed  Google Scholar 

  42. 42.

    Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer’s disease: inseparable partners in a multifactorial disease. FASEB J. 31, 2729–2743 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Rabbani, N., Xue, M. & Thornalley, P. Dicarbonyls and glyoxalase in disease mechanisms and clinical therapeutics. Glycoconj. J. 33, 513–525 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Yan, S. D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 382, 685–691 (1996).

    CAS  PubMed  Google Scholar 

  45. 45.

    Pugazhenthi, S., Qin, L. & Reddy, P. H. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s Disease. Biochim. Biophys. Acta 1863, 1037–1045 (2017).

    CAS  Google Scholar 

  46. 46.

    Piras, S. et al. Monomeric Aβ1-42 and RAGE: key players in neuronal differentiation. Neurobiol. Aging 35, 1301–1308 (2014).

    CAS  PubMed  Google Scholar 

  47. 47.

    Emendato, A. et al. Glycation affects fibril formation of Aβ peptides. J. Biol. Chem. 293, 13100–13111 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Sweeney, M. D., Kisler, K., Montagne, A., Toga, A. W. & Zlokovic, B. V. The role of brain vasculature in neurodegenerative disorders. Nat. Neurosci. 21, 1318–1331 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Bonet-Costa, V., Corrales-Diaz Pomatto, L. & Davies, K. J. A. The proteasome and oxidative stress in Alzheimer disease. Antioxid. Redox Signal 25, 886–901 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Keller, J. N., Hanni, K. B. & Markesbery, W. R. Impaired proteasome function in Alzheimer’s disease. J. Neurochem. 75, 438–439 (2000). An early paper that identified proteasomal dysfunction in AD.

    Google Scholar 

  51. 51.

    Tseng, B. P., Green, K. N., Chan, J. L., Blurton-Jones, M. & LaFerla, F. M. Abeta inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol. Aging 29, 1607–1618 (2008).

    CAS  PubMed  Google Scholar 

  52. 52.

    Mota, S. I. et al. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer’s disease. Biochim. Biophys. Acta 1852, 1428–1441 (2015).

    CAS  PubMed  Google Scholar 

  53. 53.

    Hashimoto, S. & Saido, T. C. Critical review: involvement of endoplasmic reticulum stress in aetiology of Alzheimer’s disease. Open Biol. 8, 180024 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Di Domenico, F., Head, E., Butterfield, D. A. & Perluigi, M. Oxidative stress and proteostasis network: culprit and casualty of Alzheimer’s-like neurodegeneration. Adv. Geriatr. 2014, 1–14 (2014).

    Google Scholar 

  55. 55.

    Choi, J. et al. Oxidative modifications and down-regulation of ubiquitin caryl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J. Biol. Chem. 279, 13256–13264 (2004).

    CAS  PubMed  Google Scholar 

  56. 56.

    Castegna, A. et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic. Biol. Med. 33, 562–571 (2002).

    CAS  PubMed  Google Scholar 

  57. 57.

    Gerakis, Y. & Hetz, C. Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer’s disease. FEBS J. 285, 995–1011 (2018).

    CAS  PubMed  Google Scholar 

  58. 58.

    Wiseman, F. K. et al. Trisomy of human chromosome 21 enhances amyloid-β deposition independently of an extra copy of APP. Brain 141, 2457–2474 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Lott, I. T. Neurological phenotypes for Down syndrome across the life span. Prog. Brain Res. 197, 101–121 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Di Domenico, F. et al. Bach1 overexpression in Down syndrome correlates with the alteration of the HO-1/BVR-A system: Insights for transition to Alzheimer disease. J. Alzheimers Dis. 44, 1107–1120 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Perluigi, M. et al. Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome. Biochim. Biophys. Acta 1842, 1144–1153 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Busciglio, J. & Yankner, B. A. Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378, 776–779 (1995).

    CAS  PubMed  Google Scholar 

  63. 63.

    Perluigi, M. et al. Oxidative stress occurs early in Down syndrome pregnancy: a redox proteomics analysis of amniotic fluid. Proteomics Clin. Appl. 5, 167–178 (2011).

    CAS  PubMed  Google Scholar 

  64. 64.

    Barone, E., Head, E., Butterfield, D. A. & Perluigi, M. HNE-modified proteins in Down syndrome: involvement in development of Alzheimer disease neuropathology. Free Radic. Biol. Med. 111, 262–269 (2017).

    CAS  PubMed  Google Scholar 

  65. 65.

    Tramutola, A. et al. Polyubiquitinylation profile in Down syndrome brain before and after the development of Alzheimer neuropathology. Antioxid. Redox Signal. 26, 280–298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Vlassenko, A. G. et al. Aerobic glycolysis and tau deposition in preclinical Alzheimer’s disease. Neurobiol. Aging 67, 95–98 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Caraci, F. et al. Searching for new pharmacological targets for the treatment of Alzheimer’s disease in Down syndrome. Eur. J. Pharmacol. 817, 7–19 (2017).

    CAS  PubMed  Google Scholar 

  68. 68.

    Nakamura, A. et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554, 249–254 (2018).

    CAS  PubMed  Google Scholar 

  69. 69.

    Hamlett, E. D. et al. Exosomal biomarkers in Down syndrome and Alzheimer’s disease. Free Radic. Biol. Med. 114, 110–121 (2018).

    CAS  PubMed  Google Scholar 

  70. 70.

    Winblad, B. et al. Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol. 15, 455–532 (2016). This article provides a comprehensive review of the current state of AD research and prospects for treatment.

    PubMed  Google Scholar 

  71. 71.

    Golzan, S. M. et al. Retinal vascular and structural changes are associated with amyloid burden in the elderly: opthalmic biomarkers of preclinical Alzheimer’s disease. Alzheimers Res. Ther. 9, 13 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Koronyo, Y. et al. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight 2, 93621 (2017).

    PubMed  Google Scholar 

  73. 73.

    Tang, M. et al. Dominantly Inherited Alzheimer Network (DIAN) neurological manifestations of autosomal dominant familial Alzheimer disease: a comparison of the published literature with the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS). Lancet Neurol. 15, 1317–1325 (2016). This paper extensively describes the DIAN and how neurological studies employing the DIAN compare with results of the published literature on AD.

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Chhatwal, J. P. et al. Dominantly inherited Alzheimer network. Preferential degradation of cognitive networks differentiates Alzheimer’s disease from ageing. Brain 141, 1486–1500 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Casamitjana, A. et al. MRI-based screening of preclinical Alzheimer’s disease for prevention clinical trials. J. Alzheimers Dis. 64, 1099–1112 (2018).

    PubMed  Google Scholar 

  76. 76.

    Sultana, R. et al. Lymphocyte mitochondria: toward identification of peripheral biomarkers in progression of Alzheimer disease. Free Radic. Biol. Med. 65, 595–606 (2013).

    CAS  PubMed  Google Scholar 

  77. 77.

    Perluigi, M. et al. In vivo protective effects of ferulic acid ethyl ester against amyloid β-peptide (1–42)-induced oxidative stress. J. Neurosci. Res. 84, 418–426 (2006).

    CAS  PubMed  Google Scholar 

  78. 78.

    Polidori, M. C. & Nelles, G. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease-challenges and perspectives. Curr. Pharm. Des. 20, 3083–3092 (2014).

    CAS  PubMed  Google Scholar 

  79. 79.

    Butterfield, D. A., Koppal, T., Subramaniam, R. & Yatin, S. Vitamin E as an antioxidant/free radical scavenger against amyloid beta-peptide-induced oxidative stress in neocortical synaptosomal membranes and hippocampal neurons in culture: insights into Alzheimer’s disease. Rev. Neurosci. 10, 141–149 (1999).

    CAS  PubMed  Google Scholar 

  80. 80.

    Petersen, R. C. et al. Alzheimer’s Disease Cooperative Study Group. Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med. 352, 2379–2388 (2005).

    CAS  PubMed  Google Scholar 

  81. 81.

    Sano, M. et al. A controlled trial of selegiline, α-tocopherol, or both as treatment for Alzheimer disease. N. Engl. J. Med. 336, 1216–1222 (1996).

    Google Scholar 

  82. 82.

    Ulatowski, L. et al. Vitamin E is essential for Purkinje neuron integrity. Neuroscience 260, 120–129 (2014).

    CAS  PubMed  Google Scholar 

  83. 83.

    Spector, R. & Johanson, C. E. Vitamin transport and homeostasis in mammalian brain: focus on vitamins B and E. J. Neurochem. 103, 425–438 (2007).

    CAS  PubMed  Google Scholar 

  84. 84.

    Pei, R., Mah, E., Leonard, S. W., Traber, M. G. & Bruno, R. S. α-Tocopherol supplementation reduces 5-nitro-γ-tocopherol accumulation by decreasing γ-tocopherol in young adult smokers. Free Radic. Res. 49, 1114–1121 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Schaffer, S. & Halliwell, B. Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. Genes Nutr. 7, 99–109 (2012).

    CAS  PubMed  Google Scholar 

  86. 86.

    Mattson, M. P., Son, T. G. & Camandola, S. Viewpoint: mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose Response 5, 174–186 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Begum, A. N. et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J. Pharmacol. Exp. Ther. 326, 196–208 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Nelson, K. M. et al. The essential medicinal chemistry of curcumin. J. Med. Chem. 60, 1620–1637 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Ma, Q. & He, X. Molecular basis of electrophilic and oxidative defence: promises and perils of Nrf2. Pharmacol. Rev. 62, 1055–1081 (2012).

    Google Scholar 

  90. 90.

    Branca, C. et al. Genetic reduction of Nrf2 exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. Hum. Mol. Genet. 26, 4823–4835 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Long, L. H., Hoi, A. & Halliwell, B. Instability of, and generation of hydrogen peroxide by, phenolic compounds in cell culture media. Arch. Biochem. Biophys. 501, 162–169 (2010).

    CAS  PubMed  Google Scholar 

  92. 92.

    Halliwell, B., Cheah, I. K. & Tang, R. M. Y. Ergothioneine, a diet-derived antioxidant with therapeutic potential. FEBS Lett. 592, 3357–3366 (2018).

    CAS  PubMed  Google Scholar 

  93. 93.

    Cheah, I. K., Tang, R. M., Yew, T. S., Lim, K. H. & Halliwell, B. Administration of pure ergothioneine to healthy human subjects: uptake, metabolism, and effects on biomarkers of oxidative damage and inflammation. Antioxid. Redox Signal. 26, 193–206 (2017).

    CAS  PubMed  Google Scholar 

  94. 94.

    Valero, T. Mitochondrial biogenesis: pharmacological approaches. Curr. Pharm. Design 20, 5507–5509 (2014).

    CAS  Google Scholar 

  95. 95.

    Huang, Z. et al. Novel derivative of bardoxolone methyl improves safety for the treatment of diabetic nephropathy. J. Med. Chem. 60, 8847–8857 (2017).

    CAS  PubMed  Google Scholar 

  96. 96.

    Ng, L. F. et al. The mitochondria-targeted antioxidant MitoQ extends lifespan and improves healthspan of a transgenic Caenorhabditis elegans model of Alzheimer disease. Free Radic. Biol. Med. 71, 390–401 (2014).

    CAS  PubMed  Google Scholar 

  97. 97.

    Raefsky, S. et al. Deuterated polysaturated fatty acids reduce brain lipid peroxidation and hippocampal amyloid beta-peptide levels, without discernable behavioral effects in an APP/PS1 mutant transgenic mouse model of Alzheimer disease. Neurobiol. Aging 66, 165–176 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Claxton, A. et al. Sex and ApoE genotype differences in treatment response to two doses of intranasal insulin in adults with mild cognitive impairment or Alzheimer’s disease. J. Alzheimers Dis. 35, 789–797 (2013).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Barone, E. et al. Biliverdin reductase-A mediates the beneficial effects of intranasal insulin in Alzheimer disease. Mol. Neurobiol. https://doi.org/10.1007/s12035-018-1231-5 (2018). This paper improves our mechanistic understanding of the beneficial effects of intranasal insulin in the cognitive improvement of patients with AD and MCI by demonstrating in the 3xTg mouse model of AD that BVRA was prevented from early impairment in adult mice, or rescued from damage in aged mice, following intranasal insulin that was correlated with improved insulin signalling, decreased nitrosative stress and improved cognition.

    Article  PubMed  Google Scholar 

  100. 100.

    Barone, E., Di Domenico, F., Mancuso, C. & Butterfield, D. A. The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it’s time for reconciliation. Neurobiol. Dis. 62, 144–159 (2014).

    CAS  PubMed  Google Scholar 

  101. 101.

    Barone, E. et al. Impairment of biliverdin reductase-A promotes brain insulin resistance in Alzheimer disease: a new paradigm. Free Radic. Biol. Med. 91, 127–142 (2016).

    CAS  PubMed  Google Scholar 

  102. 102.

    Cunnane, S. C. et al. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer’s disease. Ann. NY Acad. Sci. 1367, 12–20 (2016).

    CAS  PubMed  Google Scholar 

  103. 103.

    Wu, L., Zhang, X. & Zhao, L. Human ApoE isoforms differentially modulate brain glucose and ketone body metabolism: implications for Alzheimer’s disease risk reduction and early intervention. J. Neurosci. 38, 6665–6681 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Lu, D. C. et al. A second cytotoxic proteolytic peptide derived from amyloid β-protein precursor. Nat. Med. 6, 397–404 (2000).

    CAS  PubMed  Google Scholar 

  105. 105.

    Nikolaev, A., McLaughlin, T., O’Leary, D. D. & Tessier-Lavigne, M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457, 981–989 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Intlekofer, K. A. & Cotman, C. W. Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol. Dis. 57, 47–55 (2013).

    CAS  PubMed  Google Scholar 

  107. 107.

    Opii, W. O. et al. Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and program of behavioral enrichment: relevance to Alzheimer’s disease. Neurobiol. Aging 29, 51–70 (2008).

    CAS  PubMed  Google Scholar 

  108. 108.

    Solomon, A. et al. Effect of the Apolipoprotein E genotype on cognitive change during a multidomain lifestyle intervention: a subgroup analysis of a randomized clinical trial. JAMA Neurol. 75, 462–470 (2018).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Scarmeas, N., Anastasiou, C. A. & Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 17, 1006–1015 (2018).

    PubMed  Google Scholar 

  110. 110.

    Fyfe, I. APOE ε4 affects cognitive decline but does not block benefits of healthy lifestyle. Nat. Rev. Neurol. 14, 25 (2018).

    Google Scholar 

  111. 111.

    van Dalen, J. W. et al. Effect of long-term vascular care on progression of cerebrovascular lesions: magnetic resonance imaging substudy of the PreDIVA trial (prevention of dementia by intensive vascular care). Stroke 48, 1842–1848 (2017).

    PubMed  Google Scholar 

  112. 112.

    Chu, C. S. et al. Use of statins and the risk of dementia and mild cognitive impairment: a systematic review and meta-analysis. Sci. Rep. 8, 5804 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Butterfield, D. A., Barone, E. & Mancuso, C. Cholesterol-independent neuroprotective and neurotoxic activities of statins: perspectives for statin use in Alzheimer disease and other age-related neurodegenerative disorders. Pharmacol. Res. 64, 180–186 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Barone, E. et al. Biliverdin reductase-A: a novel drug target for atorvastatin in a dog preclinical model of Alzheimer disease. J. Neurochem. 120, 135–146 (2012).

    CAS  PubMed  Google Scholar 

  115. 115.

    Butterfield, D. A. & Boyd-Kimball, D. Redox proteomics and amyloid β-peptide: Insights into Alzheimer disease. J. Neurochem. https://doi.org/10.1111/jnc.14589 (2018).

    Article  PubMed  Google Scholar 

  116. 116.

    Gordon, B. A. et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol. 17, 241–250 (2018). This paper reports longitudinal PET and MRI results on brains in persons with autosomal dominantly inherited AD obtained regularly 22 years before up to 3 years after the onset of AD symptoms and demonstrates the temporal order of brain pathology observed prior to symptoms.

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Zhang, H. et al. Cerebrospinal fluid synaptosomal-associated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimer’s disease. Alzheimers Res. Ther. 10, 80 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Davies, M. J. Protein oxidation and peroxidation. Biochem. J. 473, 805–825 (2016). This article provides a very good account of the mechanisms and consequences of oxidative protein damage.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Milne, G. L., Dai, Q. & Roberts, L. J. 2nd. The isoprostanes—25 years later. Biochim. Biophys. Acta 1851, 433–445 (2015). This paper provides an excellent review of the formation of isoprostanes in biological systems and their role as biomarkers of lipid peroxidation in disease.

    CAS  PubMed  Google Scholar 

  120. 120.

    Dizdaroglu, M., Coskun, E. & Jaruga, P. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free Radic. Res. 49, 525–548 (2015). This article provides a detailed and comprehensive review of mechanisms of oxidative DNA damage and how it can be measured in vivo.

    CAS  PubMed  Google Scholar 

  121. 121.

    Ishii, T. et al. Specific binding of PCBP1 to heavily oxidized RNA to induce cell death. Proc. Natl Acad. Sci. USA 115, 6715–6720 (2018).

    PubMed  Google Scholar 

  122. 122.

    Wang, J.-X. et al. Oxidative modification of miR-184 enables it to target Bcl-xL and Bcl-w. Mol. Cell 59, 50–61 (2015).

    CAS  PubMed  Google Scholar 

  123. 123.

    Dai, D.-P. et al. Transcriptional mutagenesis mediated by 8-oxoG induces translational errors in mammalian cells. Proc. Natl Acad. Sci. USA 115, 4218–4222 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the US National Institutes of Health (1R01 AG060056-01; D.A.B.) and the National Medical Research Council and Tan Chin Tuan Centennial Foundation, Singapore (B.H.). The authors thank X. Ren for assistance with Figures 1–3 and the three reviewers for their very helpful suggestions.

Reviewer information

Nature Reviews Neuroscience thanks R. Martins, and the other anonymous reviewers, for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Barry Halliwell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Glossary

Higher executive functioning

Cognitive processes that include planning, reasoning and problem solving that in humans largely involve the prefrontal cortex, with connections to other brain areas.

Reactive oxygen species

(ROS). Oxygen-containing species that contain unpaired electrons (which makes them free radicals) or from which free radicals are easily derived.

Reactive nitrogen species

(RNS). Nitrogen-containing species that are free radicals or moieties from which free radicals are easily derived.

Redox proteomics

A method for identification of oxidatively modified proteins that most often involves protein separation and digestion, mass spectrometric utilization to sequence the amino acids of the resulting peptides and protein identification and informatics.

Autophagy

One of the components of the proteostasis network; involves formation of a double membrane (autophagosome) that surrounds the aggregated, damaged protein or organelle and transport of the autophagosome to and fusion with a lysosome, exposing the contents of the autophagosome to proteolysis and degradation.

Proteostasis

Sometimes called protein quality control, proteostasis is a term encompassing three different cellular processes (the ubiquitin–proteasome system, autophagy and the endoplasmic-reticulum-resident unfolded-protein response) used to degrade aggregated, damaged proteins or sometimes cellular organelles.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Butterfield, D.A., Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20, 148–160 (2019). https://doi.org/10.1038/s41583-019-0132-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing