Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuron–glia interactions in the pathophysiology of epilepsy

Abstract

Epilepsy is a neurological disorder afflicting ~65 million people worldwide. It is caused by aberrant synchronized firing of populations of neurons primarily due to imbalance between excitatory and inhibitory neurotransmission. Hence, the historical focus of epilepsy research has been neurocentric. However, the past two decades have enjoyed an explosion of research into the role of glia in supporting and modulating neuronal activity, providing compelling evidence of glial involvement in the pathophysiology of epilepsy. The mechanisms by which glia, particularly astrocytes and microglia, may contribute to epilepsy and consequently could be harnessed therapeutically are discussed in this Review.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interplay between CNS insult, reactive gliosis and seizures.
Fig. 2: Regulation of synaptic transmitter homeostasis and energy metabolites by astrocytes.
Fig. 3: Disintegration of perineuronal nets in glioma-associated epilepsy.
Fig. 4: Changes in the extracellular matrix as contributors to epilepsy.

Similar content being viewed by others

References

  1. Sontheimer, H. Diseases of the Nervous System 61–95 (Elsevier, 2015).

  2. Fisher, R. S. et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55, 475–482 (2014).

    Google Scholar 

  3. Kaplan, D. I., Isom, L. L. & Petrou, S. Role of sodium channels in epilepsy. Cold Spring Harb. Perspect. Med. 6, a022814 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Loscher, W., Hirsch, L. J. & Schmidt, D. The enigma of the latent period in the development of symptomatic acquired epilepsy - traditional view versus new concepts. Epilepsy Behav. 52, 78–92 (2015).

    Google Scholar 

  5. Sofroniew, M. V. Astrogliosis. Cold Spring Harb. Perspect. Biol. 7, a020420 (2014).

    Google Scholar 

  6. Vezzani, A., French, J., Bartfai, T. & Baram, T. Z. The role of inflammation in epilepsy. Nat. Rev. Neurol. 7, 31–40 (2011).

    CAS  Google Scholar 

  7. van Vliet, E. A. et al. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 130, 521–534 (2007).

    Google Scholar 

  8. Dingledine, R., Varvel, N. H. & Dudek, F. E. When and how do seizures kill neurons, and is cell death relevant to epileptogenesis? Adv. Exp. Med. Biol. 813, 109–122 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. Jessberger, S. & Parent, J. M. Epilepsy and adult neurogenesis. Cold Spring Harb. Perspect. Biol. 7, a020677 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Goldberg, E. M. & Coulter, D. A. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat. Rev. Neurosci. 14, 337–349 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Devinsky, O., Vezzani, A., Najjar, S., De Lanerolle, N. C. & Rogawski, M. A. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 36, 174–184 (2013).

    CAS  Google Scholar 

  12. Kim, S. Y., Porter, B. E., Friedman, A. & Kaufer, D. A potential role for glia-derived extracellular matrix remodeling in postinjury epilepsy. J. Neurosci. Res. 94, 794–803 (2016).

    CAS  Google Scholar 

  13. Hauser, R. M., Henshall, D. C. & Lubin, F. D. The epigenetics of epilepsy and its progression. Neuroscientist 24, 186–200 (2018).

    CAS  Google Scholar 

  14. Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

    CAS  Google Scholar 

  15. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Robel, S. et al. Reactive astrogliosis causes the development of spontaneous seizures. J. Neurosci. 35, 3330–3345 (2015).This study shows that genetically induced astrogliosis is sufficient to cause epileptic seizures in mice without any other CNS pathologies.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ortinski, P. I. et al. Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat. Neurosci. 13, 584–591 (2010).This study demonstrates that selective induction of astrogliosis in mice using a virus is sufficient to cause network hyperexcitability by impairing neuronal inhibition.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Uhlmann, E. J. et al. Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann. Neurol. 52, 285–296 (2002).

    CAS  Google Scholar 

  19. Sosunov, A. A. et al. Phenotypic conversions of “protoplasmic” to “reactive” astrocytes in Alexander disease. J. Neurosci. 33, 7439–7450 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Messing, A., Brenner, M., Feany, M. B., Nedergaard, M. & Goldman, J. E. Alexander disease. J. Neurosci. 32, 5017–5023 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rossini, L. et al. Seizure activity per se does not induce tissue damage markers in human neocortical focal epilepsy. Ann. Neurol. 82, 331–341 (2017).

    CAS  Google Scholar 

  22. Buckmaster, P. S., Abrams, E. & Wen, X. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy. J. Comp. Neurol. 525, 2592–2610 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Moody, W. J., Futamachi, K. J. & Prince, D. A. Extracellular potassium activity during epileptogenesis. Exp. Neurol. 42, 248–263 (1974).

    CAS  Google Scholar 

  24. Heinemann, U. & Lux, H. D. Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res. 120, 231–249 (1977).

    CAS  Google Scholar 

  25. Coulter, D. A. & Steinhauser, C. Role of astrocytes in epilepsy. Cold Spring Harb. Perspect. Med. 5, a022434 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Traynelis, S. F. & Dingledine, R. Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol. 59, 259–276 (1988).

    CAS  Google Scholar 

  27. Gabriel, S. et al. Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis. J. Neurosci. 24, 10416–10430 (2004).

    CAS  Google Scholar 

  28. Olsen, M. L. & Sontheimer, H. Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J. Neurochem. 107, 589–601 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Steinhauser, C., Seifert, G. & Bedner, P. Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling. Glia 60, 1192–1202 (2012).

    Google Scholar 

  30. Heuser, K. et al. Loss of perivascular Kir4.1 potassium channels in the sclerotic hippocampus of patients with mesial temporal lobe epilepsy. J. Neuropathol. Exp. Neurol. 71, 814–825 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hinterkeuser, S. et al. Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur. J. Neurosci. 12, 2087–2096 (2000).

    CAS  Google Scholar 

  32. Djukic, B., Casper, K. B., Philpot, B. D., Chin, L. S. & McCarthy, K. D. Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J. Neurosci. 27, 11354–11365 (2007).

    CAS  Google Scholar 

  33. Buono, R. J. et al. Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Res. 58, 175–183 (2004).

    CAS  Google Scholar 

  34. Ferraro, T. N. et al. Fine mapping of a seizure susceptibility locus on mouse chromosome 1: nomination of Kcnj10 as a causative gene. Mamm. Genome 15, 239–251 (2004).

    CAS  Google Scholar 

  35. Kucheryavykh, Y. V. et al. Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. Glia 55, 274–281 (2007).

    CAS  Google Scholar 

  36. Doyon, N., Vinay, L., Prescott, S. A. & De Koninck, Y. Chloride regulation: a dynamic equilibrium crucial for synaptic inhibition. Neuron 89, 1157–1172 (2016).

    CAS  Google Scholar 

  37. Moore, Y. E., Kelley, M. R., Brandon, N. J., Deeb, T. Z. & Moss, S. J. Seizing control of KCC2: a new therapeutic target for epilepsy. Trends Neurosci. 40, 555–571 (2017).

    CAS  Google Scholar 

  38. Lee, H. H., Deeb, T. Z., Walker, J. A., Davies, P. A. & Moss, S. J. NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor-mediated currents. Nat. Neurosci. 14, 736–743 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rivera, C. et al. BDNF-induced TrkB activation down-regulates the K+-Cl cotransporter KCC2 and impairs neuronal Cl extrusion. J. Cell Biol. 159, 747–752 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Papadopoulos, M. C. & Verkman, A. S. Aquaporin water channels in the nervous system. Nat. Rev.: Neurosci. 14, 265–277 (2013).

    CAS  Google Scholar 

  41. Binder, D. K., Nagelhus, E. A. & Ottersen, O. P. Aquaporin-4 and epilepsy. Glia 60, 1203–1214 (2012).

    Google Scholar 

  42. Solenov, E., Watanabe, H., Manley, G. T. & Verkman, A. S. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am. J. Physiol. 286, C426–C432 (2004).

    CAS  Google Scholar 

  43. Nicchia, G. P., Frigeri, A., Liuzzi, G. M. & Svelto, M. Inhibition of aquaporin-4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes. FASEB J. 17, 1508–1510 (2003).

    CAS  Google Scholar 

  44. Vajda, Z. et al. Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc. Natl Acad. Sci. USA 99, 13131–13136 (2002).

    CAS  Google Scholar 

  45. Neely, J. D. et al. Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc. Natl Acad. Sci. USA 98, 14108–14113 (2001).

    CAS  Google Scholar 

  46. Nagelhus, E. A., Mathiisen, T. M. & Ottersen, O. P. Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129, 905–913 (2004).

    CAS  Google Scholar 

  47. Hochman, D. W. The extracellular space and epileptic activity in the adult brain: explaining the antiepileptic effects of furosemide and bumetanide. Epilepsia 53 (Suppl. 1), 18–25 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Amiry-Moghaddam, M. et al. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc. Natl Acad. Sci. USA 100, 13615–13620 (2003).

    CAS  Google Scholar 

  49. Binder, D. K. et al. Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53, 631–636 (2006).

    Google Scholar 

  50. Giaume, C., Koulakoff, A., Roux, L., Holcman, D. & Rouach, N. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat. Rev. Neurosci. 11, 87–99 (2010).

    CAS  Google Scholar 

  51. Mylvaganam, S., Ramani, M., Krawczyk, M. & Carlen, P. L. Roles of gap junctions, connexins, and pannexins in epilepsy. Frontiers Physiol. 5, 172 (2014).

    Google Scholar 

  52. Deshpande, T. et al. Subcellular reorganization and altered phosphorylation of the astrocytic gap junction protein connexin43 in human and experimental temporal lobe epilepsy. Glia 65, 1809–1820 (2017).

    Google Scholar 

  53. Bedner, P. et al. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 138, 1208–1222 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Voss, L. J., Jacobson, G., Sleigh, J. W., Steyn-Ross, A. & Steyn-Ross, M. Excitatory effects of gap junction blockers on cerebral cortex seizure-like activity in rats and mice. Epilepsia 50, 1971–1978 (2009).

    CAS  Google Scholar 

  55. During, M. J. & Spencer, D. D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341, 1607–1610 (1993).

    CAS  Google Scholar 

  56. Eid, T., Williamson, A., Lee, T. S., Petroff, O. A. & de Lanerolle, N. C. Glutamate and astrocytes—key players in human mesial temporal lobe epilepsy? Epilepsia 49 (Suppl. 2), 42–52 (2008).

    CAS  Google Scholar 

  57. Schousboe, A., Scafidi, S., Bak, L. K., Waagepetersen, H. S. & McKenna, M. C. Glutamate metabolism in the brain focusing on astrocytes. Adv. Neurobiol. 11, 13–30 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Vandenberg, R. J. & Ryan, R. M. Mechanisms of glutamate transport. Physiol. Rev. 93, 1621–1657 (2013).

    CAS  Google Scholar 

  59. Tanaka, K. et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699–1702 (1997).This is the first study to show that the homozygous knockout of GLT1 in mice causes lethal spontaneous seizures.

    CAS  Google Scholar 

  60. Kong, Q. et al. Increased glial glutamate transporter EAAT2 expression reduces epileptogenic processes following pilocarpine-induced status epilepticus. Neurobiol. Dis. 47, 145–154 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rothstein, J. D. et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433, 73–77 (2005).

    CAS  Google Scholar 

  62. Zeng, L. H., Bero, A. W., Zhang, B., Holtzman, D. M. & Wong, M. Modulation of astrocyte glutamate transporters decreases seizures in a mouse model of tuberous sclerosis complex. Neurobiol. Dis. 37, 764–771 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sha, L. et al. Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J. Exp. Med. 214, 547–563 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Campbell, S. L., Hablitz, J. J. & Olsen, M. L. Functional changes in glutamate transporters and astrocyte biophysical properties in a rodent model of focal cortical dysplasia. Front. Cell. Neurosci. 8, 425 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Campbell, S. L. & Hablitz, J. J. Decreased glutamate transport enhances excitability in a rat model of cortical dysplasia. Neurobiol. Dis. 32, 254–261 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Eid, T. et al. Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363, 28–37 (2004).This study establishes a key role of GS in astrocytes for maintaining an optimal level of extracellular glutamate through the glutamate–glutamine cycle.

    CAS  Google Scholar 

  67. van der Hel, W. S. et al. Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy. Neurology 64, 326–333 (2005).

    Google Scholar 

  68. Eid, T. et al. Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats. Brain 131, 2061–2070 (2008).

    PubMed  PubMed Central  Google Scholar 

  69. Jiang, E., Yan, X. & Weng, H. R. Glial glutamate transporter and glutamine synthetase regulate GABAergic synaptic strength in the spinal dorsal horn. J. Neurochem. 121, 526–536 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaczor, P., Rakus, D. & Mozrzymas, J. W. Neuron-astrocyte interaction enhance GABAergic synaptic transmission in a manner dependent on key metabolic enzymes. Front. Cell. Neurosci. 9, 120 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Magistretti, P. J. & Allaman, I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 86, 883–901 (2015).

    CAS  Google Scholar 

  72. Pellerin, L. & Magistretti, P. J. Sweet sixteen for ANLS. J. Cereb. Blood Flow Metab. 32, 1152–1166 (2012).

    CAS  Google Scholar 

  73. Gano, L. B., Patel, M. & Rho, J. M. Ketogenic diets, mitochondria, and neurological diseases. J. Lipid Res. 55, 2211–2228 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sada, N., Lee, S., Katsu, T., Otsuki, T. & Inoue, T. Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science 347, 1362–1367 (2015).

    CAS  Google Scholar 

  75. Verkhratsky, A. & Nedergaard, M. Physiology of astroglia. Physiol. Rev. 98, 239–389 (2017).

    Google Scholar 

  76. Tyzack, G. E. et al. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat. Commun. 5, 4294 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Andresen, L. et al. Gabapentin attenuates hyperexcitability in the freeze-lesion model of developmental cortical malformation. Neurobiol. Dis. 71, 305–316 (2014).

    CAS  Google Scholar 

  78. Neniskyte, U. & Gross, C. T. Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders. Nat. Rev. Neurosci. 18, 658 (2017).

    CAS  Google Scholar 

  79. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).This study demonstrates that astrocytes regulate complement-mediated synaptic pruning by phagocytic microglia.

    CAS  PubMed  Google Scholar 

  80. Chu, Y. et al. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc. Natl Acad. Sci. USA 107, 7975–7980 (2010).

    CAS  Google Scholar 

  81. Clarke, L. E. & Barres, B. A. Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14, 311–321 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Aronica, E. et al. Complement activation in experimental and human temporal lobe epilepsy. Neurobiol. Dis. 26, 497–511 (2007).

    CAS  Google Scholar 

  83. Hughes, E. G., Elmariah, S. B. & Balice-Gordon, R. J. Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptogenesis. Mol. Cell. Neurosci. 43, 136–145 (2010).

    CAS  Google Scholar 

  84. Eroglu, C. & Barres, B. A. Regulation of synaptic connectivity by glia. Nature 468, 223–231 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Schafer, D. P. et al. Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. eLife 5, e15224 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. Tian, G.-F. et al. An astrocytic basis of epilepsy. Nat. Med. 11, 973 (2005).This is the first study to show that glutamate released from astrocytes induces neuronal firing and seizure activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Clasadonte, J. & Haydon, P. G. in Jasper’s Basic Mechanisms of the Epilepsies (eds Noebels, J. L., Avoli, M., Rogawski, M. A., Olsen, R. W. & Delgado-Escueta, A. V.) (National Center for Biotechnology Information (US), 2012).

  88. Kang, N., Xu, J., Xu, Q., Nedergaard, M. & Kang, J. Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 94, 4121–4130 (2005).

    CAS  Google Scholar 

  89. Fellin, T., Gomez-Gonzalo, M., Gobbo, S., Carmignoto, G. & Haydon, P. G. Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. J. Neurosci. 26, 9312–9322 (2006).

    CAS  Google Scholar 

  90. Robert, S. M. et al. SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci. Transl Med. 7, 289ra86 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Buckingham, S. C. et al. Glutamate release by primary brain tumors induces epileptic activity. Nat. Med. 17, 1269–1274 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tewari, B. P. et al. Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy. Nat. Commun. 9, 4724 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Campbell, S. L. et al. GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy. Glia 63, 23–36 (2015).

    Google Scholar 

  94. Pallud, J. et al. Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci. Transl Med. 6, 244ra89 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Boison, D. Adenosinergic signaling in epilepsy. Neuropharmacology 104, 131–139 (2016).

    CAS  Google Scholar 

  96. Bowser, D. N. & Khakh, B. S. ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J. Neurosci. 24, 8606 (2004).

    CAS  Google Scholar 

  97. Zhang, J.-M. et al. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40, 971–982 (2003).

    CAS  Google Scholar 

  98. Gomes, C. V., Kaster, M. P., Tomé, A. R., Agostinho, P. M. & Cunha, R. A. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim. Biophys. Acta 1808, 1380–1399 (2011).

    CAS  Google Scholar 

  99. During, M. J. & Spencer, D. D. Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann. Neurol. 32, 618–624 (1992).

    CAS  Google Scholar 

  100. Aronica, E. et al. Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia 52, 1645–1655 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lau, L. W., Cua, R., Keough, M. B., Haylock-Jacobs, S. & Yong, V. W. Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat. Rev. Neurosci. 14, 722–729 (2013).

    CAS  Google Scholar 

  102. McRae, P. A., Baranov, E., Rogers, S. L. & Porter, B. E. Persistent decrease in multiple components of the perineuronal net following status epilepticus. Eur. J. Neurosci. 36, 3471–3482 (2012).

    PubMed  PubMed Central  Google Scholar 

  103. Dityatev, A. & Fellin, T. Extracellular matrix in plasticity and epileptogenesis. Neuron Glia Biol. 4, 235–247 (2008).

    Google Scholar 

  104. Dityatev, A. Remodeling of extracellular matrix and epileptogenesis. Epilepsia 51, 61–65 (2010).

    CAS  Google Scholar 

  105. Dubey, D. et al. Increased metalloproteinase activity in the hippocampus following status epilepticus. Epilepsy Res. 132, 50–58 (2017).

    CAS  Google Scholar 

  106. Mizoguchi, H. & Yamada, K. Roles of matrix metalloproteinases and their targets in epileptogenesis and seizures. Clin. Psychopharmacol. Neurosci. 11, 45 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Pollock, E., Everest, M., Brown, A. & Poulter, M. O. Metalloproteinase inhibition prevents inhibitory synapse reorganization and seizure genesis. Neurobiol. Dis. 70, 21–31 (2014).

    CAS  Google Scholar 

  108. Arranz, A. M. et al. Hyaluronan deficiency due to Has3 knock-out causes altered neuronal activity and seizures via reduction in brain extracellular space. J. Neurosci. 34, 6164–6176 (2014).This study reports the first direct evidence for the development of seizures due to degradation of the ECM.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Rempe, R. G. et al. Matrix metalloproteinase-mediated blood-brain barrier dysfunction in epilepsy. J. Neurosci. 38, 4301–4315 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Rankin-Gee, E. K. et al. Perineuronal net degradation in epilepsy. Epilepsia 56, 1124–1133 (2015).

    CAS  Google Scholar 

  111. Kochlamazashvili, G. et al. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca2+ channels. Neuron 67, 116–128 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Favuzzi, E. et al. Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican. Neuron 95, 639–655 (2017).

    CAS  Google Scholar 

  113. Srinivasan, J., Schachner, M. & Catterall, W. A. Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Proc. Natl Acad. Sci. USA 95, 15753–15757 (1998).

    CAS  Google Scholar 

  114. Frischknecht, R. et al. Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat. Neurosci. 12, 897–904 (2009).This is one of the first studies to explain the molecular mechanism of ECM-regulated synaptic plasticity.

    CAS  Google Scholar 

  115. Balmer, T. S. Perineuronal nets enhance the excitability of fast-spiking neurons. eNeuro https://doi.org/10.1523/ENEURO.0112-16.2016 (2016).

  116. Morawski, M. et al. Ion exchanger in the brain: quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties. Sci. Rep. 5, 16471 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Härtig, W. et al. Cortical neurons immunoreactive for the potassium channel Kv3. 1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res. 842, 15–29 (1999).

    Google Scholar 

  118. Glykys, J. et al. Local impermeant anions establish the neuronal chloride concentration. Science 343, 670–675 (2014).This is one of the first studies to show the regulation of neuronal chloride homeostasis by the ECM.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Struve, J. et al. Disruption of the hyaluronan-based extracellular matrix in spinal cord promotes astrocyte proliferation. Glia 52, 16–24 (2005).

    Google Scholar 

  121. Ye, Z.-C. & Sontheimer, H. Modulation of glial glutamate transport through cell interactions with the extracellular matrix. Int. J. Dev. Neurosci. 20, 209–217 (2002).

    CAS  Google Scholar 

  122. Guadagno, E. & Moukhles, H. Laminin-induced aggregation of the inwardly rectifying potassium channel, Kir4. 1, and the water-permeable channel, AQP4, via a dystroglycan-containing complex in astrocytes. Glia 47, 138–149 (2004).

    Google Scholar 

  123. Seiffert, E. et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J. Neurosci. 24, 7829–7836 (2004).This study provides the first direct evidence that BBB disruption contributes to epileptogenesis.

    CAS  Google Scholar 

  124. Ivens, S. et al. TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130, 535–547 (2007).This study demonstrates the epileptogenic role of serum albumin and the TGFβ signalling in astrocytes following BBB disruption.

    Google Scholar 

  125. Kim, S. Y., Buckwalter, M., Soreq, H., Vezzani, A. & Kaufer, D. Blood-brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia 53 (Suppl. 6), 37–44 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Weissberg, I. et al. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol. Dis. 78, 115–125 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Salar, S. et al. Blood-brain barrier dysfunction can contribute to pharmacoresistance of seizures. Epilepsia 55, 1255–1263 (2014).

    CAS  Google Scholar 

  128. Kim, S. Y. et al. TGFβ signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults. Sci. Rep. 7, 7711 (2017).

    PubMed  PubMed Central  Google Scholar 

  129. Bar-Klein, G. et al. Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann. Neurol. 75, 864–875 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Yang, Y., Estrada, E. Y., Thompson, J. F., Liu, W. & Rosenberg, G. A. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J. Cereb. Blood Flow Metab. 27, 697–709 (2007).This study provides direct evidence that MMPs impair the integrity of the BBB by degrading tight junction proteins.

    CAS  Google Scholar 

  131. Feng, S. et al. Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLOS ONE 6, e20599 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Djerbal, L., Lortat-Jacob, H. & Kwok, J. Chondroitin sulfates and their binding molecules in the central nervous system. Glycoconj. J. 34, 363–376 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Pizzorusso, T. et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251 (2002).This is the first study to demonstrate the functional role of PNNs in the visual cortex as a determinant of experience-dependent plasticity.

    CAS  Google Scholar 

  134. Engel, T., Alves, M., Sheedy, C. & Henshall, D. C. ATPergic signalling during seizures and epilepsy. Neuropharmacology 104, 140–153 (2016).

    CAS  Google Scholar 

  135. Cacheaux, L. P. et al. Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis. J. Neurosci. 29, 8927–8935 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Dzyubenko, E., Gottschling, C. & Faissner, A. Neuron-glia interactions in neural plasticity: contributions of neural extracellular matrix and perineuronal nets. Neural Plast. 2016, 5214961 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. Naffah-Mazzacoratti, M. et al. Selective alterations of glycosaminoglycans synthesis and proteoglycan expression in rat cortex and hippocampus in pilocarpine-induced epilepsy. Brain Res. Bull. 50, 229–239 (1999).

    CAS  Google Scholar 

  138. Gottschall, P. E. & Howell, M. D. ADAMTS expression and function in central nervous system injury and disorders. Matrix Biol. 44, 70–76 (2015).

    Google Scholar 

  139. Mataga, N., Mizuguchi, Y. & Hensch, T. K. Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron 44, 1031–1041 (2004).

    CAS  Google Scholar 

  140. Bast, T., Ramantani, G., Seitz, A. & Rating, D. Focal cortical dysplasia: prevalence, clinical presentation and epilepsy in children and adults. Acta Neurol. Scand. 113, 72–81 (2006).

    CAS  Google Scholar 

  141. Iseki, K. et al. Increased syndecan expression by pleiotrophin and FGF receptor-expressing astrocytes in injured brain tissue. Glia 39, 1–9 (2002).

    Google Scholar 

  142. Hoffmann, K. et al. Retarded kindling progression in mice deficient in the extracellular matrix glycoprotein tenascin-R. Epilepsia 50, 859–869 (2009).

    CAS  Google Scholar 

  143. Muir, E. et al. Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes. Mol. Brain Res. 100, 103–117 (2002).

    CAS  Google Scholar 

  144. Wilczynski, G. M. et al. Important role of matrix metalloproteinase 9 in epileptogenesis. J. Cell Biol. 180, 1021–1035 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Kochlamazashvili, G. et al. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca 2+ channels. Neuron 67, 116–128 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Evers, M. R. et al. Impairment of L-type Ca2+ channel-dependent forms of hippocampal synaptic plasticity in mice deficient in the extracellular matrix glycoprotein tenascin-C. J. Neurosci. 22, 7177–7194 (2002).

    CAS  Google Scholar 

  147. Konopka, A. et al. Cleavage of hyaluronan and CD44 adhesion molecule regulate astrocyte morphology via Rac1 signalling. PLOS ONE 11, e0155053 (2016).

    PubMed  PubMed Central  Google Scholar 

  148. Perosa, S. et al. Glycosaminoglycan levels and proteoglycan expression are altered in the hippocampus of patients with mesial temporal lobe epilepsy. Brain Res. Bull. 58, 509–516 (2002).

    CAS  Google Scholar 

  149. Jones, E. V. & Bouvier, D. S. Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast. 2014, 321209 (2014).

    PubMed  PubMed Central  Google Scholar 

  150. Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (RO1-NS036692, RO1-NS082851 and RO1-NS052634).

Reviewer information

Nature Reviews Neuroscience thanks D. Coulter and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

H.S., D.C.P. and B.P.T. researched data for the article and made a substantial contribution to the discussion of content and the writing, review and editing of the manuscript before submission. L.C. researched data for the article.

Corresponding author

Correspondence to Harald Sontheimer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Phenobarbital

An anticonvulsant that acts by activating inhibitory postsynaptic neuronal GABA type A (GABAA) receptors. Phenobarbital can activate GABAA receptors independent of GABA, but it also potentiates the effects of GABA.

Idiopathic

Any condition or disease that occurs spontaneously or with an unknown aetiology.

Gliotic scar

A dense fibrous mass of reactive glia formed in response to CNS injury. It is a part of the tissue-remodelling process that occurs following injury and provides both beneficial and detrimental effects in a context-dependent manner.

Sclerosis

A pathological stiffening of tissue at the injury site due to overgrowth of fibrous connective tissue that replaces original tissue.

Pentylenetetrazole

A convulsant that acts by directly antagonizing GABA type A receptor-mediated inhibitory neurotransmission and therefore is often used experimentally to induce seizures in animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, D.C., Tewari, B.P., Chaunsali, L. et al. Neuron–glia interactions in the pathophysiology of epilepsy. Nat Rev Neurosci 20, 282–297 (2019). https://doi.org/10.1038/s41583-019-0126-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-019-0126-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing