Review Article | Published:

The neurobiological basis of narcolepsy

Nature Reviews Neuroscience (2018) | Download Citation


Narcolepsy is the most common neurological cause of chronic sleepiness. The discovery about 20 years ago that narcolepsy is caused by selective loss of the neurons producing orexins (also known as hypocretins) sparked great advances in the field. Here, we review the current understanding of how orexin neurons regulate sleep–wake behaviour and the consequences of the loss of orexin neurons. We also summarize the developing evidence that narcolepsy is an autoimmune disorder that may be caused by a T cell-mediated attack on the orexin neurons and explain how these new perspectives can inform better therapeutic approaches.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Silber, M. H., Krahn, L. E., Olson, E. J. & Pankratz, V. S. The epidemiology of narcolepsy in Olmsted County, Minnesota: a population-based study. Sleep 25, 197–202 (2002).

  2. 2.

    Shin, Y. K. et al. Prevalence of narcolepsy-cataplexy in Korean adolescents. Acta Neurol. Scand. 117, 273–278 (2008).

  3. 3.

    Longstreth, W. T. Jr. et al. Prevalence of narcolepsy in King County, WA, USA. Sleep Med. 10, 422–426 (2009).

  4. 4.

    Knudsen, S., Gammeltoft, S. & Jennum, P. J. Rapid eye movement sleep behaviour disorder in patients with narcolepsy is associated with hypocretin-1 deficiency. Brain 133, 568–579 (2010).

  5. 5.

    de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA 95, 322–327 (1998). This paper is one of the first descriptions of the orexin neuropeptides (naming them hypocretins).

  6. 6.

    Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998). This article is one of the first to describe the orexin neuropeptides.

  7. 7.

    Nishino, S., Ripley, B., Overeem, S., Lammers, G. J. & Mignot, E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40 (2000).

  8. 8.

    Peyron, C. et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6, 991–997 (2000). This paper highlights the discovery of a lack of orexin in the brains of people with narcolepsy.

  9. 9.

    Thannickal, T. C. et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron 27, 469–474 (2000). This study also shows a lack of orexin in the brains of people with narcolepsy.

  10. 10.

    Crocker, A. et al. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology 65, 1184–1188 (2005). This paper demonstrates that orexin neurons co-express dynorphin and NARP and that narcolepsy is due to a loss of the orexin neurons, not just a reduction in orexin expression.

  11. 11.

    American Academy of Sleep Medicine. International Classification of Sleep Disorders 3rd edn (AASM, 2014).

  12. 12.

    Thannickal, T. C., Nienhuis, R. & Siegel, J. M. Localized loss of hypocretin (orexin) cells in narcolepsy without cataplexy. Sleep 32, 993–998 (2009). This paper shows that NT2 may be caused by partial loss of the orexin neurons.

  13. 13.

    Tabuchi, S. et al. Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function. J. Neurosci. 34, 6495–6509 (2014).

  14. 14.

    Kanbayashi, T. et al. The pathophysiologic basis of secondary narcolepsy and hypersomnia. Curr. Neurol. Neurosci. Rep. 11, 235–241 (2011).

  15. 15.

    Hor, H. et al. A missense mutation in myelin oligodendrocyte glycoprotein as a cause of familial narcolepsy with cataplexy. Am. J. Hum. Genet. 89, 474–479 (2011).

  16. 16.

    Andlauer, O. et al. Predictors of hypocretin (orexin) deficiency in narcolepsy without cataplexy. Sleep 35, 1247–1255 (2012).

  17. 17.

    Luca, G. et al. Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. J. Sleep Res. 22, 482–495 (2013).

  18. 18.

    Lopez, R. et al. Temporal changes in the cerebrospinal fluid level of hypocretin-1 and histamine in narcolepsy. Sleep 40, zsw010 (2017).

  19. 19.

    Pizza, F. et al. Primary progressive narcolepsy type 1: the other side of the coin. Neurology 83, 2189–2190 (2014).

  20. 20.

    Peyron, C. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015 (1998). This study thoroughly describes the projections of the orexin neurons.

  21. 21.

    Yoshida, K., McCormack, S., Espana, R. A., Crocker, A. & Scammell, T. E. Afferents to the orexin neurons of the rat brain. J. Comp. Neurol. 494, 845–861 (2006).

  22. 22.

    Gonzalez, J. A., Iordanidou, P., Strom, M., Adamantidis, A. & Burdakov, D. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat. Commun. 7, 11395 (2016).

  23. 23.

    van den Pol, A. N. Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J. Neurosci. 19, 3171–3182 (1999).

  24. 24.

    Sakurai, T. et al. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 46, 297–308 (2005).

  25. 25.

    Mieda, M. et al. Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J. Neurosci. 31, 6518–6526 (2011).

  26. 26.

    Kantor, S. et al. Orexin neurons are necessary for the circadian control of REM sleep. Sleep 32, 1127–1134 (2009).

  27. 27.

    Lee, M. G., Hassani, O. K. & Jones, B. E. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J. Neurosci. 25, 6716–6720 (2005). This paper describes the firing pattern of orexin neurons across different sleep–wake states.

  28. 28.

    Mileykovskiy, B. Y., Kiyashchenko, L. I. & Siegel, J. M. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46, 787–798 (2005). This study highlights increased activity in the orexin neurons during exploratory behaviour and wake.

  29. 29.

    Estabrooke, I. V. et al. Fos expression in orexin neurons varies with behavioral state. J. Neurosci. 21, 1656–1662 (2001).

  30. 30.

    España, R. A., Valentino, R. J. & Berridge, C. W. Fos immunoreactivity in hypocretin-synthesizing and hypocretin-1 receptor-expressing neurons: effects of diurnal and nocturnal spontaneous waking, stress and hypocretin-1 administration. Neuroscience 121, 201–217 (2003).

  31. 31.

    Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007). This study is the first demonstration that photostimulation of the orexin neurons promotes waking from sleep.

  32. 32.

    Carter, M. E. et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13, 1526–1533 (2010).

  33. 33.

    Tsunematsu, T. et al. Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav. Brain Res. 255, 64–74 (2013).

  34. 34.

    Sasaki, K. et al. Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLOS ONE 6, e20360 (2011).

  35. 35.

    Mieda, M. et al. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc. Natl Acad. Sci. USA 101, 4649–4654 (2004).

  36. 36.

    Irukayama-Tomobe, Y. et al. Nonpeptide orexin type-2 receptor agonist ameliorates narcolepsy-cataplexy symptoms in mouse models. Proc. Natl Acad. Sci. USA 114, 5731–5736 (2017).

  37. 37.

    Suntsova, N. et al. The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus. J. Neurosci. 27, 1616–1630 (2007).

  38. 38.

    Saper, C. B., Scammell, T. E. & Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263 (2005).

  39. 39.

    Uschakov, A., Gong, H., McGinty, D. & Szymusiak, R. Efferent projections from the median preoptic nucleus to sleep- and arousal-regulatory nuclei in the rat brain. Neuroscience 150, 104–120 (2007).

  40. 40.

    Li, Y., Gao, X. B., Sakurai, T. & van den Pol, A. N. Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron — a potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36, 1169–1181 (2002).

  41. 41.

    Yamanaka, A., Tabuchi, S., Tsunematsu, T., Fukazawa, Y. & Tominaga, M. Orexin directly excites orexin neurons through orexin 2 receptor. J. Neurosci. 30, 12642–12652 (2010).

  42. 42.

    Vassalli, A., Li, S. & Tafti, M. Comment on “Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2”. Sci. Transl Med. 7, 314le2 (2015).

  43. 43.

    Schone, C., Apergis-Schoute, J., Sakurai, T., Adamantidis, A. & Burdakov, D. Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep. 7, 697–704 (2014).

  44. 44.

    Herring, W. J. et al. Orexin receptor antagonism for treatment of insomnia: a randomized clinical trial of suvorexant. Neurology 79, 2265–2274 (2012).

  45. 45.

    Svetnik, V. et al. Insight into reduction of wakefulness by suvorexant in patients with insomnia: analysis of wake bouts. Sleep 41, zsx178 (2018).

  46. 46.

    Schone, C. & Burdakov, D. Glutamate and GABA as rapid effectors of hypothalamic “peptidergic” neurons. Front. Behav. Neurosci. 6, 81 (2012).

  47. 47.

    Kosse, C., Schone, C., Bracey, E. & Burdakov, D. Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice. Proc. Natl Acad. Sci. USA 114, 4525–4530 (2017).

  48. 48.

    Chang, M. C. et al. Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat. Neurosci. 13, 1090–1097 (2010).

  49. 49.

    Reti, I. M., Reddy, R., Worley, P. F. & Baraban, J. M. Selective expression of Narp, a secreted neuronal pentraxin, in orexin neurons. J. Neurochem. 82, 1561–1565 (2002).

  50. 50.

    Blouin, A. M. et al. Narp immunostaining of human hypocretin (orexin) neurons: loss in narcolepsy. Neurology 65, 1189–1192 (2005).

  51. 51.

    Chou, T. C. et al. Orexin (hypocretin) neurons contain dynorphin. J. Neurosci. 21, RC168 (2001).

  52. 52.

    Muschamp, J. W. et al. Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proc. Natl Acad. Sci. USA 111, E1648–E1655 (2014).

  53. 53.

    Ferrari, L. L. et al. Dynorphin inhibits basal forebrain cholinergic neurons by pre- and postsynaptic mechanisms. J. Physiol. 594, 1069–1085 (2016).

  54. 54.

    Ferrari, L. L. et al. Regulation of lateral hypothalamic orexin activity by local GABAergic neurons. J. Neurosci. 38, 1588–1599 (2018).

  55. 55.

    Baimel, C., Lau, B. K., Qiao, M. & Borgland, S. L. Projection-target-defined effects of orexin and dynorphin on VTA dopamine neurons. Cell Rep. 18, 1346–1355 (2017). This paper shows that the effects of orexin and dynorphin vary across VTA neurons that innervate different targets.

  56. 56.

    Narita, M. et al. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J. Neurosci. 26, 398–405 (2006).

  57. 57.

    Aston-Jones, G., Smith, R. J., Moorman, D. E. & Richardson, K. A. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 56 (Suppl. 1), 112–121 (2009).

  58. 58.

    Harris, G. C. & Aston-Jones, G. Arousal and reward: a dichotomy in orexin function. Trends Neurosci. 29, 571–577 (2006).

  59. 59.

    Smith, R. J., Tahsili-Fahadan, P. & Aston-Jones, G. Orexin/hypocretin is necessary for context-driven cocaine-seeking. Neuropharmacology 58, 179–184 (2010).

  60. 60.

    Beig, M. I., Dampney, B. W. & Carrive, P. Both Ox1r and Ox2r orexin receptors contribute to the cardiovascular and locomotor components of the novelty stress response in the rat. Neuropharmacology 89, 146–156 (2015).

  61. 61.

    Ciriello, J. & de Oliveira, C. V. Cardiac effects of hypocretin-1 in nucleus ambiguus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1611–R1620 (2003).

  62. 62.

    Ciriello, J., Li, Z. & de Oliveira, C. V. Cardioacceleratory responses to hypocretin-1 injections into rostral ventromedial medulla. Brain Res. 991, 84–95 (2003).

  63. 63.

    Shirasaka, T., Nakazato, M., Matsukura, S., Takasaki, M. & Kannan, H. Sympathetic and cardiovascular actions of orexins in conscious rats. Am. J. Physiol. 277, R1780–R1785 (1999).

  64. 64.

    Li, A., Hindmarch, C. C., Nattie, E. E. & Paton, J. F. Antagonism of orexin receptors significantly lowers blood pressure in spontaneously hypertensive rats. J. Physiol. 591, 4237–4248 (2013).

  65. 65.

    Mohammed, M., Ootsuka, Y., Yanagisawa, M. & Blessing, W. Reduced brown adipose tissue thermogenesis during environmental interactions in transgenic rats with ataxin-3-mediated ablation of hypothalamic orexin neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R978–R989 (2014).

  66. 66.

    Lubkin, M. & Stricker-Krongrad, A. Independent feeding and metabolic actions of orexins in mice. Biochem. Biophys. Res. Commun. 253, 241–245 (1998).

  67. 67.

    Hansen, M. H., Kornum, B. R. & Jennum, P. Sleep-wake stability in narcolepsy patients with normal, low and unmeasurable hypocretin levels. Sleep Med. 34, 1–6 (2017).

  68. 68.

    Littner, M. R. et al. Practice parameters for clinical use of the multiple sleep latency test and the maintenance of wakefulness test. Sleep 28, 113–121 (2005).

  69. 69.

    Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999). This paper provides the first evidence that loss of orexin signalling in mice produces sleepiness and cataplexy.

  70. 70.

    Hara, J. et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30, 345–354 (2001).

  71. 71.

    Mochizuki, T. et al. Behavioral state instability in orexin knock-out mice. J. Neurosci. 24, 6291–6300 (2004).

  72. 72.

    Mochizuki, T. et al. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc. Natl Acad. Sci. USA 108, 4471–4476 (2011).

  73. 73.

    Branch, A. F. et al. Progressive loss of the orexin neurons reveals dual effects on wakefulness. Sleep 39, 369–377 (2016).

  74. 74.

    Vassalli, A. & Franken, P. Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Proc. Natl Acad. Sci. USA 114, E5464–E5473 (2017).

  75. 75.

    Diniz Behn, C. G., Klerman, E. B., Mochizuki, T., Lin, S. C. & Scammell, T. E. Abnormal sleep/wake dynamics in orexin knockout mice. Sleep 33, 297–306 (2010).

  76. 76.

    España, R. A., Baldo, B. A., Kelley, A. E. & Berridge, C. W. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience 106, 699–715 (2001).

  77. 77.

    Hasegawa, E., Yanagisawa, M., Sakurai, T. & Mieda, M. Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. J. Clin. Invest. 124, 604–616 (2014).

  78. 78.

    Carter, M. E. et al. Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc. Natl Acad. Sci. USA 109, E2635–E2644 (2012).

  79. 79.

    Roman, A., Meftah, S., Arthaud, S., Luppi, P. H. & Peyron, C. The inappropriate occurrence of rapid eye movement sleep in narcolepsy is not due to a defect in homeostatic regulation of rapid eye movement sleep. Sleep 41, zsy046 (2018).

  80. 80.

    Andlauer, O. et al. Nocturnal rapid eye movement sleep latency for identifying patients with narcolepsy/hypocretin deficiency. JAMA Neurol. 70, 891–902 (2013).

  81. 81.

    Reiter, J., Katz, E., Scammell, T. E. & Maski, K. Usefulness of a nocturnal SOREMP for diagnosing narcolepsy with cataplexy in a pediatric population. Sleep 38, 859–865 (2015).

  82. 82.

    Tafti, M., Villemin, E., Carlander, B., Besset, A. & Billiard, M. Sleep onset rapid-eye-movement episodes in narcolepsy: REM sleep pressure or nonREM–REM sleep dysregulation? J. Sleep Res. 1, 245–250 (1992).

  83. 83.

    Dantz, B., Edgar, D. M. & Dement, W. C. Circadian rhythms in narcolepsy: studies on a 90 minute day. Electroencephalogr. Clin. Neurophysiol. 90, 24–35 (1994).

  84. 84.

    Chou, T. C. et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 23, 10691–10702 (2003).

  85. 85.

    Chen, K. S. et al. A hypothalamic switch for REM and non-REM sleep. Neuron 97, 1168–1176 (2018).

  86. 86.

    Oishi, Y. et al. Role of the medial prefrontal cortex in cataplexy. J. Neurosci. 33, 9743–9751 (2013).

  87. 87.

    España, R. A., McCormack, S. L., Mochizuki, T. & Scammell, T. E. Running promotes wakefulness and increases cataplexy in orexin knockout mice. Sleep 30, 1417–1425 (2007).

  88. 88.

    Lu, J., Sherman, D., Devor, M. & Saper, C. B. A putative flip-flop switch for control of REM sleep. Nature 441, 589–594 (2006).

  89. 89.

    Kaur, S. et al. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG) increase REM sleep in hypocretin knockout mice. PLOS ONE 4, e6346 (2009).

  90. 90.

    Luppi, P. H. et al. Paradoxical (REM) sleep genesis: |the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J. Physiol. Paris 100, 271–283 (2006).

  91. 91.

    Sapin, E. et al. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLOS ONE 4, e4272 (2009).

  92. 92.

    Luppi, P. H. et al. Brainstem mechanisms of paradoxical (REM) sleep generation. Pflugers Arch. 463, 43–52 (2012).

  93. 93.

    Burgess, C. R., Oishi, Y., Mochizuki, T., Peever, J. H. & Scammell, T. E. Amygdala lesions reduce cataplexy in orexin knock-out mice. J. Neurosci. 33, 9734–9742 (2013).

  94. 94.

    Mahoney, C. E., Agostinelli, L. J., Brooks, J. N., Lowell, B. B. & Scammell, T. E. GABAergic neurons of the central amygdala promote cataplexy. J. Neurosci. 37, 3995–4006 (2017). This paper demonstrates that the central amygdala is necessary for emotion-triggered cataplexy.

  95. 95.

    Snow, M. B. et al. GABA cells in the central nucleus of the amygdala promote cataplexy. J. Neurosci. 37, 4007–4022 (2017).

  96. 96.

    Hasegawa, E. et al. Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity. Proc. Natl Acad. Sci. USA 114, E3526–E3535 (2017).

  97. 97.

    Broughton, R. et al. Excessive daytime sleepiness and the pathophysiology of narcolepsy-cataplexy: a laboratory perspective. Sleep 9, 205–215 (1986).

  98. 98.

    Schoch, S. F. et al. Dysregulation of sleep behavioral states in narcolepsy. Sleep 40, zsx170 (2017).

  99. 99.

    Ponziani, V. et al. Growing up with type 1 narcolepsy: its anthropometric and endocrine features. J. Clin. Sleep Med. 12, 1649–1657 (2016).

  100. 100.

    Lammers, G. J. et al. Spontaneous food choice in narcolepsy. Sleep 19, 75–76 (1996).

  101. 101.

    Schuld, A., Hebebrand, J., Geller, F. & Pollmacher, T. Increased body-mass index in patients with narcolepsy. Lancet 355, 1274–1275 (2000).

  102. 102.

    Nishino, S. et al. Low cerebrospinal fluid hypocretin (orexin) and altered energy homeostasis in human narcolepsy. Ann. Neurol. 50, 381–388 (2001).

  103. 103.

    Poli, F. et al. High prevalence of precocious puberty and obesity in childhood narcolepsy with cataplexy. Sleep 36, 175–181 (2013).

  104. 104.

    Wang, Z. et al. Body weight and basal metabolic rate in childhood narcolepsy: a longitudinal study. Sleep Med. 25, 139–144 (2016).

  105. 105.

    van Holst, R. J. et al. Aberrant food choices after satiation in human orexin-deficient narcolepsy type 1. Sleep 39, 1951–1959 (2016).

  106. 106.

    Dimitrova, A. et al. Reward-seeking behavior in human narcolepsy. J. Clin. Sleep Med. 7, 293–300 (2011).

  107. 107.

    Zhang, S., Zeitzer, J. M., Sakurai, T., Nishino, S. & Mignot, E. Sleep/wake fragmentation disrupts metabolism in a mouse model of narcolepsy. J. Physiol. 581, 649–663 (2007). This paper demonstrates that resting metabolic rate is reduced in mice lacking orexin neurons.

  108. 108.

    Fronczek, R. et al. Increased heart rate variability but normal resting metabolic rate in hypocretin/orexin-deficient human narcolepsy. J. Clin. Sleep Med. 4, 248–254 (2008).

  109. 109.

    Dahmen, N., Tonn, P., Messroghli, L., Ghezel-Ahmadi, D. & Engel, A. Basal metabolic rate in narcoleptic patients. Sleep 32, 962–964 (2009).

  110. 110.

    Chabas, D. et al. Eating disorder and metabolism in narcoleptic patients. Sleep 30, 1267–1273 (2007).

  111. 111.

    Donjacour, C. E. et al. Glucose and fat metabolism in narcolepsy and the effect of sodium oxybate: a hyperinsulinemic-euglycemic clamp study. Sleep 37, 795–801 (2014).

  112. 112.

    Maurovich-Horvat, E. et al. Hypothalamo-pituitary-adrenal axis, glucose metabolism and TNF-α in narcolepsy. J. Sleep Res. 23, 425–431 (2014).

  113. 113.

    Poli, F. et al. Body mass index-independent metabolic alterations in narcolepsy with cataplexy. Sleep 32, 1491–1497 (2009).

  114. 114.

    Hutcheson, D. M. et al. Orexin-1 receptor antagonist SB-334867 reduces the acquisition and expression of cocaine-conditioned reinforcement and the expression of amphetamine-conditioned reward. Behav. Pharmacol. 22, 173–181 (2011).

  115. 115.

    Sartor, G. C. & Aston-Jones, G. S. A septal-hypothalamic pathway drives orexin neurons, which is necessary for conditioned cocaine preference. J. Neurosci. 32, 4623–4631 (2012).

  116. 116.

    Plaza-Zabala, A., Flores, A., Maldonado, R. & Berrendero, F. Hypocretin/orexin signaling in the hypothalamic paraventricular nucleus is essential for the expression of nicotine withdrawal. Biol. Psychiatry 71, 214–223 (2012).

  117. 117.

    Plaza-Zabala, A., Martin-Garcia, E., de Lecea, L., Maldonado, R. & Berrendero, F. Hypocretins regulate the anxiogenic-like effects of nicotine and induce reinstatement of nicotine-seeking behavior. J. Neurosci. 30, 2300–2310 (2010).

  118. 118.

    Georgescu, D. et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J. Neurosci. 23, 3106–3111 (2003).

  119. 119.

    Sharf, R., Sarhan, M. & Dileone, R. J. Orexin mediates the expression of precipitated morphine withdrawal and concurrent activation of the nucleus accumbens shell. Biol. Psychiatry 64, 175–183 (2008).

  120. 120.

    Shoblock, J. R. et al. Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference, and reinstatement. Psychopharmacology 215, 191–203 (2011).

  121. 121.

    Sharf, R., Guarnieri, D. J., Taylor, J. R. & DiLeone, R. J. Orexin mediates morphine place preference, but not morphine-induced hyperactivity or sensitization. Brain Res. 1317, 24–32 (2010).

  122. 122.

    Riday, T. T. et al. Orexin-1 receptor antagonism does not reduce the rewarding potency of cocaine in Swiss-Webster mice. Brain Res. 1431, 53–61 (2012).

  123. 123.

    Voorhees, C. M. & Cunningham, C. L. Involvement of the orexin/hypocretin system in ethanol conditioned place preference. Psychopharmacology 214, 805–818 (2011).

  124. 124.

    Bayard, S., Langenier, M. C. & Dauvilliers, Y. Decision-making, reward-seeking behaviors and dopamine agonist therapy in restless legs syndrome. Sleep 36, 1501–1507 (2013).

  125. 125.

    Barateau, L. et al. Smoking, alcohol, drug use, abuse and dependence in narcolepsy and idiopathic hypersomnia: a case-control study. Sleep 39, 573–580 (2016).

  126. 126.

    Cohen, A., Mandrekar, J., St Louis, E. K., Silber, M. H. & Kotagal, S. Comorbidities in a community sample of narcolepsy. Sleep Med. 43, 14–18 (2018).

  127. 127.

    Lee, M. J. et al. Comorbidity of narcolepsy and depressive disorders: a nationwide population-based study in Taiwan. Sleep Med. 39, 95–100 (2017).

  128. 128.

    Inocente, C. O. et al. Depressive feelings in children with narcolepsy. Sleep Med. 15, 309–314 (2014).

  129. 129.

    Lopez, R., Barateau, L., Evangelista, E. & Dauvilliers, Y. Depression and hypersomnia: a complex association. Sleep Med. Clin. 12, 395–405 (2017).

  130. 130.

    Chastain, E. M., Duncan, D. S., Rodgers, J. M. & Miller, S. D. The role of antigen presenting cells in multiple sclerosis. Biochim. Biophys. Acta 1812, 265–274 (2011).

  131. 131.

    Yong, V. W. & Antel, J. P. Major histocompatibility complex molecules on glial cells. Semin. Neurosci. 4, 231–240 (1992).

  132. 132.

    Wuthrich, C., Batson, S. & Koralnik, I. J. Lack of major histocompatibility complex class I upregulation and restrictive infection by JC virus hamper detection of neurons by T lymphocytes in the central nervous system. J. Neuropathol. Exp. Neurol. 74, 791–803 (2015).

  133. 133.

    Clarkson, B. D. S., Patel, M. S., LaFrance-Corey, R. G. & Howe, C. L. Retrograde interferon-gamma signaling induces major histocompatibility class I expression in human-induced pluripotent stem cell-derived neurons. Ann. Clin. Transl Neurol. 5, 172–185 (2018).

  134. 134.

    Zhang, A. et al. Developmental expression and localization of MHC class I molecules in the human central nervous system. Exp. Brain Res. 233, 2733–2743 (2015).

  135. 135.

    Partinen, M. et al. Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLOS ONE 7, e33723 (2012). This paper describes the increased incidence of narcolepsy in children and adolescents after vaccination with Pandemrix.

  136. 136.

    Sarkanen, T. O., Alakuijala, A. P. E., Dauvilliers, Y. A. & Partinen, M. M. Incidence of narcolepsy after H1N1 influenza and vaccinations: systematic review and meta-analysis. Sleep Med. Rev. 38, 177–186 (2018).

  137. 137.

    Vaarala, O. et al. Antigenic differences between AS03 adjuvanted influenza A (H1N1) pandemic vaccines: implications for Pandemrix-associated narcolepsy risk. PLOS ONE 9, e114361 (2014).

  138. 138.

    Han, F. et al. Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Ann. Neurol. 70, 410–417 (2011).

  139. 139.

    Aran, A. et al. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. Sleep 32, 979–983 (2009).

  140. 140.

    Mahlios, J., De la Herran-Arita, A. K. & Mignot, E. The autoimmune basis of narcolepsy. Curr. Opin. Neurobiol. 23, 767–773 (2013).

  141. 141.

    Honda, Y. et al. HLA-DR2 and Dw2 in narcolepsy and in other disorders of excessive somnolence without cataplexy. Sleep 9, 133–142 (1986).

  142. 142.

    Mignot, E., Hayduk, R., Black, J., Grumet, F. C. & Guilleminault, C. HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients. Sleep 20, 1012–1020 (1997).

  143. 143.

    Tafti, M. et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep 37, 19–25 (2014). This study, drawing upon a large number of subjects, confirms that presence of the DQB1*06:02 allele increases the risk of narcolepsy about 200-fold.

  144. 144.

    Siebold, C. et al. Crystal structure of HLA-DQ0602 that protects against type 1 diabetes and confers strong susceptibility to narcolepsy. Proc. Natl Acad. Sci. USA 101, 1999–2004 (2004). This study shows that fragments of the orexin peptides fit well within the binding pocket of DQB1*06:02.

  145. 145.

    Pelin, Z., Guilleminault, C., Risch, N., Grumet, F. C. & Mignot, E. HLA-DQB1*0602 homozygosity increases relative risk for narcolepsy but not disease severity in two ethnic groups. US Modafinil in Narcolepsy Multicenter Study Group. Tissue Antigens 51, 96–100 (1998).

  146. 146.

    van der Heide, A., Hegeman-Kleinn, I. M., Peeters, E., Lammers, G. J. & Fronczek, R. Immunohistochemical screening for antibodies in recent onset type 1 narcolepsy and after H1N1 vaccination. J. Neuroimmunol. 283, 58–62 (2015).

  147. 147.

    Mignot, E. et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am. J. Hum. Genet. 68, 686–699 (2001).

  148. 148.

    Miyagawa, T. et al. New susceptibility variants to narcolepsy identified in HLA class II region. Hum. Mol. Genet. 24, 891–898 (2015).

  149. 149.

    Ollila, H. M. et al. HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy. Am. J. Hum. Genet. 96, 136–146 (2015).

  150. 150.

    Tafti, M. et al. Narcolepsy-associated HLA class I alleles implicate cell-mediated cytotoxicity. Sleep 39, 581–587 (2016).

  151. 151.

    Hor, H. et al. Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat. Genet. 42, 786–789 (2010).

  152. 152.

    Hallmayer, J. et al. Narcolepsy is strongly associated with the T cell receptor alpha locus. Nat. Genet. 41, 708–711 (2009).

  153. 153.

    Han, F. et al. Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLOS Genet. 9, e1003880 (2013).

  154. 154.

    Faraco, J. et al. ImmunoChip study implicates antigen presentation to T cells in narcolepsy. PLOS Genet. 9, e1003270 (2013).

  155. 155.

    Luo, G. et al. Autoimmunity to hypocretin and molecular mimicry to flu antigens in Type 1 narcolepsy. Preprint at (2018).

  156. 156.

    Croft, M., So, T., Duan, W. & Soroosh, P. The significance of OX40 and OX40L to T cell biology and immune disease. Immunol. Rev. 229, 173–191 (2009).

  157. 157.

    Buckner, J. H. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat. Rev. Immunol. 10, 849–859 (2010).

  158. 158.

    Dalal, J. et al. Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation. Genes Dev. 27, 565–578 (2013).

  159. 159.

    Mickelsen, L. E. et al. Neurochemical heterogeneity among lateral hypothalamic hypocretin/orexin and melanin-concentrating hormone neurons identified through single-cell gene expression analysis. eNeuro 4, ENEURO.0013-17.2017 (2017).

  160. 160.

    Azzam, S. et al. Proteomic profiling of the hypothalamus in two mouse models of narcolepsy. Proteomics 17, 1600478 (2017).

  161. 161.

    Yelin-Bekerman, L. et al. Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a. eLife 4, e08638 (2015).

  162. 162.

    Cvetkovic-Lopes, V. et al. Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients. J. Clin. Invest. 120, 713–719 (2010).

  163. 163.

    Baumann, C. R., Clark, E. L., Pedersen, N. P., Hecht, J. L. & Scammell, T. E. Do enteric neurons make hypocretin? Regul. Pept. 147, 1–3 (2008).

  164. 164.

    Ahmed, S. S. et al. Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci. Transl Med. 7, 294ra105 (2015).

  165. 165.

    Bernard-Valnet, R. et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc. Natl Acad. Sci. USA 113, 10956–10961 (2016).

  166. 166.

    Latorre, D. et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature 562, 63–68 (2018). This paper identifies a rare T cell population that targets fragments of prepro-orexin.

  167. 167.

    Kornum, B. R. et al. Absence of autoreactive CD4+ T cells targeting HLA-DQA1*01:02/DQB1*06:02 restricted hypocretin/orexin epitopes in narcolepsy type 1 when detected by EliSpot. J. Neuroimmunol. 309, 7–11 (2017).

  168. 168.

    Ramberger, M. et al. CD4+ T-cell reactivity to orexin/hypocretin in patients with narcolepsy type 1. Sleep 40, zsw070 (2017).

  169. 169.

    Lecendreux, M. et al. Narcolepsy type 1 is associated with a systemic increase and activation of regulatory T cells and with a systemic activation of global T cells. PLOS ONE 12, e0169836 (2017).

  170. 170.

    Tanaka, T., Honda, Y., Inoue, Y. & Honda, M. Detection of autoantibodies against hypocretin, hcrtr1, and hcrtr2 in narcolepsy: anti-hcrt system antibody in narcolepsy. Sleep 29, 633–638 (2006).

  171. 171.

    Luo, G. et al. Absence of anti-hypocretin receptor 2 autoantibodies in post Pandemrix narcolepsy cases. PLOS ONE 12, e0187305 (2017).

  172. 172.

    Deloumeau, A. et al. Increased immune complexes of hypocretin autoantibodies in narcolepsy. PLOS ONE 5, e13320 (2010).

  173. 173.

    Katzav, A. et al. Passive transfer of narcolepsy: anti-TRIB2 autoantibody positive patient IgG causes hypothalamic orexin neuron loss and sleep attacks in mice. J. Autoimmun. 45, 24–30 (2013).

  174. 174.

    Tanaka, S. et al. Anti-Tribbles pseudokinase 2 (TRIB2)-immunization modulates hypocretin/orexin neuronal functions. Sleep 40, zsw036 (2017).

  175. 175.

    Bergman, P. et al. Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc. Natl Acad. Sci. USA 111, E3735–E3744 (2014).

  176. 176.

    Mignot, E. et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch. Neurol. 59, 1553–1562 (2002).

  177. 177.

    Sasai, T., Inoue, Y., Komada, Y., Sugiura, T. & Matsushima, E. Comparison of clinical characteristics among narcolepsy with and without cataplexy and idiopathic hypersomnia without long sleep time, focusing on HLA-DRB1*1501/DQB1*0602 finding. Sleep Med. 10, 961–966 (2009).

  178. 178.

    Nakamura, M., Kanbayashi, T., Sugiura, T. & Inoue, Y. Relationship between clinical characteristics of narcolepsy and CSF orexin-A levels. J. Sleep Res. 20, 45–49 (2011).

  179. 179.

    Yin, J. et al. Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors. Nat. Struct. Mol. Biol. 23, 293–299 (2016).

  180. 180.

    US National Library of Medicine. (2015).

  181. 181.

    US National Library of Medicine. (2018).

  182. 182.

    US National Library of Medicine. (2018).

  183. 183.

    Okun, M. L., Lin, L., Pelin, Z., Hong, S. & Mignot, E. Clinical aspects of narcolepsy–cataplexy across ethnic groups. Sleep 25, 27–35 (2002).

  184. 184.

    Pizza, F. et al. Clinical and polysomnographic course of childhood narcolepsy with cataplexy. Brain 136, 3787–3795 (2013). This paper provides a detailed description of status cataplecticus and obesity in children with narcolepsy.

  185. 185.

    Plazzi, G. et al. Complex movement disorders at disease onset in childhood narcolepsy with cataplexy. Brain 134, 3480–3492 (2011).

  186. 186.

    Willie, J. T. et al. Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38, 715–730 (2003).

  187. 187.

    Bastianini, S., Silvani, A., Berteotti, C., Lo Martire, V. & Zoccoli, G. High-amplitude theta wave bursts during REM sleep and cataplexy in hypocretin-deficient narcoleptic mice. J. Sleep Res. 21, 185–188 (2012).

  188. 188.

    Hondo, M. et al. Histamine-1 receptor is not required as a downstream effector of orexin-2 receptor in maintenance of basal sleep/wake states. Acta Physiol. 198, 287–294 (2010).

  189. 189.

    Chemelli, R., Sinton, C. & Yanagisawa, M. Polysomnographic characterization of orexin-2 receptor knockout mice. Sleep 23, A296–A297 (2000).

  190. 190.

    Hara, J., Yanagisawa, M. & Sakurai, T. Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions. Neurosci. Lett. 380, 239–242 (2005).

  191. 191.

    Lo Martire, V., Silvani, A., Bastianini, S., Berteotti, C. & Zoccoli, G. Effects of ambient temperature on sleep and cardiovascular regulation in mice: the role of hypocretin/orexin neurons. PLOS ONE 7, e47032 (2012).

  192. 192.

    Kaitin, K. I., Kilduff, T. S. & Dement, W. C. Sleep fragmentation in canine narcolepsy. Sleep 9, 116–119 (1986).

  193. 193.

    Kaitin, K. I., Kilduff, T. S. & Dement, W. C. Evidence for excessive sleepiness in canine narcoleptics. Electroencephalogr. Clin. Neurophysiol. 64, 447–454 (1986).

  194. 194.

    Mitler, M. M. & Dement, W. C. Sleep studies on canine narcolepsy: pattern and cycle comparisons between affected and normal dogs. Electroencephalogr. Clin. Neurophysiol. 43, 691–699 (1977).

  195. 195.

    Lucas, E. A., Foutz, A. S., Dement, W. C. & Mitler, M. M. Sleep cycle organization in narcoleptic and normal dogs. Physiol. Behav. 23, 737–743 (1979).

  196. 196.

    Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999).

  197. 197.

    Ripley, B., Fujiki, N., Okura, M., Mignot, E. & Nishino, S. Hypocretin levels in sporadic and familial cases of canine narcolepsy. Neurobiol. Dis. 8, 525–534 (2001).

  198. 198.

    Scammell, T. E. Narcolepsy. N. Engl. J. Med. 373, 2654–2662 (2015).

  199. 199.

    Dauvilliers, Y. & Barateau, L. Narcolepsy and other central hypersomnias. Continuum 23, 989–1004 (2017).

  200. 200.

    Kalogiannis, M. et al. Cholinergic modulation of narcoleptic attacks in double orexin receptor knockout mice. PLOS ONE 6, e18697 (2011).

  201. 201.

    Kisanuki, Y. et al. Behavioral and polysomnographic characterization of orexin-1 receptor and orexin-2 receptor double knockout mice. Sleep 24, A22 (2001).

  202. 202.

    Abbas, M. G. et al. Comprehensive behavioral analysis of male Ox1r –/– mice showed implication of orexin receptor-1 in mood, anxiety, and social behavior. Front. Behav. Neurosci. 9, 324 (2015).

  203. 203.

    Hungs, M. et al. Identification and functional analysis of mutations in the hypocretin (orexin) genes of narcoleptic canines. Genome Res. 11, 531–539 (2001).

  204. 204.

    Valko, P. O. et al. Increase of histaminergic tuberomammillary neurons in narcolepsy. Ann. Neurol. 74, 794–804 (2013). This paper describes a large increase in histaminergic neurons in the brains of people and mice with narcolepsy.

  205. 205.

    John, J. et al. Greatly increased numbers of histamine cells in human narcolepsy with cataplexy. Ann. Neurol. 74, 786–793 (2013). This study demonstrates an increase in histaminergic neurons in narcolepsy.

  206. 206.

    John, J., Wu, M. F., Boehmer, L. N. & Siegel, J. M. Cataplexy-active neurons in the hypothalamus: implications for the role of histamine in sleep and waking behavior. Neuron 42, 619–634 (2004).

  207. 207.

    Buskova, J., Vaneckova, M., Sonka, K., Seidl, Z. & Nevsimalova, S. Reduced hypothalamic gray matter in narcolepsy with cataplexy. Neuro Endocrinol. Lett. 27, 769–772 (2006).

  208. 208.

    Kaufmann, C., Schuld, A., Pollmacher, T. & Auer, D. P. Reduced cortical gray matter in narcolepsy: preliminary findings with voxel-based morphometry. Neurology 58, 1852–1855 (2002).

  209. 209.

    Joo, E. Y., Tae, W. S., Kim, S. T. & Hong, S. B. Gray matter concentration abnormality in brains of narcolepsy patients. Kor. J. Radiol. 10, 552–558 (2009).

  210. 210.

    Hong, S. B. Neuroimaging of narcolepsy and Kleine–Levin syndrome. Sleep Med. Clin. 12, 359–368 (2017).

Download references


The authors acknowledge support from the US National Institutes of Health grants P01 HL095491, R21 NS099787 and R01 NS106032.

Reviewer information

Nature Reviews Neuroscience thanks B. Kornum, T. Sakurai and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information


  1. Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA

    • Carrie E. Mahoney
    •  & Thomas E. Scammell
  2. Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA

    • Andrew Cogswell
    •  & Igor J. Koralnik


  1. Search for Carrie E. Mahoney in:

  2. Search for Andrew Cogswell in:

  3. Search for Igor J. Koralnik in:

  4. Search for Thomas E. Scammell in:


T.E.S. and C.E.M. made substantial contributions to the discussion of content. All authors wrote the article and reviewed or edited the article before submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Thomas E. Scammell.


Hypnopompic and hypnagogic hallucinations

Vivid, sometimes frightening, dream-like hallucinations that occur when falling asleep (hypnopompic) or immediately after waking (hypnagogic).

Sleep paralysis

An inability to move when falling asleep or immediately after waking.


Muscle weakness or full paralysis triggered by strong, generally positive, emotions.

REM sleep behaviour disorder

A disorder characterized by impaired motor inhibition during rapid eye movement sleep, resulting in enactment of dreams.


An abnormally high total amount of sleep over 24 hours.

Status cataplecticus

A prolonged period of moderate to severe weakness with low muscle tone, usually without emotional triggers.

Major histocompatibility complex

(MHC). A set of immune molecules that bind pathogen-derived antigens and display them on the surface of antigen-presenting cells to promote acquired immune responses.

Human leukocyte antigen (HLA) allele

An allele encoding a human major histocompatibility complex molecule.

Molecular mimicry

A mechanism of autoimmunity in which a foreign antigen is structurally similar to ‘self’-peptides, such that immune cells targeting a pathogen accidentally target healthy tissue.

Linkage disequilibrium

When the observed frequency of two alleles at two loci occurring together is more frequent than would occur by chance.

Myenteric plexus

The network of sensory and motor neurons that control gut secretions and motility.

Regulatory T cells

(Treg cells). T cells that maintain tolerance to self-antigens by downregulating the activity of effector T cells using anti-inflammatory cytokines and cell-to-cell inhibition.

About this article

Publication history