Review Article | Published:

Deconstructing cortical folding: genetic, cellular and mechanical determinants

Nature Reviews Neuroscience (2019) | Download Citation


Folding of the cerebral cortex is a fundamental milestone of mammalian brain evolution and is associated with dramatic increases in size and complexity. New animal models, genetic tools and bioengineering materials have moved the study of cortical folding from simple phenomenological observation to sophisticated experimental testing. Here, we provide an overview of how genetics, cell biology and biomechanics shape this complex and multifaceted process and affect each other. We discuss the evolution of cortical folding and the genomic changes in the primate lineage that seem to be responsible for the advent of larger brains and cortical folding. Emerging technologies now provide unprecedented tools to analyse and manipulate cortical folding, with the promise of elucidating the mechanisms underlying the stereotyped folding of the cerebral cortex in its full complexity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Borrell, V. How cells fold the cerebral cortex. J. Neurosci. 38, 776–783 (2018).

  2. 2.

    Kroenke, C. D. & Bayly, P. V. How forces fold the cerebral cortex. J. Neurosci. 38, 767–775 (2018).

  3. 3.

    de Juan Romero, C. & Borrell, V. Genetic maps and patterns of cerebral cortex folding. Curr. Opin. Cell Biol. 49, 31–37 (2017).

  4. 4.

    Garcia, K. E., Kroenke, C. D. & Bayly, P. V. Mechanics of cortical folding: stress, growth and stability. Phil. Trans. R. Soc. B 373, 20170321 (2018).

  5. 5.

    Sun, T. & Hevner, R. F. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat. Rev. Neurosci. 15, 217–232 (2014).

  6. 6.

    Neal, J. et al. Insights into the gyrification of developing ferret brain by magnetic resonance imaging. J. Anat. 210, 66–77 (2007).

  7. 7.

    Tallinen, T. et al. On the growth and form of cortical convolutions. Nat. Phys. 12, 588 (2016). Using a compound gel matrix object, this study provides the first demonstration that cortical folding can be explained by the existence of differential mechanical properties between an outer shell and an inner core of brain tissue.

  8. 8.

    Long, K. R. et al. Extracellular matrix components HAPLN1, lumican, and collagen I cause hyaluronic acid-dependent folding of the developing human neocortex. Neuron 99, 702–719 (2018).

  9. 9.

    Zilles, K., Palomero-Gallagher, N. & Amunts, K. Development of cortical folding during evolution and ontogeny. Trends Neurosci. 36, 275–284 (2013).

  10. 10.

    Welker, W. in Cerebral Cortex Vol. 8B (eds Peters, A. & Jones, E. G.) 3–136 (Springer US, 1990).

  11. 11.

    Mota, B. & Herculano-Houzel, S. Brain structure. Cortical folding scales universally with surface area and thickness, not number of neurons. Science 349, 74–77 (2015).

  12. 12.

    Lohmann, G., von Cramon, D. Y. & Colchester, A. C. Deep sulcal landmarks provide an organizing framework for human cortical folding. Cereb. Cortex 18, 1415–1420 (2008).

  13. 13.

    Smart, I. H. & McSherry, G. M. Gyrus formation in the cerebral cortex of the ferret. II. Description of the internal histological changes. J. Anat. 147, 27–43 (1986).

  14. 14.

    Bok, S. T. Histonomy of the Cerebral Cortex (Elsevier, 1959).

  15. 15.

    Ferrer, I., Fabregues, I. & Condom, E. A. Golgi study of the sixth layer of the cerebral cortex. II. The gyrencephalic brain of Carnivora, Artiodactyla and Primates. J. Anat. 146, 87–104 (1986).

  16. 16.

    Encinas, J. L. et al. Maldevelopment of the cerebral cortex in the surgically induced model of myelomeningocele: implications for fetal neurosurgery. J. Pediatr. Surg. 46, 713–722 (2011).

  17. 17.

    Reillo, I., de Juan Romero, C., Garcia-Cabezas, M. A. & Borrell, V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21, 1674–1694 (2011). This is one of the three papers reporting the discovery of bRGCs and is the seminal paper proposing the radial divergence hypothesis for cortical folding, whereby bRGCs play a fundamental role in neuron dispersion and physiological cortical folding.

  18. 18.

    Dehay, C., Giroud, P., Berland, M., Killackey, H. & Kennedy, H. Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex. J. Comp. Neurol. 367, 70–89 (1996).

  19. 19.

    Del Toro, D. et al. Regulation of cerebral cortex folding by controlling neuronal migration via FLRT adhesion molecules. Cell 169, 621–635 (2017). This is the first paper to demonstrate the key importance of cell adhesion and neuron migration on cortical folding, showing that the imbalance of these factors in mutant mice is sufficient to induce gyrogenesis, even in the absence of increased bRGCs or neurogenesis.

  20. 20.

    Wang, L., Hou, S. & Han, Y. G. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat. Neurosci. 19, 888–896 (2016).

  21. 21.

    Ju, X. C. et al. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. eLife 5, e18197 (2016).

  22. 22.

    Stahl, R. et al. Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 153, 535–549 (2013). This is the first demonstration that bona fide folding of cortical neuronal layers (and not white matter) can be experimentally induced in mice by increasing bRGC abundance. This study also shows that modulating the expression of Trnp1 affects bRGC generation and cortical folding.

  23. 23.

    Florio, M. et al. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347, 1465–1470 (2015). This seminal study demonstrates the importance of a gene that emerged in the recent evolutionary human lineage for the proliferation of cortical progenitor cells and neurogenesis; its overexpression in mice induces cortical folding.

  24. 24.

    Nonaka-Kinoshita, M. et al. Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J. 32, 1817–1828 (2013). This is the first study to demonstrate that the proliferation of progenitor cells in the OSVZ is central to folding of the cerebral cortex, showing experimentally that enhanced OSVZ proliferation increases cortical folding in ferrets.

  25. 25.

    Masuda, K. et al. Pathophysiological analyses of cortical malformation using gyrencephalic mammals. Sci. Rep. 5, 15370 (2015).

  26. 26.

    Matsumoto, N., Shinmyo, Y., Ichikawa, Y. & Kawasaki, H. Gyrification of the cerebral cortex requires FGF signaling in the mammalian brain. eLife 6, e29285 (2017).

  27. 27.

    Shinmyo, Y. et al. Folding of the cerebral cortex requires Cdk5 in upper-layer neurons in gyrencephalic mammals. Cell Rep. 20, 2131–2143 (2017).

  28. 28.

    Rash, B. G., Tomasi, S., Lim, H. D., Suh, C. Y. & Vaccarino, F. M. Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J. Neurosci. 33, 10802–10814 (2013).

  29. 29.

    Smith, R. S. et al. Sodium channel SCN3A (NaV1.3) regulation of human cerebral cortical folding and oral motor development. Neuron 99, 905–913 (2018).

  30. 30.

    Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002). This is the first study to demonstrate that folding of cortical tissue (albeit only the neuroepithelium) can be induced in mice in vivo and that demonstrates the central role of progenitor cell proliferation in this process.

  31. 31.

    Siegenthaler, J. A. et al. Retinoic acid from the meninges regulates cortical neuron generation. Cell 139, 597–609 (2009).

  32. 32.

    Haydar, T. F., Kuan, C. Y., Flavell, R. A. & Rakic, P. The role of cell death in regulating the size and shape of the mammalian forebrain. Cereb. Cortex 9, 621–626 (1999).

  33. 33.

    Depaepe, V. et al. Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature 435, 1244–1250 (2005).

  34. 34.

    Kingsbury, M. A., Rehen, S. K., Contos, J. J., Higgins, C. M. & Chun, J. Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nat. Neurosci. 6, 1292–1299 (2003).

  35. 35.

    Li, Y. et al. Induction of expansion and folding in human cerebral organoids. Cell Stem Cell 20, 385–396 (2017).

  36. 36.

    Karzbrun, E., Kshirsagar, A., Cohen, S. R., Hanna, J. H. & Reiner, O. Human brain organoids on a chip reveal the physics of folding. Nat. Phys. 14, 515–522 (2018). This study provides the first evidence that cerebral organoids can be used to study the biomechanical bases of cortical folding.

  37. 37.

    Barkovich, A. J., Guerrini, R., Kuzniecky, R. I., Jackson, G. D. & Dobyns, W. B. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135, 1348–1369 (2012).

  38. 38.

    Sidman, R. L. & Rakic, P. Neuronal migration, with special reference to developing human brain: a review. Brain Res. 62, 1–35 (1973).

  39. 39.

    Smart, I. H. & McSherry, G. M. Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes. J. Anat. 146, 141–152 (1986).

  40. 40.

    Van Essen, D. C. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385, 313–318 (1997).

  41. 41.

    Xu, G., Bayly, P. V. & Taber, L. A. Residual stress in the adult mouse brain. Biomech. Model. Mechanobiol. 8, 253–262 (2009).

  42. 42.

    Xu, G. et al. Axons pull on the brain, but tension does not drive cortical folding. J. Biomech. Eng. 132, 071013 (2010). This paper demonstrates the absence of net tension between opposite walls of cortical gyri, neither during development nor in the adult cortex, thus refuting the long-standing axon tension hypothesis proposed by Van Essen.

  43. 43.

    Bray, D. Axonal growth in response to experimentally applied mechanical tension. Dev. Biol. 102, 379–389 (1984).

  44. 44.

    Hilgetag, C. C. & Barbas, H. Role of mechanical factors in the morphology of the primate cerebral cortex. PLOS Comput. Biol. 2, e22 (2006).

  45. 45.

    Richman, D. P., Stewart, R. M., Hutchinson, J. W. & Caviness, V. S. Jr. Mechanical model of brain convolutional development. Science 189, 18–21 (1975).

  46. 46.

    Dervaux, J. & Ben Amar, M. Morphogenesis of growing soft tissues. Phys. Rev. Lett. 101, 068101 (2008).

  47. 47.

    Toro, R. & Burnod, Y. A morphogenetic model for the development of cortical convolutions. Cereb. Cortex 15, 1900–1913 (2005).

  48. 48.

    Bayly, P. V., Okamoto, R. J., Xu, G., Shi, Y. & Taber, L. A. A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain. Phys. Biol. 10, 016005 (2013).

  49. 49.

    Tallinen, T., Chung, J. Y., Biggins, J. S. & Mahadevan, L. Gyrification from constrained cortical expansion. Proc. Natl Acad. Sci. USA 111, 12667–12672 (2014).

  50. 50.

    Budday, S., Steinmann, P. & Kuhl, E. The role of mechanics during brain development. J. Mech. Phys. Solids 72, 75–92 (2014).

  51. 51.

    Pillay, P. & Manger, P. R. Order-specific quantitative patterns of cortical gyrification. Eur. J. Neurosci. 25, 2705–2712 (2007).

  52. 52.

    Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

  53. 53.

    Wang, X. et al. Folding, but not surface area expansion, is associated with cellular morphological maturation in the fetal cerebral cortex. J. Neurosci. 37, 1971–1983 (2017).

  54. 54.

    Borrell, V. & Callaway, E. M. Reorganization of exuberant axonal arbors contributes to the development of laminar specificity in ferret visual cortex. J. Neurosci. 22, 6682–6695 (2002).

  55. 55.

    Callaway, E. M. & Borrell, V. Developmental sculpting of dendritic morphology of layer 4 neurons in visual cortex: influence of retinal input. J. Neurosci. 31, 7456–7470 (2011).

  56. 56.

    Dennerll, T. J., Lamoureux, P., Buxbaum, R. E. & Heidemann, S. R. The cytomechanics of axonal elongation and retraction. J. Cell Biol. 109, 3073–3083 (1989).

  57. 57.

    Heidemann, S. R. & Buxbaum, R. E. Tension as a regulator and integrator of axonal growth. Cell Motil. Cytoskeleton 17, 6–10 (1990).

  58. 58.

    Chada, S., Lamoureux, P., Buxbaum, R. E. & Heidemann, S. R. Cytomechanics of neurite outgrowth from chick brain neurons. J. Cell Sci. 110, 1179–1186 (1997).

  59. 59.

    Budday, S., Steinmann, P. & Kuhl, E. Physical biology of human brain development. Front. Cell. Neurosci. 9, 257 (2015).

  60. 60.

    Holland, M. A., Miller, K. E. & Kuhl, E. Emerging brain morphologies from axonal elongation. Ann. Biomed. Eng. 43, 1640–1653 (2015).

  61. 61.

    Lukaszewicz, A. et al. The concerted modulation of proliferation and migration contributes to the specification of the cytoarchitecture and dimensions of cortical areas. Cereb. Cortex 16 (Suppl. 1), 26–34 (2006).

  62. 62.

    Lukaszewicz, A. et al. G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47, 353–364 (2005).

  63. 63.

    Kriegstein, A., Noctor, S. & Martinez-Cerdeno, V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat. Rev. Neurosci. 7, 883–890 (2006).

  64. 64.

    Dehay, C., Giroud, P., Berland, M., Smart, I. & Kennedy, H. Modulation of the cell cycle contributes to the parcellation of the primate visual cortex. Nature 366, 464–466 (1993).

  65. 65.

    Ross, M. E. & Walsh, C. A. Human brain malformations and their lessons for neuronal migration. Annu. Rev. Neurosci. 24, 1041–1070 (2001).

  66. 66.

    O’Leary, D. D. & Borngasser, D. Cortical ventricular zone progenitors and their progeny maintain spatial relationships and radial patterning during preplate development indicating an early protomap. Cereb. Cortex 16(Suppl. 1), 46–56 (2006).

  67. 67.

    Misson, J. P., Austin, C. P., Takahashi, T., Cepko, C. L. & Caviness, V. S. Jr. The alignment of migrating neural cells in relation to the murine neopallial radial glial fiber system. Cereb. Cortex 1, 221–229 (1991).

  68. 68.

    Gertz, C. C. & Kriegstein, A. R. Neuronal migration dynamics in the developing ferret cortex. J. Neurosci. 35, 14307–14315 (2015).

  69. 69.

    Hansen, D. V., Lui, J. H., Parker, P. R. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).

  70. 70.

    Reillo, I. & Borrell, V. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors. Cereb. Cortex 22, 2039–2054 (2012).

  71. 71.

    Fietz, S. A. et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci. 13, 690–699 (2010).

  72. 72.

    LaMonica, B. E., Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex. Nat. Commun. 4, 1665 (2013).

  73. 73.

    Wang, X., Tsai, J. W., Lamonica, B. & Kriegstein, A. R. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat. Neurosci. 14, 555–561 (2011).

  74. 74.

    Shitamukai, A., Konno, D. & Matsuzaki, F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci. 31, 3683–3695 (2011).

  75. 75.

    Betizeau, M. et al. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron 80, 442–457 (2013). This landmark paper demonstrates the extraordinary diversity and complex lineage relationships of basal progenitor cell types in the OSVZ of the primate cortex, and shows that they all contribute similarly to neurogenesis, refuting another model in which cortical neurons are mostly or solely produced by IPCs.

  76. 76.

    Martinez-Martinez, M. A. et al. A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels. Nat. Commun. 7, 11812 (2016).

  77. 77.

    Borrell, V. & Reillo, I. Emerging roles of neural stem cells in cerebral cortex development and evolution. Dev. Neurobiol. 72, 955–971 (2012).

  78. 78.

    Borrell, V. & Gotz, M. Role of radial glial cells in cerebral cortex folding. Curr. Opin. Neurobiol. 27, 39–46 (2014).

  79. 79.

    Pilz, G. A. et al. Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type. Nat. Commun. 4, 2125 (2013).

  80. 80.

    Smart, I. H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).

  81. 81.

    Dehay, C., Kennedy, H. & Kosik, K. S. The outer subventricular zone and primate-specific cortical complexification. Neuron 85, 683–694 (2015).

  82. 82.

    Nowakowski, T. J., Pollen, A. A., Sandoval-Espinosa, C. & Kriegstein, A. R. Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development. Neuron 91, 1219–1227 (2016).

  83. 83.

    Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–83 (1972).

  84. 84.

    Voigt, T. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J. Comp. Neurol. 289, 74–88 (1989).

  85. 85.

    Kou, Z. et al. CRISPR/Cas9-mediated genome engineering of the ferret. Cell Res. 25, 1372–1375 (2015).

  86. 86.

    Garcia-Moreno, F., Vasistha, N. A., Trevia, N., Bourne, J. A. & Molnar, Z. Compartmentalization of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent. Cereb. Cortex 22, 482–492 (2012).

  87. 87.

    Kelava, I. et al. Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cereb. Cortex 22, 469–481 (2012). This paper demonstrates that bRGCs exist in a non-gyrencephalic primate, but only at fairly late stages of development and at low abundance, thus showing that not all primates have a high abundance of bRGCs and indicating that a high abundance of bRGCs may be required for cortical folding in primates.

  88. 88.

    Johnson, M. B. et al. Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size. Nature 556, 370–375 (2018).

  89. 89.

    Fernandez, V., Llinares-Benadero, C. & Borrell, V. Cerebral cortex expansion and folding: what have we learned? EMBO J. 35, 1021–1044 (2016).

  90. 90.

    Borrell, V. & Calegari, F. Mechanisms of brain evolution: regulation of neural progenitor cell diversity and cell cycle length. Neurosci. Res. 86, 14–24 (2014).

  91. 91.

    Riviere, J. B. et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat. Genet. 44, 934–940 (2012).

  92. 92.

    Lee, J. H. et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat. Genet. 44, 941–945 (2012).

  93. 93.

    Roy, A. et al. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. eLife 4, e12703 (2015).

  94. 94.

    Roll, P. et al. SRPX2 mutations in disorders of language cortex and cognition. Hum. Mol. Genet. 15, 1195–1207 (2006).

  95. 95.

    Tomioka, I. et al. Transgenic monkey model of the polyglutamine diseases recapitulating progressive neurological symptoms. eNeuro 4, e0250–16.2017 (2017).

  96. 96.

    Park, J. E. et al. Generation of transgenic marmosets expressing genetically encoded calcium indicators. Sci. Rep. 6, 34931 (2016).

  97. 97.

    Kishi, N., Sato, K., Sasaki, E. & Okano, H. Common marmoset as a new model animal for neuroscience research and genome editing technology. Dev. Growth Differ. 56, 53–62 (2014).

  98. 98.

    Xie, Y., Juschke, C., Esk, C., Hirotsune, S. & Knoblich, J. A. The phosphatase PP4c controls spindle orientation to maintain proliferative symmetric divisions in the developing neocortex. Neuron 79, 254–265 (2013).

  99. 99.

    Delaunay, D., Cortay, V., Patti, D., Knoblauch, K. & Dehay, C. Mitotic spindle asymmetry: a Wnt/PCP-regulated mechanism generating asymmetrical division in cortical precursors. Cell Rep. 6, 400–414 (2014).

  100. 100.

    Postiglione, M. P. et al. Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron 72, 269–284 (2011).

  101. 101.

    Yingling, J. et al. Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell 132, 474–486 (2008).

  102. 102.

    Kang, W., Wong, L. C., Shi, S. H. & Hebert, J. M. The transition from radial glial to intermediate progenitor cell is inhibited by FGF signaling during corticogenesis. J. Neurosci. 29, 14571–14580 (2009).

  103. 103.

    Borrell, V. et al. Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 76, 338–352 (2012).

  104. 104.

    Cardenas, A. et al. Evolution of cortical neurogenesis in amniotes controlled by Robo signaling levels. Cell 174, 590–606 (2018). This ground-breaking study shows that modulation of direct versus indirect neurogenesis was a key evolutionary feature driving cortical expansion during amniote evolution and that this relies on the modulation of expression levels of important genes.

  105. 105.

    Okamoto, M. et al. TAG-1-assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding. Nat. Neurosci. 16, 1556–1566 (2013).

  106. 106.

    Tavano, S. et al. Insm1 induces neural progenitor delamination in developing neocortex via downregulation of the adherens junction belt-specific protein Plekha7. Neuron 97, 1299–1314 (2018).

  107. 107.

    Baala, L. et al. Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis. Nat. Genet. 39, 454–456 (2007).

  108. 108.

    Itoh, Y. et al. Scratch regulates neuronal migration onset via an epithelial–mesenchymal transition-like mechanism. Nat. Neurosci. 16, 416–425 (2013).

  109. 109.

    Wong, F. K. et al. Sustained Pax6 expression generates primate-like basal radial glia in developing mouse neocortex. PLOS Biol. 13, e1002217 (2015).

  110. 110.

    Toda, T., Shinmyo, Y., Dinh Duong, T. A., Masuda, K. & Kawasaki, H. An essential role of SVZ progenitors in cortical folding in gyrencephalic mammals. Sci. Rep. 6, 29578 (2016).

  111. 111.

    Florio, M., Namba, T., Paabo, S., Hiller, M. & Huttner, W. B. A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification. Sci. Adv. 2, e1601941 (2016).

  112. 112.

    Liu, J. et al. The primate-specific gene TMEM14B marks outer radial glia cells and promotes cortical expansion and folding. Cell Stem Cell 21, 635–649 (2017).

  113. 113.

    Florio, M. et al. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex. eLife 7, e32332 (2018).

  114. 114.

    Suzuki, I. K. et al. Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation. Cell 173, 1370–1384 (2018).

  115. 115.

    Fiddes, I. T. et al. Human-specific NOTCH2NL genes affect Notch signaling and cortical neurogenesis. Cell 173, 1356–1369 (2018).

  116. 116.

    Fietz, S. A. et al. Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal. Proc. Natl Acad. Sci. USA 109, 11836–11841 (2012).

  117. 117.

    Johnson, M. B. et al. Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex. Nat. Neurosci. 18, 637–646 (2015).

  118. 118.

    Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014).

  119. 119.

    Pollen, A. A. et al. Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67 (2015).

  120. 120.

    Hong, S. E. et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet. 26, 93–96 (2000).

  121. 121.

    Rice, D. S. & Curran, T. Role of the Reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24, 1005–1039 (2001).

  122. 122.

    Pilz, D. T. et al. LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum. Mol. Genet. 7, 2029–2037 (1998).

  123. 123.

    Gleeson, J. G., Lin, P. T., Flanagan, L. A. & Walsh, C. A. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23, 257–271 (1999).

  124. 124.

    Francis, F. et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23, 247–256 (1999).

  125. 125.

    Yamagishi, S. et al. FLRT2 and FLRT3 act as repulsive guidance cues for Unc5-positive neurons. EMBO J. 30, 2920–2933 (2011).

  126. 126.

    Lu, Y. B. et al. Viscoelastic properties of individual glial cells and neurons in the CNS. Proc. Natl Acad. Sci. USA 103, 17759–17764 (2006).

  127. 127.

    de Juan Romero, C., Bruder, C., Tomasello, U., Sanz-Anquela, J. M. & Borrell, V. Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly. EMBO J. 34, 1859–1874 (2015). This paper demonstrates the existence of genetic protomaps of cortical folding, in which genes that have fundamental roles in cortical development are expressed in modular patterns before the formation of folds, with these patterns anticipating the prospective location of folds and fissures.

  128. 128.

    Dubois, J. et al. Mapping the early cortical folding process in the preterm newborn brain. Cereb. Cortex 18, 1444–1454 (2008).

  129. 129.

    Lewitus, E., Kelava, I., Kalinka, A. T., Tomancak, P. & Huttner, W. B. Comment on “Cortical folding scales universally with surface area and thickness, not number of neurons”. Science 351, 825 (2016).

  130. 130.

    Elsen, G. E. et al. The protomap is propagated to cortical plate neurons through an Eomes-dependent intermediate map. Proc. Natl Acad. Sci. USA 110, 4081–4086 (2013).

  131. 131.

    Sansom, S. N. & Livesey, F. J. Gradients in the brain: the control of the development of form and function in the cerebral cortex. Cold Spring Harb. Perspect. Biol. 1, a002519 (2009).

  132. 132.

    Albert, M. & Huttner, W. B. Clever space saving — how the cerebral cortex folds. EMBO J. 34, 1845–1847 (2015).

  133. 133.

    Desmond, M. E. & Jacobson, A. G. Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev. Biol. 57, 188–198 (1977).

  134. 134.

    Dzamba, B. J., Jakab, K. R., Marsden, M., Schwartz, M. A. & DeSimone, D. W. Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization. Dev. Cell 16, 421–432 (2009).

  135. 135.

    Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

  136. 136.

    Chang, Y. J., Tsai, C. J., Tseng, F. G., Chen, T. J. & Wang, T. W. Micropatterned stretching system for the investigation of mechanical tension on neural stem cells behavior. Nanomedicine 9, 345–355 (2013).

  137. 137.

    Siechen, S., Yang, S., Chiba, A. & Saif, T. Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc. Natl Acad. Sci. USA 106, 12611–12616 (2009).

  138. 138.

    Weissman, T. A., Riquelme, P. A., Ivic, L., Flint, A. C. & Kriegstein, A. R. Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43, 647–661 (2004).

  139. 139.

    McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

  140. 140.

    Ohashi, K., Fujiwara, S. & Mizuno, K. Roles of the cytoskeleton, cell adhesion and Rho signalling in mechanosensing and mechanotransduction. J. Biochem. 161, 245–254 (2017).

  141. 141.

    Farge, E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13, 1365–1377 (2003).

  142. 142.

    Jakkaraju, S., Zhe, X., Pan, D., Choudhury, R. & Schuger, L. TIPs are tension-responsive proteins involved in myogenic versus adipogenic differentiation. Dev. Cell 9, 39–49 (2005).

  143. 143.

    Rozario, T., Dzamba, B., Weber, G. F., Davidson, L. A. & DeSimone, D. W. The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. Dev. Biol. 327, 386–398 (2009).

  144. 144.

    Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017).

  145. 145.

    Pollen, A. A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053–1058 (2014).

  146. 146.

    Stenzel, D., Wilsch-Brauninger, M., Wong, F. K., Heuer, H. & Huttner, W. B. Integrin αvβ3 and thyroid hormones promote expansion of progenitors in embryonic neocortex. Development 141, 795–806 (2014).

  147. 147.

    Bininda-Emonds, O. R. et al. The delayed rise of present-day mammals. Nature 446, 507–512 (2007).

  148. 148.

    O’Leary, M. A. et al. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339, 662–667 (2013).

  149. 149.

    Lewitus, E., Kelava, I., Kalinka, A. T., Tomancak, P. & Huttner, W. B. An adaptive threshold in mammalian neocortical evolution. PLOS Biol. 12, e1002000 (2014).

  150. 150.

    Martinez-Cerdeno, V. et al. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents. PLOS ONE 7, e30178 (2012).

  151. 151.

    Kelava, I., Lewitus, E. & Huttner, W. B. The secondary loss of gyrencephaly as an example of evolutionary phenotypical reversal. Front. Neuroanat. 7, 16 (2013).

  152. 152.

    Dorus, S. et al. Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119, 1027–1040 (2004).

  153. 153.

    Evans, P. D. et al. Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum. Mol. Genet. 13, 489–494 (2004).

  154. 154.

    Evans, P. D. et al. Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309, 1717–1720 (2005).

  155. 155.

    Mekel-Bobrov, N. et al. Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens. Science 309, 1720–1722 (2005).

  156. 156.

    Eichler, E. E. & Frazer, K. A. The nature, pattern and function of human sequence variation. Genome Biol. 5, 318 (2004).

  157. 157.

    Hurles, M. Gene duplication: the genomic trade in spare parts. PLOS Biol. 2, E206 (2004).

  158. 158.

    Dennis, M. Y. et al. The evolution and population diversity of human-specific segmental duplications. Nat. Ecol. Evol. 1, 69 (2017).

  159. 159.

    Dougherty, M. L. et al. The birth of a human-specific neural gene by incomplete duplication and gene fusion. Genome Biol. 18, 49 (2017).

  160. 160.

    Pollard, K. S. et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443, 167–172 (2006).

  161. 161.

    Bejerano, G. et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441, 87–90 (2006).

  162. 162.

    Pollard, K. S. et al. Forces shaping the fastest evolving regions in the human genome. PLOS Genet. 2, e168 (2006).

  163. 163.

    Capra, J. A., Erwin, G. D., McKinsey, G., Rubenstein, J. L. & Pollard, K. S. Many human accelerated regions are developmental enhancers. Phil. Trans. R. Soc. B 368, 20130025 (2013).

  164. 164.

    Prabhakar, S. et al. Human-specific gain of function in a developmental enhancer. Science 321, 1346–1350 (2008).

  165. 165.

    Ponting, C. P. & Lunter, G. Evolutionary biology: human brain gene wins genome race. Nature 443, 149–150 (2006).

  166. 166.

    Lunter, G., Ponting, C. P. & Hein, J. Genome-wide identification of human functional DNA using a neutral indel model. PLOS Comput. Biol. 2, e5 (2006).

  167. 167.

    Mouse Genome Sequencing, C. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

  168. 168.

    King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

  169. 169.

    Bae, B. I. et al. Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science 343, 764–768 (2014).

  170. 170.

    Aprea, J. & Calegari, F. Long non-coding RNAs in corticogenesis: deciphering the non-coding code of the brain. EMBO J. 34, 2865–2884 (2015).

  171. 171.

    Lewitus, E. & Huttner, W. B. Neurodevelopmental lincRNA microsyteny conservation and mammalian brain size evolution. PLOS ONE 10, e0131818 (2015).

  172. 172.

    Liu, X. & Sun, T. MicroRNAs and molecular pathogenesis of microcephaly. Curr. Mol. Pharmacol. 9, 300–304 (2015).

  173. 173.

    Arcila, M. L. et al. Novel primate miRNAs coevolved with ancient target genes in germinal zone-specific expression patterns. Neuron 81, 1255–1262 (2014).

  174. 174.

    Dehay, C. & Kennedy, H. Cell-cycle control and cortical development. Nat. Rev. Neurosci. 8, 438–450 (2007).

  175. 175.

    Chan, A. W., Chong, K. Y., Martinovich, C., Simerly, C. & Schatten, G. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science 291, 309–312 (2001).

  176. 176.

    Okano, H. & Kishi, N. Investigation of brain science and neurological/psychiatric disorders using genetically modified non-human primates. Curr. Opin. Neurobiol. 50, 1–6 (2018).

  177. 177.

    Zhong, S. et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555, 524–528 (2018).

  178. 178.

    Ecker, J. R. et al. The BRAIN initiative cell census consortium: lessons learned toward generating a comprehensive brain cell atlas. Neuron 96, 542–557 (2017).

  179. 179.

    Fry, A. E. et al. De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain 141, 698–712 (2018).

  180. 180.

    Piao, X. et al. An autosomal recessive form of bilateral frontoparietal polymicrogyria maps to chromosome 16q12.2-21. Am. J. Hum. Genet. 70, 1028–1033 (2002).

  181. 181.

    Piao, X. et al. Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes. Ann. Neurol. 58, 680–687 (2005).

  182. 182.

    Bahi-Buisson, N. et al. GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex. Brain 133, 3194–3209 (2010).

  183. 183.

    Faisst, A. M., Alvarez-Bolado, G., Treichel, D. & Gruss, P. Rotatin is a novel gene required for axial rotation and left-right specification in mouse embryos. Mech. Dev. 113, 15–28 (2002).

  184. 184.

    Kheradmand Kia, S. et al. RTTN mutations link primary cilia function to organization of the human cerebral cortex. Am. J. Hum. Genet. 91, 533–540 (2012).

  185. 185.

    Cantagrel, V. et al. Truncation of NHEJ1 in a patient with polymicrogyria. Hum. Mutat. 28, 356–364 (2007).

  186. 186.

    Squier, W. & Jansen, A. Polymicrogyria: pathology, fetal origins and mechanisms. Acta Neuropathol. Commun. 2, 80 (2014).

  187. 187.

    Poirier, K. et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat. Genet. 45, 639–647 (2013).

  188. 188.

    Valence, S. et al. Homozygous truncating mutation of the KBP gene, encoding a KIF1B-binding protein, in a familial case of fetal polymicrogyria. Neurogenetics 14, 215–224 (2013).

  189. 189.

    Barak, T. et al. Recessive LAMC3 mutations cause malformations of occipital cortical development. Nat. Genet. 43, 590–594 (2011).

  190. 190.

    Mishra-Gorur, K. et al. Mutations in KATNB1 cause complex cerebral malformations by disrupting asymmetrically dividing neural progenitors. Neuron 84, 1226–1239 (2014).

  191. 191.

    O’Driscoll, M., Dobyns, W. B., van Hagen, J. M. & Jeggo, P. A. Cellular and clinical impact of haploinsufficiency for genes involved in ATR signaling. Am. J. Hum. Genet. 81, 77–86 (2007).

  192. 192.

    Yu, T. W. et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat. Genet. 42, 1015–1020 (2010).

  193. 193.

    Battaglia, A. et al. Further delineation of deletion 1p36 syndrome in 60 patients: a recognizable phenotype and common cause of developmental delay and mental retardation. Pediatrics 121, 404–410 (2008).

  194. 194.

    Mazzarella, R. & Schlessinger, D. Pathological consequences of sequence duplications in the human genome. Genome Res. 8, 1007–1021 (1998).

  195. 195.

    Shiba, N. et al. Neuropathology of brain and spinal malformations in a case of monosomy 1p36. Acta Neuropathol. Commun. 1, 45 (2013).

  196. 196.

    Jansen, A. & Andermann, E. Genetics of the polymicrogyria syndromes. J. Med. Genet. 42, 369–378 (2005).

  197. 197.

    Bingham, P. M., Lynch, D., McDonald-McGinn, D. & Zackai, E. Polymicrogyria in chromosome 22 delection syndrome. Neurology 51, 1500–1502 (1998).

  198. 198.

    Mirzaa, G. et al. Megalencephaly and perisylvian polymicrogyria with postaxial polydactyly and hydrocephalus: a rare brain malformation syndrome associated with mental retardation and seizures. Neuropediatrics 35, 353–359 (2004).

  199. 199.

    D’Arcangelo, G. et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723 (1995).

  200. 200.

    Dulabon, L. et al. Reelin binds α3β1 integrin and inhibits neuronal migration. Neuron 27, 33–44 (2000).

  201. 201.

    Kumar, R. A. et al. TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Hum. Mol. Genet. 19, 2817–2827 (2010).

  202. 202.

    Morris-Rosendahl, D. J. et al. Refining the phenotype of α-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly. Clin. Genet. 74, 425–433 (2008).

  203. 203.

    Verloes, A., Elmaleh, M., Gonzales, M., Laquerriere, A. & Gressens, P. Genetic and clinical aspects of lissencephaly [French]. Rev. Neurol. 163, 533–547 (2007).

  204. 204.

    Sapir, T., Elbaum, M. & Reiner, O. Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J. 16, 6977–6984 (1997).

  205. 205.

    Jansen, A. C. et al. TUBA1A mutations: from isolated lissencephaly to familial polymicrogyria. Neurology 76, 988–992 (2011).

  206. 206.

    Di Donato, N. et al. Analysis of 17 genes detects mutations in 81% of 811 patients with lissencephaly. Genet. Med. (2018).

  207. 207.

    Bahi-Buisson, N. & Cavallin, M. Tubulinopathies overview. GeneReviews (updated 24 Mar 2016).

  208. 208.

    Hertecant, J. et al. A novel de novo mutation in DYNC1H1 gene underlying malformation of cortical development and cataract. Meta Gene 9, 124–127 (2016).

  209. 209.

    Parrini, E., Conti, V., Dobyns, W. B. & Guerrini, R. Genetic basis of brain malformations. Mol. Syndromol. 7, 220–233 (2016).

  210. 210.

    Tian, G. et al. A patient with lissencephaly, developmental delay, and infantile spasms, due to de novo heterozygous mutation of KIF2A. Mol. Genet. Genom. Med. 4, 599–603 (2016).

  211. 211.

    Uyanik, G. et al. ARX mutations in X-linked lissencephaly with abnormal genitalia. Neurology 61, 232–235 (2003).

  212. 212.

    Kitamura, K. et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat. Genet. 32, 359–369 (2002).

  213. 213.

    Derewenda, U. et al. The structure of the coiled-coil domain of Ndel1 and the basis of its interaction with Lis1, the causal protein of Miller-Dieker lissencephaly. Structure 15, 1467–1481 (2007).

Download references


The authors thank members of the Borrell laboratory, P. Bayly, R. Toro, M. Götz and W. Huttner, for insightful discussions. The authors apologize to colleagues whose research was not cited owing to the broad scope and space limitations of this Review. The authors’ research was supported by a European Research Grant (CORTEXFOLDING-309633), a Spanish Ministry of Economy and Competitiveness Grant (SAF2015-69168-R), the European Union Seventh Framework Programme (FP7/2007-2013, under the project DESIRE-602531) and the Spanish State Research Agency through the ‘Severo Ochoa’ Programme for Centers of Excellence in Research and Development (reference SEV-2017-0723).

Reviewer information

Nature Reviews Neuroscience thanks H. Kawasaki and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information


  1. Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, San Juan de Alicante, Spain

    • Cristina Llinares-Benadero
    •  & Víctor Borrell


  1. Search for Cristina Llinares-Benadero in:

  2. Search for Víctor Borrell in:


C.L.-B. and V.B. researched data for the article, contributed substantially to the discussion of content, wrote the article and reviewed and edited the manuscript before submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Víctor Borrell.



Also known as ‘folds’ or ‘convolutions’. Rounded elevations of cortical tissue between two sulci that contain all six neuronal layers bending outwards, such that the deep layers on either side of a gyrus come close together.


Also known as ‘fissures’. Depressions or grooves of cortical tissue that contain all six neuronal layers bending inwards, such that the superficial cortical layers come close together on either side of a sulcus.


The characteristic of a brain presenting cortical folds, giving a convoluted or wrinkled appearance.

Gyral crown

Also known as the ‘gyral crest’. The top or outermost part of a gyrus.

Sulcal fundus

Also known as the ‘sulcal pit’. The bottom or deepest part of a sulcus.

Lateral walls

Portions of cortex between gyral crowns and sulcal fundi.

Cellular ectopias

Also known as ‘cellular heterotopias’. Cells positioned in an abnormal location.

Hydraulic pressure

Force exerted by a fluid onto the surrounding tissue that contains it under pressure.

Cranial sutures

Fibrous joints between the cranial bones.


Measure of a mechanical property of a material. The elastic modulus is the measure of the resistance of an object to being deformed elastically after stress is applied.


Property of a material that defines its resistance to being deformed after force is applied to it.

Cortical plate

(CP). Transient layer of the developing cortex, located beneath the marginal zone and containing the neurons that most recently finished radial migration.

Viscoelastic instability

Property of nearly inertia-less, non-Newtonian, flowing, complex fluids, such as polymer melts and solutions.


The characteristic of materials of having different physical or mechanical properties when measured along different axes.


Detachment from the apical adherens junction belt, followed by basal movement, away from the ventricular zone.


The characteristic of a brain without cortical folds, smooth or unfissured.

Intermediate progenitor cells

(IPCs). Germinal cells born from apical radial glial cells that populate the subventricular zone (basal from the ventricular zone) and produce neurons.


Phase of early embryonic development during which the single-layered blastula is reorganized into a multilayered gastrula.

Hot spots

Regions in the genome that exhibit elevated rates of a specific event. In evolutionary hot spots, the local sequence of DNA has changed rapidly during evolution.

About this article

Publication history