Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The neurobiological basis of narcolepsy


Narcolepsy is the most common neurological cause of chronic sleepiness. The discovery about 20 years ago that narcolepsy is caused by selective loss of the neurons producing orexins (also known as hypocretins) sparked great advances in the field. Here, we review the current understanding of how orexin neurons regulate sleep–wake behaviour and the consequences of the loss of orexin neurons. We also summarize the developing evidence that narcolepsy is an autoimmune disorder that may be caused by a T cell-mediated attack on the orexin neurons and explain how these new perspectives can inform better therapeutic approaches.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Wake-promoting and cataplexy-suppressing orexin pathways.
Fig. 2: Inputs and outputs of the orexin neurons.
Fig. 3: A model for T cell-mediated killing of the orexin neurons in narcolepsy.


  1. 1.

    Silber, M. H., Krahn, L. E., Olson, E. J. & Pankratz, V. S. The epidemiology of narcolepsy in Olmsted County, Minnesota: a population-based study. Sleep 25, 197–202 (2002).

    PubMed  Google Scholar 

  2. 2.

    Shin, Y. K. et al. Prevalence of narcolepsy-cataplexy in Korean adolescents. Acta Neurol. Scand. 117, 273–278 (2008).

    CAS  PubMed  Google Scholar 

  3. 3.

    Longstreth, W. T. Jr. et al. Prevalence of narcolepsy in King County, WA, USA. Sleep Med. 10, 422–426 (2009).

    PubMed  Google Scholar 

  4. 4.

    Knudsen, S., Gammeltoft, S. & Jennum, P. J. Rapid eye movement sleep behaviour disorder in patients with narcolepsy is associated with hypocretin-1 deficiency. Brain 133, 568–579 (2010).

    PubMed  Google Scholar 

  5. 5.

    de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA 95, 322–327 (1998). This paper is one of the first descriptions of the orexin neuropeptides (naming them hypocretins).

    PubMed  Google Scholar 

  6. 6.

    Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998). This article is one of the first to describe the orexin neuropeptides.

    CAS  PubMed  Google Scholar 

  7. 7.

    Nishino, S., Ripley, B., Overeem, S., Lammers, G. J. & Mignot, E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40 (2000).

    CAS  PubMed  Google Scholar 

  8. 8.

    Peyron, C. et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6, 991–997 (2000). This paper highlights the discovery of a lack of orexin in the brains of people with narcolepsy.

    CAS  PubMed  Google Scholar 

  9. 9.

    Thannickal, T. C. et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron 27, 469–474 (2000). This study also shows a lack of orexin in the brains of people with narcolepsy.

    CAS  PubMed  Google Scholar 

  10. 10.

    Crocker, A. et al. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology 65, 1184–1188 (2005). This paper demonstrates that orexin neurons co-express dynorphin and NARP and that narcolepsy is due to a loss of the orexin neurons, not just a reduction in orexin expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    American Academy of Sleep Medicine. International Classification of Sleep Disorders 3rd edn (AASM, 2014).

  12. 12.

    Thannickal, T. C., Nienhuis, R. & Siegel, J. M. Localized loss of hypocretin (orexin) cells in narcolepsy without cataplexy. Sleep 32, 993–998 (2009). This paper shows that NT2 may be caused by partial loss of the orexin neurons.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Tabuchi, S. et al. Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function. J. Neurosci. 34, 6495–6509 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kanbayashi, T. et al. The pathophysiologic basis of secondary narcolepsy and hypersomnia. Curr. Neurol. Neurosci. Rep. 11, 235–241 (2011).

    CAS  PubMed  Google Scholar 

  15. 15.

    Hor, H. et al. A missense mutation in myelin oligodendrocyte glycoprotein as a cause of familial narcolepsy with cataplexy. Am. J. Hum. Genet. 89, 474–479 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Andlauer, O. et al. Predictors of hypocretin (orexin) deficiency in narcolepsy without cataplexy. Sleep 35, 1247–1255 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Luca, G. et al. Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. J. Sleep Res. 22, 482–495 (2013).

    PubMed  Google Scholar 

  18. 18.

    Lopez, R. et al. Temporal changes in the cerebrospinal fluid level of hypocretin-1 and histamine in narcolepsy. Sleep 40, zsw010 (2017).

    PubMed Central  Google Scholar 

  19. 19.

    Pizza, F. et al. Primary progressive narcolepsy type 1: the other side of the coin. Neurology 83, 2189–2190 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Peyron, C. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015 (1998). This study thoroughly describes the projections of the orexin neurons.

    CAS  PubMed  Google Scholar 

  21. 21.

    Yoshida, K., McCormack, S., Espana, R. A., Crocker, A. & Scammell, T. E. Afferents to the orexin neurons of the rat brain. J. Comp. Neurol. 494, 845–861 (2006).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Gonzalez, J. A., Iordanidou, P., Strom, M., Adamantidis, A. & Burdakov, D. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat. Commun. 7, 11395 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    van den Pol, A. N. Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J. Neurosci. 19, 3171–3182 (1999).

    PubMed  Google Scholar 

  24. 24.

    Sakurai, T. et al. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 46, 297–308 (2005).

    CAS  PubMed  Google Scholar 

  25. 25.

    Mieda, M. et al. Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J. Neurosci. 31, 6518–6526 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kantor, S. et al. Orexin neurons are necessary for the circadian control of REM sleep. Sleep 32, 1127–1134 (2009).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lee, M. G., Hassani, O. K. & Jones, B. E. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J. Neurosci. 25, 6716–6720 (2005). This paper describes the firing pattern of orexin neurons across different sleep–wake states.

    CAS  PubMed  Google Scholar 

  28. 28.

    Mileykovskiy, B. Y., Kiyashchenko, L. I. & Siegel, J. M. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46, 787–798 (2005). This study highlights increased activity in the orexin neurons during exploratory behaviour and wake.

    CAS  PubMed  Google Scholar 

  29. 29.

    Estabrooke, I. V. et al. Fos expression in orexin neurons varies with behavioral state. J. Neurosci. 21, 1656–1662 (2001).

    CAS  PubMed  Google Scholar 

  30. 30.

    España, R. A., Valentino, R. J. & Berridge, C. W. Fos immunoreactivity in hypocretin-synthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration. Neuroscience 121, 201–217 (2003).

    PubMed  Google Scholar 

  31. 31.

    Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007). This study is the first demonstration that photostimulation of the orexin neurons promotes waking from sleep.

    CAS  PubMed  Google Scholar 

  32. 32.

    Carter, M. E. et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13, 1526–1533 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Tsunematsu, T. et al. Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav. Brain Res. 255, 64–74 (2013).

    CAS  PubMed  Google Scholar 

  34. 34.

    Sasaki, K. et al. Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLOS ONE 6, e20360 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mieda, M. et al. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc. Natl Acad. Sci. USA 101, 4649–4654 (2004).

    CAS  PubMed  Google Scholar 

  36. 36.

    Irukayama-Tomobe, Y. et al. Nonpeptide orexin type-2 receptor agonist ameliorates narcolepsy-cataplexy symptoms in mouse models. Proc. Natl Acad. Sci. USA 114, 5731–5736 (2017).

    CAS  PubMed  Google Scholar 

  37. 37.

    Suntsova, N. et al. The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus. J. Neurosci. 27, 1616–1630 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Saper, C. B., Scammell, T. E. & Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263 (2005).

    CAS  PubMed  Google Scholar 

  39. 39.

    Uschakov, A., Gong, H., McGinty, D. & Szymusiak, R. Efferent projections from the median preoptic nucleus to sleep- and arousal-regulatory nuclei in the rat brain. Neuroscience 150, 104–120 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Li, Y., Gao, X. B., Sakurai, T. & van den Pol, A. N. Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron — a potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36, 1169–1181 (2002).

    CAS  PubMed  Google Scholar 

  41. 41.

    Yamanaka, A., Tabuchi, S., Tsunematsu, T., Fukazawa, Y. & Tominaga, M. Orexin directly excites orexin neurons through orexin 2 receptor. J. Neurosci. 30, 12642–12652 (2010).

    CAS  PubMed  Google Scholar 

  42. 42.

    Vassalli, A., Li, S. & Tafti, M. Comment on “Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2”. Sci. Transl Med. 7, 314le2 (2015).

    PubMed  Google Scholar 

  43. 43.

    Schone, C., Apergis-Schoute, J., Sakurai, T., Adamantidis, A. & Burdakov, D. Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep. 7, 697–704 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Herring, W. J. et al. Orexin receptor antagonism for treatment of insomnia: a randomized clinical trial of suvorexant. Neurology 79, 2265–2274 (2012).

    CAS  PubMed  Google Scholar 

  45. 45.

    Svetnik, V. et al. Insight into reduction of wakefulness by suvorexant in patients with insomnia: analysis of wake bouts. Sleep 41, zsx178 (2018).

    Google Scholar 

  46. 46.

    Schone, C. & Burdakov, D. Glutamate and GABA as rapid effectors of hypothalamic “peptidergic” neurons. Front. Behav. Neurosci. 6, 81 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Kosse, C., Schone, C., Bracey, E. & Burdakov, D. Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice. Proc. Natl Acad. Sci. USA 114, 4525–4530 (2017).

    CAS  PubMed  Google Scholar 

  48. 48.

    Chang, M. C. et al. Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat. Neurosci. 13, 1090–1097 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Reti, I. M., Reddy, R., Worley, P. F. & Baraban, J. M. Selective expression of Narp, a secreted neuronal pentraxin, in orexin neurons. J. Neurochem. 82, 1561–1565 (2002).

    CAS  PubMed  Google Scholar 

  50. 50.

    Blouin, A. M. et al. Narp immunostaining of human hypocretin (orexin) neurons: loss in narcolepsy. Neurology 65, 1189–1192 (2005).

    CAS  PubMed  Google Scholar 

  51. 51.

    Chou, T. C. et al. Orexin (hypocretin) neurons contain dynorphin. J. Neurosci. 21, RC168 (2001).

    CAS  PubMed  Google Scholar 

  52. 52.

    Muschamp, J. W. et al. Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proc. Natl Acad. Sci. USA 111, E1648–E1655 (2014).

    CAS  PubMed  Google Scholar 

  53. 53.

    Ferrari, L. L. et al. Dynorphin inhibits basal forebrain cholinergic neurons by pre- and postsynaptic mechanisms. J. Physiol. 594, 1069–1085 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Ferrari, L. L. et al. Regulation of lateral hypothalamic orexin activity by local GABAergic neurons. J. Neurosci. 38, 1588–1599 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Baimel, C., Lau, B. K., Qiao, M. & Borgland, S. L. Projection-target-defined effects of orexin and dynorphin on VTA dopamine neurons. Cell Rep. 18, 1346–1355 (2017). This paper shows that the effects of orexin and dynorphin vary across VTA neurons that innervate different targets.

    CAS  PubMed  Google Scholar 

  56. 56.

    Narita, M. et al. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J. Neurosci. 26, 398–405 (2006).

    CAS  PubMed  Google Scholar 

  57. 57.

    Aston-Jones, G., Smith, R. J., Moorman, D. E. & Richardson, K. A. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 56 (Suppl. 1), 112–121 (2009).

    CAS  PubMed  Google Scholar 

  58. 58.

    Harris, G. C. & Aston-Jones, G. Arousal and reward: a dichotomy in orexin function. Trends Neurosci. 29, 571–577 (2006).

    CAS  PubMed  Google Scholar 

  59. 59.

    Smith, R. J., Tahsili-Fahadan, P. & Aston-Jones, G. Orexin/hypocretin is necessary for context-driven cocaine-seeking. Neuropharmacology 58, 179–184 (2010).

    CAS  PubMed  Google Scholar 

  60. 60.

    Beig, M. I., Dampney, B. W. & Carrive, P. Both Ox1r and Ox2r orexin receptors contribute to the cardiovascular and locomotor components of the novelty stress response in the rat. Neuropharmacology 89, 146–156 (2015).

    CAS  PubMed  Google Scholar 

  61. 61.

    Ciriello, J. & de Oliveira, C. V. Cardiac effects of hypocretin-1 in nucleus ambiguus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1611–R1620 (2003).

    CAS  PubMed  Google Scholar 

  62. 62.

    Ciriello, J., Li, Z. & de Oliveira, C. V. Cardioacceleratory responses to hypocretin-1 injections into rostral ventromedial medulla. Brain Res. 991, 84–95 (2003).

    CAS  PubMed  Google Scholar 

  63. 63.

    Shirasaka, T., Nakazato, M., Matsukura, S., Takasaki, M. & Kannan, H. Sympathetic and cardiovascular actions of orexins in conscious rats. Am. J. Physiol. 277, R1780–R1785 (1999).

    CAS  PubMed  Google Scholar 

  64. 64.

    Li, A., Hindmarch, C. C., Nattie, E. E. & Paton, J. F. Antagonism of orexin receptors significantly lowers blood pressure in spontaneously hypertensive rats. J. Physiol. 591, 4237–4248 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Mohammed, M., Ootsuka, Y., Yanagisawa, M. & Blessing, W. Reduced brown adipose tissue thermogenesis during environmental interactions in transgenic rats with ataxin-3-mediated ablation of hypothalamic orexin neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R978–R989 (2014).

    CAS  PubMed  Google Scholar 

  66. 66.

    Lubkin, M. & Stricker-Krongrad, A. Independent feeding and metabolic actions of orexins in mice. Biochem. Biophys. Res. Commun. 253, 241–245 (1998).

    CAS  PubMed  Google Scholar 

  67. 67.

    Hansen, M. H., Kornum, B. R. & Jennum, P. Sleep-wake stability in narcolepsy patients with normal, low and unmeasurable hypocretin levels. Sleep Med. 34, 1–6 (2017).

    PubMed  Google Scholar 

  68. 68.

    Littner, M. R. et al. Practice parameters for clinical use of the multiple sleep latency test and the maintenance of wakefulness test. Sleep 28, 113–121 (2005).

    PubMed  Google Scholar 

  69. 69.

    Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999). This paper provides the first evidence that loss of orexin signalling in mice produces sleepiness and cataplexy.

    CAS  PubMed  Google Scholar 

  70. 70.

    Hara, J. et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30, 345–354 (2001).

    CAS  PubMed  Google Scholar 

  71. 71.

    Mochizuki, T. et al. Behavioral state instability in orexin knock-out mice. J. Neurosci. 24, 6291–6300 (2004).

    CAS  PubMed  Google Scholar 

  72. 72.

    Mochizuki, T. et al. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc. Natl Acad. Sci. USA 108, 4471–4476 (2011).

    CAS  PubMed  Google Scholar 

  73. 73.

    Branch, A. F. et al. Progressive loss of the orexin neurons reveals dual effects on wakefulness. Sleep 39, 369–377 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Vassalli, A. & Franken, P. Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Proc. Natl Acad. Sci. USA 114, E5464–E5473 (2017).

    CAS  PubMed  Google Scholar 

  75. 75.

    Diniz Behn, C. G., Klerman, E. B., Mochizuki, T., Lin, S. C. & Scammell, T. E. Abnormal sleep/wake dynamics in orexin knockout mice. Sleep 33, 297–306 (2010).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    España, R. A., Baldo, B. A., Kelley, A. E. & Berridge, C. W. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience 106, 699–715 (2001).

    PubMed  Google Scholar 

  77. 77.

    Hasegawa, E., Yanagisawa, M., Sakurai, T. & Mieda, M. Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. J. Clin. Invest. 124, 604–616 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Carter, M. E. et al. Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc. Natl Acad. Sci. USA 109, E2635–E2644 (2012).

    CAS  PubMed  Google Scholar 

  79. 79.

    Roman, A., Meftah, S., Arthaud, S., Luppi, P. H. & Peyron, C. The inappropriate occurrence of rapid eye movement sleep in narcolepsy is not due to a defect in homeostatic regulation of rapid eye movement sleep. Sleep 41, zsy046 (2018).

    Google Scholar 

  80. 80.

    Andlauer, O. et al. Nocturnal rapid eye movement sleep latency for identifying patients with narcolepsy/hypocretin deficiency. JAMA Neurol. 70, 891–902 (2013).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Reiter, J., Katz, E., Scammell, T. E. & Maski, K. Usefulness of a nocturnal SOREMP for diagnosing narcolepsy with cataplexy in a pediatric population. Sleep 38, 859–865 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Tafti, M., Villemin, E., Carlander, B., Besset, A. & Billiard, M. Sleep onset rapid-eye-movement episodes in narcolepsy: REM sleep pressure or nonREM–REM sleep dysregulation? J. Sleep Res. 1, 245–250 (1992).

    CAS  PubMed  Google Scholar 

  83. 83.

    Dantz, B., Edgar, D. M. & Dement, W. C. Circadian rhythms in narcolepsy: studies on a 90 minute day. Electroencephalogr. Clin. Neurophysiol. 90, 24–35 (1994).

    CAS  PubMed  Google Scholar 

  84. 84.

    Chou, T. C. et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 23, 10691–10702 (2003).

    CAS  PubMed  Google Scholar 

  85. 85.

    Chen, K. S. et al. A hypothalamic switch for REM and non-REM sleep. Neuron 97, 1168–1176 (2018).

    CAS  PubMed  Google Scholar 

  86. 86.

    Oishi, Y. et al. Role of the medial prefrontal cortex in cataplexy. J. Neurosci. 33, 9743–9751 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    España, R. A., McCormack, S. L., Mochizuki, T. & Scammell, T. E. Running promotes wakefulness and increases cataplexy in orexin knockout mice. Sleep 30, 1417–1425 (2007).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Lu, J., Sherman, D., Devor, M. & Saper, C. B. A putative flip-flop switch for control of REM sleep. Nature 441, 589–594 (2006).

    CAS  PubMed  Google Scholar 

  89. 89.

    Kaur, S. et al. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG) increase REM sleep in hypocretin knockout mice. PLOS ONE 4, e6346 (2009).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Luppi, P. H. et al. Paradoxical (REM) sleep genesis: |the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J. Physiol. Paris 100, 271–283 (2006).

    CAS  PubMed  Google Scholar 

  91. 91.

    Sapin, E. et al. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLOS ONE 4, e4272 (2009).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Luppi, P. H. et al. Brainstem mechanisms of paradoxical (REM) sleep generation. Pflugers Arch. 463, 43–52 (2012).

    CAS  PubMed  Google Scholar 

  93. 93.

    Burgess, C. R., Oishi, Y., Mochizuki, T., Peever, J. H. & Scammell, T. E. Amygdala lesions reduce cataplexy in orexin knock-out mice. J. Neurosci. 33, 9734–9742 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Mahoney, C. E., Agostinelli, L. J., Brooks, J. N., Lowell, B. B. & Scammell, T. E. GABAergic neurons of the central amygdala promote cataplexy. J. Neurosci. 37, 3995–4006 (2017). This paper demonstrates that the central amygdala is necessary for emotion-triggered cataplexy.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Snow, M. B. et al. GABA cells in the central nucleus of the amygdala promote cataplexy. J. Neurosci. 37, 4007–4022 (2017).

    CAS  PubMed  Google Scholar 

  96. 96.

    Hasegawa, E. et al. Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity. Proc. Natl Acad. Sci. USA 114, E3526–E3535 (2017).

    CAS  PubMed  Google Scholar 

  97. 97.

    Broughton, R. et al. Excessive daytime sleepiness and the pathophysiology of narcolepsy-cataplexy: a laboratory perspective. Sleep 9, 205–215 (1986).

    CAS  PubMed  Google Scholar 

  98. 98.

    Schoch, S. F. et al. Dysregulation of sleep behavioral states in narcolepsy. Sleep 40, zsx170 (2017).

    Google Scholar 

  99. 99.

    Ponziani, V. et al. Growing up with type 1 narcolepsy: its anthropometric and endocrine features. J. Clin. Sleep Med. 12, 1649–1657 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Lammers, G. J. et al. Spontaneous food choice in narcolepsy. Sleep 19, 75–76 (1996).

    CAS  PubMed  Google Scholar 

  101. 101.

    Schuld, A., Hebebrand, J., Geller, F. & Pollmacher, T. Increased body-mass index in patients with narcolepsy. Lancet 355, 1274–1275 (2000).

    CAS  PubMed  Google Scholar 

  102. 102.

    Nishino, S. et al. Low cerebrospinal fluid hypocretin (orexin) and altered energy homeostasis in human narcolepsy. Ann. Neurol. 50, 381–388 (2001).

    CAS  PubMed  Google Scholar 

  103. 103.

    Poli, F. et al. High prevalence of precocious puberty and obesity in childhood narcolepsy with cataplexy. Sleep 36, 175–181 (2013).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Wang, Z. et al. Body weight and basal metabolic rate in childhood narcolepsy: a longitudinal study. Sleep Med. 25, 139–144 (2016).

    PubMed  Google Scholar 

  105. 105.

    van Holst, R. J. et al. Aberrant food choices after satiation in human orexin-deficient narcolepsy type 1. Sleep 39, 1951–1959 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Dimitrova, A. et al. Reward-seeking behavior in human narcolepsy. J. Clin. Sleep Med. 7, 293–300 (2011).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Zhang, S., Zeitzer, J. M., Sakurai, T., Nishino, S. & Mignot, E. Sleep/wake fragmentation disrupts metabolism in a mouse model of narcolepsy. J. Physiol. 581, 649–663 (2007). This paper demonstrates that resting metabolic rate is reduced in mice lacking orexin neurons.

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Fronczek, R. et al. Increased heart rate variability but normal resting metabolic rate in hypocretin/orexin-deficient human narcolepsy. J. Clin. Sleep Med. 4, 248–254 (2008).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Dahmen, N., Tonn, P., Messroghli, L., Ghezel-Ahmadi, D. & Engel, A. Basal metabolic rate in narcoleptic patients. Sleep 32, 962–964 (2009).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Chabas, D. et al. Eating disorder and metabolism in narcoleptic patients. Sleep 30, 1267–1273 (2007).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Donjacour, C. E. et al. Glucose and fat metabolism in narcolepsy and the effect of sodium oxybate: a hyperinsulinemic-euglycemic clamp study. Sleep 37, 795–801 (2014).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Maurovich-Horvat, E. et al. Hypothalamo-pituitary-adrenal axis, glucose metabolism and TNF-α in narcolepsy. J. Sleep Res. 23, 425–431 (2014).

    PubMed  Google Scholar 

  113. 113.

    Poli, F. et al. Body mass index-independent metabolic alterations in narcolepsy with cataplexy. Sleep 32, 1491–1497 (2009).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Hutcheson, D. M. et al. Orexin-1 receptor antagonist SB-334867 reduces the acquisition and expression of cocaine-conditioned reinforcement and the expression of amphetamine-conditioned reward. Behav. Pharmacol. 22, 173–181 (2011).

    CAS  PubMed  Google Scholar 

  115. 115.

    Sartor, G. C. & Aston-Jones, G. S. A septal-hypothalamic pathway drives orexin neurons, which is necessary for conditioned cocaine preference. J. Neurosci. 32, 4623–4631 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Plaza-Zabala, A., Flores, A., Maldonado, R. & Berrendero, F. Hypocretin/orexin signaling in the hypothalamic paraventricular nucleus is essential for the expression of nicotine withdrawal. Biol. Psychiatry 71, 214–223 (2012).

    CAS  PubMed  Google Scholar 

  117. 117.

    Plaza-Zabala, A., Martin-Garcia, E., de Lecea, L., Maldonado, R. & Berrendero, F. Hypocretins regulate the anxiogenic-like effects of nicotine and induce reinstatement of nicotine-seeking behavior. J. Neurosci. 30, 2300–2310 (2010).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Georgescu, D. et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J. Neurosci. 23, 3106–3111 (2003).

    CAS  PubMed  Google Scholar 

  119. 119.

    Sharf, R., Sarhan, M. & Dileone, R. J. Orexin mediates the expression of precipitated morphine withdrawal and concurrent activation of the nucleus accumbens shell. Biol. Psychiatry 64, 175–183 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Shoblock, J. R. et al. Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference, and reinstatement. Psychopharmacology 215, 191–203 (2011).

    CAS  PubMed  Google Scholar 

  121. 121.

    Sharf, R., Guarnieri, D. J., Taylor, J. R. & DiLeone, R. J. Orexin mediates morphine place preference, but not morphine-induced hyperactivity or sensitization. Brain Res. 1317, 24–32 (2010).

    CAS  PubMed  Google Scholar 

  122. 122.

    Riday, T. T. et al. Orexin-1 receptor antagonism does not reduce the rewarding potency of cocaine in Swiss-Webster mice. Brain Res. 1431, 53–61 (2012).

    CAS  PubMed  Google Scholar 

  123. 123.

    Voorhees, C. M. & Cunningham, C. L. Involvement of the orexin/hypocretin system in ethanol conditioned place preference. Psychopharmacology 214, 805–818 (2011).

    CAS  PubMed  Google Scholar 

  124. 124.

    Bayard, S., Langenier, M. C. & Dauvilliers, Y. Decision-making, reward-seeking behaviors and dopamine agonist therapy in restless legs syndrome. Sleep 36, 1501–1507 (2013).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Barateau, L. et al. Smoking, alcohol, drug use, abuse and dependence in narcolepsy and idiopathic hypersomnia: a case-control study. Sleep 39, 573–580 (2016).

    PubMed  PubMed Central  Google Scholar 

  126. 126.

    Cohen, A., Mandrekar, J., St Louis, E. K., Silber, M. H. & Kotagal, S. Comorbidities in a community sample of narcolepsy. Sleep Med. 43, 14–18 (2018).

    PubMed  Google Scholar 

  127. 127.

    Lee, M. J. et al. Comorbidity of narcolepsy and depressive disorders: a nationwide population-based study in Taiwan. Sleep Med. 39, 95–100 (2017).

    PubMed  Google Scholar 

  128. 128.

    Inocente, C. O. et al. Depressive feelings in children with narcolepsy. Sleep Med. 15, 309–314 (2014).

    PubMed  Google Scholar 

  129. 129.

    Lopez, R., Barateau, L., Evangelista, E. & Dauvilliers, Y. Depression and hypersomnia: a complex association. Sleep Med. Clin. 12, 395–405 (2017).

    PubMed  Google Scholar 

  130. 130.

    Chastain, E. M., Duncan, D. S., Rodgers, J. M. & Miller, S. D. The role of antigen presenting cells in multiple sclerosis. Biochim. Biophys. Acta 1812, 265–274 (2011).

    CAS  PubMed  Google Scholar 

  131. 131.

    Yong, V. W. & Antel, J. P. Major histocompatibility complex molecules on glial cells. Semin. Neurosci. 4, 231–240 (1992).

    Google Scholar 

  132. 132.

    Wuthrich, C., Batson, S. & Koralnik, I. J. Lack of major histocompatibility complex class I upregulation and restrictive infection by JC virus hamper detection of neurons by T lymphocytes in the central nervous system. J. Neuropathol. Exp. Neurol. 74, 791–803 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Clarkson, B. D. S., Patel, M. S., LaFrance-Corey, R. G. & Howe, C. L. Retrograde interferon-gamma signaling induces major histocompatibility class I expression in human-induced pluripotent stem cell-derived neurons. Ann. Clin. Transl Neurol. 5, 172–185 (2018).

    CAS  PubMed  Google Scholar 

  134. 134.

    Zhang, A. et al. Developmental expression and localization of MHC class I molecules in the human central nervous system. Exp. Brain Res. 233, 2733–2743 (2015).

    CAS  PubMed  Google Scholar 

  135. 135.

    Partinen, M. et al. Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLOS ONE 7, e33723 (2012). This paper describes the increased incidence of narcolepsy in children and adolescents after vaccination with Pandemrix.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Sarkanen, T. O., Alakuijala, A. P. E., Dauvilliers, Y. A. & Partinen, M. M. Incidence of narcolepsy after H1N1 influenza and vaccinations: systematic review and meta-analysis. Sleep Med. Rev. 38, 177–186 (2018).

    PubMed  Google Scholar 

  137. 137.

    Vaarala, O. et al. Antigenic differences between AS03 adjuvanted influenza A (H1N1) pandemic vaccines: implications for Pandemrix-associated narcolepsy risk. PLOS ONE 9, e114361 (2014).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Han, F. et al. Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Ann. Neurol. 70, 410–417 (2011).

    PubMed  Google Scholar 

  139. 139.

    Aran, A. et al. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. Sleep 32, 979–983 (2009).

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Mahlios, J., De la Herran-Arita, A. K. & Mignot, E. The autoimmune basis of narcolepsy. Curr. Opin. Neurobiol. 23, 767–773 (2013).

    CAS  PubMed  Google Scholar 

  141. 141.

    Honda, Y. et al. HLA-DR2 and Dw2 in narcolepsy and in other disorders of excessive somnolence without cataplexy. Sleep 9, 133–142 (1986).

    CAS  PubMed  Google Scholar 

  142. 142.

    Mignot, E., Hayduk, R., Black, J., Grumet, F. C. & Guilleminault, C. HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients. Sleep 20, 1012–1020 (1997).

    CAS  PubMed  Google Scholar 

  143. 143.

    Tafti, M. et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep 37, 19–25 (2014). This study, drawing upon a large number of subjects, confirms that presence of the DQB1*06:02 allele increases the risk of narcolepsy about 200-fold.

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Siebold, C. et al. Crystal structure of HLA-DQ0602 that protects against type 1 diabetes and confers strong susceptibility to narcolepsy. Proc. Natl Acad. Sci. USA 101, 1999–2004 (2004). This study shows that fragments of the orexin peptides fit well within the binding pocket of DQB1*06:02.

    CAS  PubMed  Google Scholar 

  145. 145.

    Pelin, Z., Guilleminault, C., Risch, N., Grumet, F. C. & Mignot, E. HLA-DQB1*0602 homozygosity increases relative risk for narcolepsy but not disease severity in two ethnic groups. US Modafinil in Narcolepsy Multicenter Study Group. Tissue Antigens 51, 96–100 (1998).

    CAS  PubMed  Google Scholar 

  146. 146.

    van der Heide, A., Hegeman-Kleinn, I. M., Peeters, E., Lammers, G. J. & Fronczek, R. Immunohistochemical screening for antibodies in recent onset type 1 narcolepsy and after H1N1 vaccination. J. Neuroimmunol. 283, 58–62 (2015).

    PubMed  Google Scholar 

  147. 147.

    Mignot, E. et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am. J. Hum. Genet. 68, 686–699 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Miyagawa, T. et al. New susceptibility variants to narcolepsy identified in HLA class II region. Hum. Mol. Genet. 24, 891–898 (2015).

    CAS  PubMed  Google Scholar 

  149. 149.

    Ollila, H. M. et al. HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy. Am. J. Hum. Genet. 96, 136–146 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Tafti, M. et al. Narcolepsy-associated HLA class I alleles implicate cell-mediated cytotoxicity. Sleep 39, 581–587 (2016).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Hor, H. et al. Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat. Genet. 42, 786–789 (2010).

    CAS  PubMed  Google Scholar 

  152. 152.

    Hallmayer, J. et al. Narcolepsy is strongly associated with the T cell receptor alpha locus. Nat. Genet. 41, 708–711 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Han, F. et al. Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLOS Genet. 9, e1003880 (2013).

    PubMed  PubMed Central  Google Scholar 

  154. 154.

    Faraco, J. et al. ImmunoChip study implicates antigen presentation to T cells in narcolepsy. PLOS Genet. 9, e1003270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Luo, G. et al. Autoimmunity to hypocretin and molecular mimicry to flu antigens in Type 1 narcolepsy. Preprint at (2018).

  156. 156.

    Croft, M., So, T., Duan, W. & Soroosh, P. The significance of OX40 and OX40L to T cell biology and immune disease. Immunol. Rev. 229, 173–191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Buckner, J. H. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat. Rev. Immunol. 10, 849–859 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Dalal, J. et al. Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation. Genes Dev. 27, 565–578 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Mickelsen, L. E. et al. Neurochemical heterogeneity among lateral hypothalamic hypocretin/orexin and melanin-concentrating hormone neurons identified through single-cell gene expression analysis. eNeuro 4, ENEURO.0013-17.2017 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. 160.

    Azzam, S. et al. Proteomic profiling of the hypothalamus in two mouse models of narcolepsy. Proteomics 17, 1600478 (2017).

    Google Scholar 

  161. 161.

    Yelin-Bekerman, L. et al. Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a. eLife 4, e08638 (2015).

    PubMed  PubMed Central  Google Scholar 

  162. 162.

    Cvetkovic-Lopes, V. et al. Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients. J. Clin. Invest. 120, 713–719 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Baumann, C. R., Clark, E. L., Pedersen, N. P., Hecht, J. L. & Scammell, T. E. Do enteric neurons make hypocretin? Regul. Pept. 147, 1–3 (2008).

    CAS  PubMed  Google Scholar 

  164. 164.

    Ahmed, S. S. et al. Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci. Transl Med. 7, 294ra105 (2015).

    PubMed  Google Scholar 

  165. 165.

    Bernard-Valnet, R. et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc. Natl Acad. Sci. USA 113, 10956–10961 (2016).

    CAS  PubMed  Google Scholar 

  166. 166.

    Latorre, D. et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature 562, 63–68 (2018). This paper identifies a rare T cell population that targets fragments of prepro-orexin.

    CAS  PubMed  Google Scholar 

  167. 167.

    Kornum, B. R. et al. Absence of autoreactive CD4+ T cells targeting HLA-DQA1*01:02/DQB1*06:02 restricted hypocretin/orexin epitopes in narcolepsy type 1 when detected by EliSpot. J. Neuroimmunol. 309, 7–11 (2017).

    CAS  PubMed  Google Scholar 

  168. 168.

    Ramberger, M. et al. CD4+ T-cell reactivity to orexin/hypocretin in patients with narcolepsy type 1. Sleep 40, zsw070 (2017).

    Google Scholar 

  169. 169.

    Lecendreux, M. et al. Narcolepsy type 1 is associated with a systemic increase and activation of regulatory T cells and with a systemic activation of global T cells. PLOS ONE 12, e0169836 (2017).

    PubMed  PubMed Central  Google Scholar 

  170. 170.

    Tanaka, T., Honda, Y., Inoue, Y. & Honda, M. Detection of autoantibodies against hypocretin, hcrtr1, and hcrtr2 in narcolepsy: anti-hcrt system antibody in narcolepsy. Sleep 29, 633–638 (2006).

    PubMed  Google Scholar 

  171. 171.

    Luo, G. et al. Absence of anti-hypocretin receptor 2 autoantibodies in post Pandemrix narcolepsy cases. PLOS ONE 12, e0187305 (2017).

    PubMed  PubMed Central  Google Scholar 

  172. 172.

    Deloumeau, A. et al. Increased immune complexes of hypocretin autoantibodies in narcolepsy. PLOS ONE 5, e13320 (2010).

    PubMed  PubMed Central  Google Scholar 

  173. 173.

    Katzav, A. et al. Passive transfer of narcolepsy: anti-TRIB2 autoantibody positive patient IgG causes hypothalamic orexin neuron loss and sleep attacks in mice. J. Autoimmun. 45, 24–30 (2013).

    CAS  PubMed  Google Scholar 

  174. 174.

    Tanaka, S. et al. Anti-Tribbles pseudokinase 2 (TRIB2)-immunization modulates hypocretin/orexin neuronal functions. Sleep 40, zsw036 (2017).

    Google Scholar 

  175. 175.

    Bergman, P. et al. Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc. Natl Acad. Sci. USA 111, E3735–E3744 (2014).

    CAS  PubMed  Google Scholar 

  176. 176.

    Mignot, E. et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch. Neurol. 59, 1553–1562 (2002).

    PubMed  Google Scholar 

  177. 177.

    Sasai, T., Inoue, Y., Komada, Y., Sugiura, T. & Matsushima, E. Comparison of clinical characteristics among narcolepsy with and without cataplexy and idiopathic hypersomnia without long sleep time, focusing on HLA-DRB1*1501/DQB1*0602 finding. Sleep Med. 10, 961–966 (2009).

    PubMed  Google Scholar 

  178. 178.

    Nakamura, M., Kanbayashi, T., Sugiura, T. & Inoue, Y. Relationship between clinical characteristics of narcolepsy and CSF orexin-A levels. J. Sleep Res. 20, 45–49 (2011).

    PubMed  Google Scholar 

  179. 179.

    Yin, J. et al. Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors. Nat. Struct. Mol. Biol. 23, 293–299 (2016).

    CAS  PubMed  Google Scholar 

  180. 180.

    US National Library of Medicine. (2015).

  181. 181.

    US National Library of Medicine. (2018).

  182. 182.

    US National Library of Medicine. (2018).

  183. 183.

    Okun, M. L., Lin, L., Pelin, Z., Hong, S. & Mignot, E. Clinical aspects of narcolepsy–cataplexy across ethnic groups. Sleep 25, 27–35 (2002).

    PubMed  Google Scholar 

  184. 184.

    Pizza, F. et al. Clinical and polysomnographic course of childhood narcolepsy with cataplexy. Brain 136, 3787–3795 (2013). This paper provides a detailed description of status cataplecticus and obesity in children with narcolepsy.

    PubMed  PubMed Central  Google Scholar 

  185. 185.

    Plazzi, G. et al. Complex movement disorders at disease onset in childhood narcolepsy with cataplexy. Brain 134, 3480–3492 (2011).

    Google Scholar 

  186. 186.

    Willie, J. T. et al. Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38, 715–730 (2003).

    CAS  PubMed  Google Scholar 

  187. 187.

    Bastianini, S., Silvani, A., Berteotti, C., Lo Martire, V. & Zoccoli, G. High-amplitude theta wave bursts during REM sleep and cataplexy in hypocretin-deficient narcoleptic mice. J. Sleep Res. 21, 185–188 (2012).

    PubMed  Google Scholar 

  188. 188.

    Hondo, M. et al. Histamine-1 receptor is not required as a downstream effector of orexin-2 receptor in maintenance of basal sleep/wake states. Acta Physiol. 198, 287–294 (2010).

    CAS  Google Scholar 

  189. 189.

    Chemelli, R., Sinton, C. & Yanagisawa, M. Polysomnographic characterization of orexin-2 receptor knockout mice. Sleep 23, A296–A297 (2000).

    Google Scholar 

  190. 190.

    Hara, J., Yanagisawa, M. & Sakurai, T. Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions. Neurosci. Lett. 380, 239–242 (2005).

    CAS  PubMed  Google Scholar 

  191. 191.

    Lo Martire, V., Silvani, A., Bastianini, S., Berteotti, C. & Zoccoli, G. Effects of ambient temperature on sleep and cardiovascular regulation in mice: the role of hypocretin/orexin neurons. PLOS ONE 7, e47032 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192.

    Kaitin, K. I., Kilduff, T. S. & Dement, W. C. Sleep fragmentation in canine narcolepsy. Sleep 9, 116–119 (1986).

    CAS  PubMed  Google Scholar 

  193. 193.

    Kaitin, K. I., Kilduff, T. S. & Dement, W. C. Evidence for excessive sleepiness in canine narcoleptics. Electroencephalogr. Clin. Neurophysiol. 64, 447–454 (1986).

    CAS  PubMed  Google Scholar 

  194. 194.

    Mitler, M. M. & Dement, W. C. Sleep studies on canine narcolepsy: pattern and cycle comparisons between affected and normal dogs. Electroencephalogr. Clin. Neurophysiol. 43, 691–699 (1977).

    CAS  PubMed  Google Scholar 

  195. 195.

    Lucas, E. A., Foutz, A. S., Dement, W. C. & Mitler, M. M. Sleep cycle organization in narcoleptic and normal dogs. Physiol. Behav. 23, 737–743 (1979).

    CAS  PubMed  Google Scholar 

  196. 196.

    Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999).

    CAS  PubMed  Google Scholar 

  197. 197.

    Ripley, B., Fujiki, N., Okura, M., Mignot, E. & Nishino, S. Hypocretin levels in sporadic and familial cases of canine narcolepsy. Neurobiol. Dis. 8, 525–534 (2001).

    CAS  PubMed  Google Scholar 

  198. 198.

    Scammell, T. E. Narcolepsy. N. Engl. J. Med. 373, 2654–2662 (2015).

    CAS  PubMed  Google Scholar 

  199. 199.

    Dauvilliers, Y. & Barateau, L. Narcolepsy and other central hypersomnias. Continuum 23, 989–1004 (2017).

    PubMed  Google Scholar 

  200. 200.

    Kalogiannis, M. et al. Cholinergic modulation of narcoleptic attacks in double orexin receptor knockout mice. PLOS ONE 6, e18697 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. 201.

    Kisanuki, Y. et al. Behavioral and polysomnographic characterization of orexin-1 receptor and orexin-2 receptor double knockout mice. Sleep 24, A22 (2001).

    Google Scholar 

  202. 202.

    Abbas, M. G. et al. Comprehensive behavioral analysis of male Ox1r –/– mice showed implication of orexin receptor-1 in mood, anxiety, and social behavior. Front. Behav. Neurosci. 9, 324 (2015).

    PubMed  PubMed Central  Google Scholar 

  203. 203.

    Hungs, M. et al. Identification and functional analysis of mutations in the hypocretin (orexin) genes of narcoleptic canines. Genome Res. 11, 531–539 (2001).

    CAS  PubMed  Google Scholar 

  204. 204.

    Valko, P. O. et al. Increase of histaminergic tuberomammillary neurons in narcolepsy. Ann. Neurol. 74, 794–804 (2013). This paper describes a large increase in histaminergic neurons in the brains of people and mice with narcolepsy.

    CAS  PubMed  Google Scholar 

  205. 205.

    John, J. et al. Greatly increased numbers of histamine cells in human narcolepsy with cataplexy. Ann. Neurol. 74, 786–793 (2013). This study demonstrates an increase in histaminergic neurons in narcolepsy.

    CAS  PubMed  Google Scholar 

  206. 206.

    John, J., Wu, M. F., Boehmer, L. N. & Siegel, J. M. Cataplexy-active neurons in the hypothalamus: implications for the role of histamine in sleep and waking behavior. Neuron 42, 619–634 (2004).

    CAS  PubMed  Google Scholar 

  207. 207.

    Buskova, J., Vaneckova, M., Sonka, K., Seidl, Z. & Nevsimalova, S. Reduced hypothalamic gray matter in narcolepsy with cataplexy. Neuro Endocrinol. Lett. 27, 769–772 (2006).

    CAS  PubMed  Google Scholar 

  208. 208.

    Kaufmann, C., Schuld, A., Pollmacher, T. & Auer, D. P. Reduced cortical gray matter in narcolepsy: preliminary findings with voxel-based morphometry. Neurology 58, 1852–1855 (2002).

    PubMed  Google Scholar 

  209. 209.

    Joo, E. Y., Tae, W. S., Kim, S. T. & Hong, S. B. Gray matter concentration abnormality in brains of narcolepsy patients. Kor. J. Radiol. 10, 552–558 (2009).

    Google Scholar 

  210. 210.

    Hong, S. B. Neuroimaging of narcolepsy and Kleine–Levin syndrome. Sleep Med. Clin. 12, 359–368 (2017).

    PubMed  Google Scholar 

Download references


The authors acknowledge support from the US National Institutes of Health grants P01 HL095491, R21 NS099787 and R01 NS106032.

Reviewer information

Nature Reviews Neuroscience thanks B. Kornum, T. Sakurai and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information




T.E.S. and C.E.M. made substantial contributions to the discussion of content. All authors wrote the article and reviewed or edited the article before submission.

Corresponding author

Correspondence to Thomas E. Scammell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Hypnopompic and hypnagogic hallucinations

Vivid, sometimes frightening, dream-like hallucinations that occur when falling asleep (hypnopompic) or immediately after waking (hypnagogic).

Sleep paralysis

An inability to move when falling asleep or immediately after waking.


Muscle weakness or full paralysis triggered by strong, generally positive, emotions.

REM sleep behaviour disorder

A disorder characterized by impaired motor inhibition during rapid eye movement sleep, resulting in enactment of dreams.


An abnormally high total amount of sleep over 24 hours.

Status cataplecticus

A prolonged period of moderate to severe weakness with low muscle tone, usually without emotional triggers.

Major histocompatibility complex

(MHC). A set of immune molecules that bind pathogen-derived antigens and display them on the surface of antigen-presenting cells to promote acquired immune responses.

Human leukocyte antigen (HLA) allele

An allele encoding a human major histocompatibility complex molecule.

Molecular mimicry

A mechanism of autoimmunity in which a foreign antigen is structurally similar to ‘self’-peptides, such that immune cells targeting a pathogen accidentally target healthy tissue.

Linkage disequilibrium

When the observed frequency of two alleles at two loci occurring together is more frequent than would occur by chance.

Myenteric plexus

The network of sensory and motor neurons that control gut secretions and motility.

Regulatory T cells

(Treg cells). T cells that maintain tolerance to self-antigens by downregulating the activity of effector T cells using anti-inflammatory cytokines and cell-to-cell inhibition.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahoney, C.E., Cogswell, A., Koralnik, I.J. et al. The neurobiological basis of narcolepsy. Nat Rev Neurosci 20, 83–93 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing