Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramidal neurons

Abstract

The mechanistic operation of brain regions is often interpreted by partitioning constituent neurons into ‘cell types’. Historically, such cell types were broadly defined by their correspondence to gross features of the nervous system (such as cytoarchitecture). Modern-day neuroscientific techniques, enabling a more nuanced examination of neuronal properties, have illustrated a wealth of heterogeneity within these classical cell types. Here, we review the extent of this within-cell-type heterogeneity in one of the simplest cortical regions of the mammalian brain, the rodent hippocampus. We focus on the mounting evidence that the classical CA3, CA1 and subiculum pyramidal cell types all exhibit prominent and spatially patterned within-cell-type heterogeneity, and suggest these cell types provide a model system for exploring the organization and function of such heterogeneity. Given that the hippocampus is structurally simple and evolutionarily ancient, within-cell-type heterogeneity is likely to be a general and crucial feature of the mammalian brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the cell types and geography of the hippocampus.
Fig. 2: Heterogeneity within the CA3 pyramidal cell type.
Fig. 3: Heterogeneity within the CA1 pyramidal cell type.
Fig. 4: Heterogeneity within the subiculum pyramidal cell type.
Fig. 5: Advantages of studying within-cell-type heterogeneity in hippocampal pyramidal cells.

Similar content being viewed by others

References

  1. Eccles, J. C., Ito, M. & Szentágothai, J. N. The Cerebellum as a Neuronal Machine (Springer-Verlag, 1967).

  2. Ramón y Cajal, S. Histologie du Système Nerveux de l’homme & des Vertébreés (Oxford Univ. Press, 1911).

  3. de No, R. L. Studies on the structure of the cerebral cortex XI continuation of the study of the ammonic system. J. Psychol. Neurol. 46, 113–177 (1934).

    Google Scholar 

  4. O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    PubMed  Google Scholar 

  5. Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature 543, 719–722 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. MacDonald, C. J., Lepage, K. Q., Eden, U. T. & Eichenbaum, H. Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron 71, 737–749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kjelstrup, K. G. et al. Reduced fear expression after lesions of the ventral hippocampus. Proc. Natl Acad. Sci. USA 99, 10825–10830 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Jimenez, J. C. et al. Anxiety cells in a hippocampal-hypothalamic circuit. Neuron 97, 670–683 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ciocchi, S., Passecker, J., Malagon-Vina, H., Mikus, N. & Klausberger, T. Selective information routing by ventral hippocampal CA1 projection neurons. Science 348, 560–563 (2015). Combining antidromic stimulation with recording, this study finds that ventral CA1 cells exhibit pronounced heterogeneity in their feature selectivity, and this heterogeneity correlates with their downstream targets.

    Article  CAS  PubMed  Google Scholar 

  10. Xu, C. et al. Distinct hippocampal pathways mediate dissociable roles of context in memory retrieval. Cell 167, 961–972 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Floriou-Servou, A. et al. Distinct proteomic, transcriptomic, and epigenetic stress responses in dorsal and ventral hippocampus. Biol. Psychiatry 84, 531–541 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Thompson, C. L. et al. Genomic anatomy of the hippocampus. Neuron 60, 1010–1021 (2008). This pioneering study examines transcriptomic heterogeneity across the spatial extent of CA3, identifying multiple discrete subdomains of CA3 pyramidal cells that vary markedly in expression of functionally relevant genes.

    Article  CAS  PubMed  Google Scholar 

  13. Cembrowski, M. S. et al. Dissociable structural and functional hippocampal outputs via distinct subiculum cell classes. Cell 173, 1280–1292 (2018). This study coherently maps heterogeneity across molecules, cells, circuits and behaviour within the subiculum pyramidal cell population, revealing two distinct streams of subiculum output.

    Article  CAS  PubMed  Google Scholar 

  14. Cembrowski, M. S. et al. Spatial gene-expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons. Neuron 89, 351–368 (2016). This study performs next-generation RNA sequencing of CA1 pyramidal cells across dorsal–ventral, proximal–distal and superficial–deep axes, identifying marked continuous heterogeneity along all three axes.

    Article  CAS  PubMed  Google Scholar 

  15. Bienkowski, M. S. et al. Integration of gene expression and brain-wide connectivity reveals the multiscale organization of mouse hippocampal networks. Nat. Neurosci. 21, 1628–1643 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Aggleton, J. P. & Christiansen, K. in The Connected Hippocampus Vol. 219 (eds O’Mara, S. & Tsanov, M.) 65–82 (Elsevier, 2015).

  17. Strange, B. A., Witter, M. P., Lein, E. S. & Moser, E. I. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15, 655–669 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Strange, B. A., Fletcher, P. C., Henson, R. N., Friston, K. J. & Dolan, R. J. Segregating the functions of human hippocampus. Proc. Natl Acad. Sci. USA 96, 4034–4039 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Collin, S. H., Milivojevic, B. & Doeller, C. F. Memory hierarchies map onto the hippocampal long axis in humans. Nat. Neurosci. 18, 1562–1564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ding, S. L. Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent. J. Comp. Neurol. 521, 4145–4162 (2013).

    Article  PubMed  Google Scholar 

  21. Chawla, M. K., Sutherland, V. L., Olson, K., McNaughton, B. L. & Barnes, C. A. Behavior-driven arc expression is reduced in all ventral hippocampal subfields compared to CA1, CA3, and dentate gyrus in rat dorsal hippocampus. Hippocampus 28, 178–185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Larimer, P. & Strowbridge, B. W. Representing information in cell assemblies: persistent activity mediated by semilunar granule cells. Nat. Neurosci. 13, 213–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Williams, P. A., Larimer, P., Gao, Y. & Strowbridge, B. W. Semilunar granule cells: glutamatergic neurons in the rat dentate gyrus with axon collaterals in the inner molecular layer. J. Neurosci. 27, 13756–13761 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Kheirbek, M. A. et al. Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 77, 955–968 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cembrowski, M. S., Wang, L., Sugino, K., Shields, B. C. & Spruston, N. Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. eLife 5, e14997 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Scharfman, H. E., Sollas, A. L., Smith, K. L., Jackson, M. B. & Goodman, J. H. Structural and functional asymmetry in the normal and epileptic rat dentate gyrus. J. Comp. Neurol. 454, 424–439 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C. & Luo, L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron 78, 773–784 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chawla, M. K. et al. Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15, 579–586 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Harris, K. D. et al. Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics. PLOS Biol. 16, e2006387 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Donato, F., Chowdhury, A., Lahr, M. & Caroni, P. Early- and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning. Neuron 85, 770–786 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, S. H. et al. Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 82, 1129–1144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bohm, C. et al. Functional diversity of subicular principal cells during hippocampal ripples. J. Neurosci. 35, 13608–13618 (2015). This study demonstrates differential recruitment of regular spiking and bursting subiculum neurons during sharp wave ripples in awake mice and that these electrical phenotypes are wired into different subnetworks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moser, M. B. & Moser, E. I. Functional differentiation in the hippocampus. Hippocampus 8, 608–619 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Slomianka, L., Amrein, I., Knuesel, I., Sorensen, J. C. & Wolfer, D. P. Hippocampal pyramidal cells: the reemergence of cortical lamination. Brain Struct. Funct. 216, 301–317 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Igarashi, K. M., Ito, H. T., Moser, E. I. & Moser, M. B. Functional diversity along the transverse axis of hippocampal area CA1. FEBS Lett. 588, 2470–2476 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Soltesz, I. & Losonczy, A. CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus. Nat. Neurosci. 21, 484–493 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Knierim, J. J., Lee, I. & Hargreaves, E. L. Hippocampal place cells: parallel input streams, subregional processing, and implications for episodic memory. Hippocampus 16, 755–764 (2006).

    Article  PubMed  Google Scholar 

  38. Knierim, J. J., Neunuebel, J. P. & Deshmukh, S. S. Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames. Phil. Trans. R. Soc. B 369, 20130369 (2014).

    Article  PubMed  Google Scholar 

  39. Bohm, C., Peng, Y., Geiger, J. R. P. & Schmitz, D. Routes to, from and within the subiculum. Cell Tissue Res. 373, 557–563 (2018).

    Article  PubMed  Google Scholar 

  40. Witter, M. P. Connections of the subiculum of the rat: topography in relation to columnar and laminar organization. Behav. Brain Res. 174, 251–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Witter, M. P. Intrinsic and extrinsic wiring of CA3: indications for connectional heterogeneity. Learn. Mem. 14, 705–713 (2007).

    Article  PubMed  Google Scholar 

  42. Fanselow, M. S. & Dong, H. W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7–19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Valero, M. & de la Prida, L. M. The hippocampus in depth: a sublayer-specific perspective of entorhinal-hippocampal function. Curr. Opin. Neurobiol. 52, 107–114 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Mallory, C. S. & Giocomo, L. M. Heterogeneity in hippocampal place coding. Curr. Opin. Neurobiol. 49, 158–167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. O’Mara, S. M., Sanchez-Vives, M. V., Brotons-Mas, J. R. & O’Hare, E. Roles for the subiculum in spatial information processing, memory, motivation and the temporal control of behaviour. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 782–790 (2009).

    Article  PubMed  Google Scholar 

  46. Geiller, T., Royer, S. & Choi, J. S. Segregated cell populations enable distinct parallel encoding within the radial axis of the CA1 pyramidal layer. Exp. Neurobiol. 26, 1–10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sauvage, M. M., Nakamura, N. H. & Beer, Z. Mapping memory function in the medial temporal lobe with the immediate-early gene Arc. Behav. Brain Res. 254, 22–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Masurkar, A. V. Towards a circuit-level understanding of hippocampal CA1 dysfunction in Alzheimer’s disease across anatomical axes. J. Alzheimers Dis. Parkinsonism 8, 412 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kesner, R. P. A process analysis of the CA3 subregion of the hippocampus. Front. Cell Neurosci. 7, 78 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ishizuka, N., Weber, J. & Amaral, D. G. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J. Comp. Neurol. 295, 580–623 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Li, X. G., Somogyi, P., Ylinen, A. & Buzsaki, G. The hippocampal CA3 network: an in vivo intracellular labeling study. J. Comp. Neurol. 339, 181–208 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Masukawa, L. M., Benardo, L. S. & Prince, D. A. Variations in electrophysiological properties of hippocampal neurons in different subfields. Brain Res. 242, 341–344 (1982).

    Article  CAS  PubMed  Google Scholar 

  53. Guzman, S. J., Schlogl, A., Frotscher, M. & Jonas, P. Synaptic mechanisms of pattern completion in the hippocampal CA3 network. Science 353, 1117–1123 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Treves, A. & Rolls, E. T. Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2, 189–199 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, H., Wang, C., Deshmukh, S. S. & Knierim, J. J. Neural population evidence of functional heterogeneity along the CA3 transverse axis: pattern completion versus pattern separation. Neuron 87, 1093–1105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu, L., Igarashi, K. M., Witter, M. P., Moser, E. I. & Moser, M. B. Topography of place maps along the CA3-to-CA2 axis of the hippocampus. Neuron 87, 1078–1092 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Sun, Q. et al. Proximodistal heterogeneity of hippocampal CA3 pyramidal neuron intrinsic properties, connectivity, and reactivation during memory recall. Neuron 95, 656–672 (2017). The authors examine heterogeneity across the CA3 proximal–distal axis using a range of complementary experimental techniques. This tour de force shows that CA3 pyramidal cell heterogeneity is largely graded and spans intrinsic electrical properties, synaptic connectivity and reactivation induced by memory recall.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kjelstrup, K. B. et al. Finite scale of spatial representation in the hippocampus. Science 321, 140–143 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Komorowski, R. W. et al. Ventral hippocampal neurons are shaped by experience to represent behaviorally relevant contexts. J. Neurosci. 33, 8079–8087 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hunt, D. L., Linaro, D., Si, B., Romani, S. & Spruston, N. A novel pyramidal cell type promotes sharp-wave synchronization in the hippocampus. Nat. Neurosci. 21, 985–995 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Andersen, P. The Hippocampus Book (Oxford Univ. Press, 2007).

  63. Tamamaki, N. & Nojyo, Y. Preservation of topography in the connections between the subiculum, field CA1, and the entorhinal cortex in rats. J. Comp. Neurol. 353, 379–390 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Hargreaves, E. L., Rao, G., Lee, I. & Knierim, J. J. Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science 308, 1792–1794 (2005). This study shows that neurons in the medial and lateral entorhinal cortex show prominent and minimal spatial modulation, respectively, demonstrating a dissociation between spatial and non-spatial inputs to the hippocampus.

    Article  CAS  PubMed  Google Scholar 

  65. Hafting, T., Fyhn, M., Molden, S., Moser, M. B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Solstad, T., Boccara, C. N., Kropff, E., Moser, M. B. & Moser, E. I. Representation of geometric borders in the entorhinal cortex. Science 322, 1865–1868 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Savelli, F., Yoganarasimha, D. & Knierim, J. J. Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 18, 1270–1282 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Giocomo, L. M. et al. Topography of head direction cells in medial entorhinal cortex. Curr. Biol. 24, 252–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Deshmukh, S. S. & Knierim, J. J. Representation of non-spatial and spatial information in the lateral entorhinal cortex. Frontiers Behav. Neurosci. 5, 69 (2011).

    Article  Google Scholar 

  70. Henriksen, E. J. et al. Spatial representation along the proximodistal axis of CA1. Neuron 68, 127–137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nakazawa, Y., Pevzner, A., Tanaka, K. Z. & Wiltgen, B. J. Memory retrieval along the proximodistal axis of CA1. Hippocampus 26, 1140–1148 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hartzell, A. L. et al. Transcription of the immediate-early gene Arc in CA1 of the hippocampus reveals activity differences along the proximodistal axis that are attenuated by advanced age. J. Neurosci. 33, 3424–3433 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ito, H. T. & Schuman, E. M. Functional division of hippocampal area CA1 via modulatory gating of entorhinal cortical inputs. Hippocampus 22, 372–387 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Igarashi, K. M., Lu, L., Colgin, L. L., Moser, M. B. & Moser, E. I. Coordination of entorhinal-hippocampal ensemble activity during associative learning. Nature 510, 143–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Cenquizca, L. A. & Swanson, L. W. Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res. Rev. 56, 1–26 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Amaral, D. G. & Witter, M. P. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571–591 (1989).

    Article  CAS  PubMed  Google Scholar 

  77. Petrovich, G. D., Canteras, N. S. & Swanson, L. W. Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res. Brain Res. Rev. 38, 247–289 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Pikkarainen, M., Ronkko, S., Savander, V., Insausti, R. & Pitkanen, A. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J. Comp. Neurol. 403, 229–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Pitkanen, A., Pikkarainen, M., Nurminen, N. & Ylinen, A. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann. NY Acad. Sci. 911, 369–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Hunsaker, M. R., Fieldsted, P. M., Rosenberg, J. S. & Kesner, R. P. Dissociating the roles of dorsal and ventral CA1 for the temporal processing of spatial locations, visual objects, and odors. Behav. Neurosci. 122, 643–650 (2008).

    Article  PubMed  Google Scholar 

  81. Kesner, R. P., Hunsaker, M. R. & Ziegler, W. The role of the dorsal CA1 and ventral CA1 in memory for the temporal order of a sequence of odors. Neurobiol. Learn. Mem. 93, 111–116 (2010).

    Article  PubMed  Google Scholar 

  82. Jung, M. W., Wiener, S. I. & McNaughton, B. L. Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J. Neurosci. 14, 7347–7356 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Dougherty, K. A., Islam, T. & Johnston, D. Intrinsic excitability of CA1 pyramidal neurones from the rat dorsal and ventral hippocampus. J. Physiol. 590, 5707–5722 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Malik, R., Dougherty, K. A., Parikh, K., Byrne, C. & Johnston, D. Mapping the electrophysiological and morphological properties of CA1 pyramidal neurons along the longitudinal hippocampal axis. Hippocampus 26, 341–361 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Mizuseki, K., Diba, K., Pastalkova, E. & Buzsaki, G. Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nat. Neurosci. 14, 1174–1181 (2011). This work shows that across the radial axis, CA1 pyramidal cells in vivo can exhibit heterogeneity in firing rate, bursting, place field propensity and sleep-associated modulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Valero, M. et al. Determinants of different deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples. Nat. Neurosci. 18, 1281–1290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Masurkar, A. V. et al. Medial and lateral entorhinal cortex differentially excite deep versus superficial CA1 pyramidal neurons. Cell Rep. 18, 148–160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Geiller, T., Fattahi, M., Choi, J. S. & Royer, S. Place cells are more strongly tied to landmarks in deep than in superficial CA1. Nat. Commun. 8, 14531 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Danielson, N. B. et al. Sublayer-specific coding dynamics during spatial navigation and learning in hippocampal area CA1. Neuron 91, 652–665 (2016). This study uses simultaneous imaging of CA1 superficial and deep layers in awake, behaving mice to identify heterogeneity between stability and flexibility of representations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Habib, N. et al. Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353, 925–928 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Milior, G. et al. Electrophysiological properties of CA1 pyramidal neurons along the longitudinal axis of the mouse hippocampus. Sci. Rep. 6, 38242 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kishi, T., Tsumori, T., Yokota, S. & Yasui, Y. Topographical projection from the hippocampal formation to the amygdala: a combined anterograde and retrograde tracing study in the rat. J. Comp. Neurol. 496, 349–368 (2006).

    Article  PubMed  Google Scholar 

  93. Amaral, D. G., Dolorfo, C. & Alvarez-Royo, P. Organization of CA1 projections to the subiculum: a PHA-L analysis in the rat. Hippocampus 1, 415–435 (1991).

    Article  CAS  PubMed  Google Scholar 

  94. Maurer, A. P., Vanrhoads, S. R., Sutherland, G. R., Lipa, P. & McNaughton, B. L. Self-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampus. Hippocampus 15, 841–852 (2005).

    Article  PubMed  Google Scholar 

  95. Naber, P. A. & Witter, M. P. Subicular efferents are organized mostly as parallel projections: a double-labeling, retrograde-tracing study in the rat. J. Comp. Neurol. 393, 284–297 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Kinnavane, L., Vann, S. D., Nelson, A. J. D., O’Mara, S. M. & Aggleton, J. P. Collateral projections innervate the mammillary bodies and retrosplenial cortex: a new category of hippocampal cells. eNeuro. https://doi.org/10.1523/ENEURO.0383-17.2018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Graves, A. R. et al. Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors. Neuron 76, 776–789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jarsky, T., Mady, R., Kennedy, B. & Spruston, N. Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus. J. Comp. Neurol. 506, 535–547 (2008).

    Article  PubMed  Google Scholar 

  99. Greene, J. R. & Totterdell, S. Morphology and distribution of electrophysiologically defined classes of pyramidal and nonpyramidal neurons in rat ventral subiculum in vitro. J. Comp. Neurol. 380, 395–408 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Staff, N. P., Jung, H. Y., Thiagarajan, T., Yao, M. & Spruston, N. Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus. J. Neurophysiol. 84, 2398–2408 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Eller, J., Zarnadze, S., Bauerle, P., Dugladze, T. & Gloveli, T. Cell type-specific separation of subicular principal neurons during network activities. PLOS ONE 10, e0123636 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Wozny, C. et al. VGLUT2 functions as a differential marker for hippocampal output neurons. Front. Cell Neurosci. 12, 337 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yamawaki, N., Corcoran, K. A., Guedea, A. L., Shepherd, G. M. G. & Radulovic, J. Differential contributions of glutamatergic hippocampal–retrosplenial cortical projections to the formation and persistence of context memories. Cereb. Cortex. https://doi.org/10.1093/cercor/bhy142 (2018).

    Article  PubMed  Google Scholar 

  104. Kim, Y. & Spruston, N. Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum. Hippocampus 22, 693–706 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Graves, A. R., Moore, S. J., Spruston, N., Tryba, A. K. & Kaczorowski, C. C. Brain-derived neurotrophic factor differentially modulates excitability of two classes of hippocampal output neurons. J. Neurophysiol. 116, 466–471 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kloosterman, F., Witter, M. P. & Van Haeften, T. Topographical and laminar organization of subicular projections to the parahippocampal region of the rat. J. Comp. Neurol. 455, 156–171 (2003).

    Article  PubMed  Google Scholar 

  107. Ishizuka, N. Laminar organization of the pyramidal cell layer of the subiculum in the rat. J. Comp. Neurol. 435, 89–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Honda, Y. & Ishizuka, N. Topographic distribution of cortical projection cells in the rat subiculum. Neurosci. Res. 92, 1–20 (2015).

    Article  PubMed  Google Scholar 

  109. Ishihara, Y. & Fukuda, T. Immunohistochemical investigation of the internal structure of the mouse subiculum. Neuroscience 337, 242–266 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Cembrowski, M. S. et al. The subiculum is a patchwork of discrete subregions. eLife 7, e37701 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gangarossa, G. et al. Spatial distribution of D1R- and D2R-expressing medium-sized spiny neurons differs along the rostro-caudal axis of the mouse dorsal striatum. Front. Neural Circuits 7, 124 (2013).

    PubMed  PubMed Central  Google Scholar 

  112. Cembrowski, M. S. & Spruston, N. Integrating results across methodologies is essential for producing robust neuronal taxonomies. Neuron 94, 747–751 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Okuyama, T., Kitamura, T., Roy, D. S., Itohara, S. & Tonegawa, S. Ventral CA1 neurons store social memory. Science 353, 1536–1541 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Padilla-Coreano, N. et al. Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron 89, 857–866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Witharana, W. K. et al. Nonuniform allocation of hippocampal neurons to place fields across all hippocampal subfields. Hippocampus 26, 1328–1344 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Wickersham, I. R., Sullivan, H. A. & Seung, H. S. Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons. Nat. Protoc. 5, 595–606 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Reardon, T. R. et al. Rabies virus CVS-N2c(DeltaG) strain enhances retrograde synaptic transfer and neuronal viability. Neuron 89, 711–724 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Berns, D. S., DeNardo, L. A., Pederick, D. T. & Luo, L. Teneurin-3 controls topographic circuit assembly in the hippocampus. Nature 554, 328–333 (2018). This paper shows that teneurin 3 is selectively expressed in distinct proximal–distal subregions of CA1 and the subiculum and in the medial entorhinal cortex.

    Article  CAS  PubMed  Google Scholar 

  119. Deguchi, Y., Donato, F., Galimberti, I., Cabuy, E. & Caroni, P. Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus. Nat. Neurosci. 14, 495–504 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Goaillard, J. M., Taylor, A. L., Schulz, D. J. & Marder, E. Functional consequences of animal-to-animal variation in circuit parameters. Nat. Neurosci. 12, 1424–1430 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Prinz, A. A., Bucher, D. & Marder, E. Similar network activity from disparate circuit parameters. Nat. Neurosci. 7, 1345–1352 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Dueck, H., Eberwine, J. & Kim, J. Variation is function: are single cell differences functionally important?: Testing the hypothesis that single cell variation is required for aggregate function. Bioessays 38, 172–180 (2016).

    Article  PubMed  Google Scholar 

  123. Cembrowski, M. S. & Menon, V. Continuous variation within cell types of the nervous system. Trends Neurosci. 41, 337–348 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Kay, K. et al. A hippocampal network for spatial coding during immobility and sleep. Nature 531, 185–190 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fernandez-Lamo, I. et al. Proximodistal organization of the CA2 hippocampal area. Preprint at bioRxiv https://doi.org/10.1101/331025 (2018).

    Article  Google Scholar 

  126. Oliva, A., Fernandez-Ruiz, A., Buzsaki, G. & Berenyi, A. Spatial coding and physiological properties of hippocampal neurons in the Cornu Ammonis subregions. Hippocampus 26, 1593–1607 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Shinohara, Y. et al. Left-right asymmetry of the hippocampal synapses with differential subunit allocation of glutamate receptors. Proc. Natl Acad. Sci. USA 105, 19498–19503 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Shipton, O. A. et al. Left-right dissociation of hippocampal memory processes in mice. Proc. Natl Acad. Sci. USA 111, 15238–15243 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Ramsden, H. L., Surmeli, G., McDonagh, S. G. & Nolan, M. F. Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression. PLOS Comput. Biol. 11, e1004032 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Surmeli, G. et al. Molecularly defined circuitry reveals input-output segregation in deep layers of the medial entorhinal cortex. Neuron 88, 1040–1053 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Economo, M. N. et al. Distinct descending motor cortex pathways and their roles in movement. Nature 563, 79–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Sorensen, S. A. et al. Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. Cereb. Cortex 25, 433–449 (2015).

    Article  PubMed  Google Scholar 

  134. Kepecs, A. & Fishell, G. Interneuron cell types are fit to function. Nature 505, 318–326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gokce, O. et al. Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-Seq. Cell Rep. 16, 1126–1137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Beyeler, A. et al. Organization of valence-encoding and projection-defined neurons in the basolateral amygdala. Cell Rep. 22, 905–918 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-cell RNA-Seq reveals hypothalamic cell diversity. Cell Rep. 18, 3227–3241 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Phillips, J. et al. A single spectrum of neuronal identities across thalamus. Preprint at bioRxiv https://doi.org/10.1101/241315 (2017).

  139. Geschwind, D. H. & Rakic, P. Cortical evolution: judge the brain by its cover. Neuron 80, 633–647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Miller, J. A., Horvath, S. & Geschwind, D. H. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc. Natl Acad. Sci. USA 107, 12698–12703 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Rudy, B., Fishell, G., Lee, S. & Hjerling-Leffler, J. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev. Neurobiol. 71, 45–61 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lau, C. et al. Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain. BMC Bioinformatics 9, 153 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Gonzales, R. B., DeLeon Galvan, C. J., Rangel, Y. M. & Claiborne, B. J. Distribution of thorny excrescences on CA3 pyramidal neurons in the rat hippocampus. J. Comp. Neurol. 430, 357–368 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Golding, N. L., Mickus, T. J., Katz, Y., Kath, W. L. & Spruston, N. Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J. Physiol. 568, 69–82 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    Article  PubMed  CAS  Google Scholar 

  148. Arszovszki, A., Borhegyi, Z. & Klausberger, T. Three axonal projection routes of individual pyramidal cells in the ventral CA1 hippocampus. Front. Neuroanat. 8, 53 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Betley, J. N., Cao, Z. F., Ritola, K. D. & Sternson, S. M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155, 1337–1350 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Leonardo, E. D., Richardson-Jones, J. W., Sibille, E., Kottman, A. & Hen, R. Molecular heterogeneity along the dorsal-ventral axis of the murine hippocampal CA1 field: a microarray analysis of gene expression. Neuroscience 137, 177–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Dong, H. W., Swanson, L. W., Chen, L., Fanselow, M. S. & Toga, A. W. Genomic-anatomic evidence for distinct functional domains in hippocampal field CA1. Proc. Natl Acad. Sci. USA 106, 11794–11799 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Baimbridge, K. G. & Miller, J. J. Immunohistochemical localization of calcium-binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat. Brain Res. 245, 223–229 (1982).

    Article  CAS  PubMed  Google Scholar 

  153. Slomianka, L. & Geneser, F. A. Distribution of acetylcholinesterase in the hippocampal region of the mouse: II. Subiculum and hippocampus. J. Comp. Neurol. 312, 525–536 (1991).

    Article  CAS  PubMed  Google Scholar 

  154. Bilkey, D. K. & Schwartzkroin, P. A. Variation in electrophysiology and morphology of hippocampal CA3 pyramidal cells. Brain Res. 514, 77–83 (1990).

    Article  CAS  PubMed  Google Scholar 

  155. Dougherty, K. A. et al. Differential expression of HCN subunits alters voltage-dependent gating of h-channels in CA1 pyramidal neurons from dorsal and ventral hippocampus. J. Neurophysiol. 109, 1940–1953 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Maroso, M. et al. Cannabinoid control of learning and memory through HCN channels. Neuron 89, 1059–1073 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Thome, C. et al. Axon-carrying dendrites convey privileged synaptic input in hippocampal neurons. Neuron 83, 1418–1430 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Li, Y. et al. A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nat. Neurosci. 20, 559–570 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Bannister, N. J. & Larkman, A. U. Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns. J. Comp. Neurol. 360, 150–160 (1995).

    Article  CAS  PubMed  Google Scholar 

  160. Fattahi, M., Sharif, F., Geiller, T. & Royer, S. Differential representation of landmark and self-motion information along the CA1 radial axis: self-motion generated place fields shift toward landmarks during septal inactivation. J. Neurosci. 38, 6766–6778 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Andrzejewski, M. E., Spencer, R. C. & Kelley, A. E. Dissociating ventral and dorsal subicular dopamine D1 receptor involvement in instrumental learning, spontaneous motor behavior, and motivation. Behav. Neurosci. 120, 542–553 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kim, S. M., Ganguli, S. & Frank, L. M. Spatial information outflow from the hippocampal circuit: distributed spatial coding and phase precession in the subiculum. J. Neurosci. 32, 11539–11558 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Beer, Z., Chwiesko, C. & Sauvage, M. M. Processing of spatial and non-spatial information reveals functional homogeneity along the dorso-ventral axis of CA3, but not CA1. Neurobiol. Learn. Mem. 111, 56–64 (2014).

    Article  PubMed  Google Scholar 

  164. Nakamura, N. H., Flasbeck, V., Maingret, N., Kitsukawa, T. & Sauvage, M. M. Proximodistal segregation of nonspatial information in CA3: preferential recruitment of a proximal CA3-distal CA1 network in nonspatial recognition memory. J. Neurosci. 33, 11506–11514 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Flasbeck, V., Atucha, E., Nakamura, N. H., Yoshida, M. & Sauvage, M. M. Spatial information is preferentially processed by the distal part of CA3: implication for memory retrieval. Behav. Brain Res. 347, 116–123 (2018).

    Article  PubMed  Google Scholar 

  166. Beer, Z. et al. The memory for time and space differentially engages the proximal and distal parts of the hippocampal subfields CA1 and CA3. PLOS Biol. 16, e2006100 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Hunsaker, M. R. & Kesner, R. P. Dissociations across the dorsal-ventral axis of CA3 and CA1 for encoding and retrieval of contextual and auditory-cued fear. Neurobiol. Learn. Mem. 89, 61–69 (2008).

    Article  PubMed  Google Scholar 

  168. Hunsaker, M. R., Rosenberg, J. S. & Kesner, R. P. The role of the dentate gyrus, CA3a, b, and CA3c for detecting spatial and environmental novelty. Hippocampus 18, 1064–1073 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank E. Bloss and V. Menon for helpful discussions.

Reviewer information

Nature Reviews Neuroscience thanks A. Losonczy, and other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

M.S.C. researched the data for the article. M.S.C. and N.S. made substantial contributions to the content of the article, wrote the article and reviewed and/or edited the article before submission.

Corresponding authors

Correspondence to Mark S. Cembrowski or Nelson Spruston.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Pattern completion

An operation that allows population activity to converge to a stored pattern despite incomplete or noisy input. In the hippocampus, this operation is classically attributed to CA3 pyramidal cells owing to their recurrent connectivity.

Place fields

The spatial domains in which cells show increased activity, as assayed through in vivo recordings during exploration or navigation.

Sharp wave ripples

Fast oscillations that underlie memory transfer across brain regions during consolidation.

In situ hybridization

(ISH). A histological approach that enables RNA to be labelled in tissue sections.

Next-generation RNA sequencing

A technique that measures whole-genome RNA abundance in a sample via reverse transcription, amplification and sequencing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cembrowski, M.S., Spruston, N. Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramidal neurons. Nat Rev Neurosci 20, 193–204 (2019). https://doi.org/10.1038/s41583-019-0125-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-019-0125-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing