Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circadian blueprint of metabolic pathways in the brain

Abstract

The circadian clock is an endogenous, time-tracking system that directs multiple metabolic and physiological functions required for homeostasis. The master or central clock located within the suprachiasmatic nucleus in the hypothalamus governs peripheral clocks present in all systemic tissues, contributing to their alignment and ultimately to temporal coordination of physiology. Accumulating evidence reveals the presence of additional clocks in the brain and suggests the possibility that circadian circuits may feed back to these from the periphery. Here, we highlight recent advances in the communications between clocks and discuss how they relate to circadian physiology and metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular organization of the mammalian circadian clock.
Fig. 2: Metabolic coupling of neurons and astrocytes.
Fig. 3: Network of hypothalamic oscillators.
Fig. 4: Interplay between peripheral and central clocks.

Similar content being viewed by others

References

  1. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mure, L. S. et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359, eaao0318 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Masri, S. & Sassone-Corsi, P. Plasticity and specificity of the circadian epigenome. Nat. Neurosci. 13, 1324–1329 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mehra, A., Baker, C. L., Loros, J. J. & Dunlap, J. C. Post-translational modifications in circadian rhythms. Trends Biochem. Sci. 34, 483–490 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crosio, C., Cermakian, N., Allis, C. D. & Sassone-Corsi, P. Light induces chromatin modification in cells of the mammalian circadian clock. Nat. Neurosci. 3, 1241–1247 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Aguilar-Arnal, L. & Sassone-Corsi, P. Chromatin landscape and circadian dynamics: spatial and temporal organization of clock transcription. Proc. Natl Acad. Sci. USA 112, 6863–6870 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Masri, S. & Sassone-Corsi, P. Sirtuins and the circadian clock: bridging chromatin and metabolism. Sci. Signal 7, re6 (2014).

    Article  PubMed  CAS  Google Scholar 

  8. Mai, J. K., Kedziora, O., Teckhaus, L. & Sofroniew, M. V. Evidence for subdivisions in the human suprachiasmatic nucleus. J. Comp. Neurol. 305, 508–525 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Abrahamson, E. E. & Moore, R. Y. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 916, 172–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Harmar, A. J. et al. The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109, 497–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J. & Herzog, E. D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 8, 476–483 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mieda, M. et al. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron 85, 1103–1116 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Mieda, M., Okamoto, H. & Sakurai, T. Manipulating the cellular circadian period of arginine vasopressin neurons alters the behavioral circadian period. Curr. Biol. 26, 2535–2542 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Park, J. et al. Single-cell transcriptional analysis reveals novel neuronal phenotypes and interaction networks involved in the central circadian clock. Front. Neurosci. 10, 481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Petit, J. M. & Magistretti, P. J. Regulation of neuron-astrocyte metabolic coupling across the sleep-wake cycle. Neuroscience 323, 135–156 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Iadecola, C. & Nedergaard, M. Glial regulation of the cerebral microvasculature. Nat. Neurosci. 10, 1369–1376 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Perea, G., Navarrete, M. & Araque, A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32, 421–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Prolo, L. M., Takahashi, J. S. & Herzog, E. D. Circadian rhythm generation and entrainment in astrocytes. J. Neurosci. 25, 404–408 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yagita, K., Yamanaka, I., Emoto, N., Kawakami, K. & Shimada, S. Real-time monitoring of circadian clock oscillations in primary cultures of mammalian cells using Tol2 transposon-mediated gene transfer strategy. BMC Biotechnol. 10, 3 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Womac, A. D., Burkeen, J. F., Neuendorff, N., Earnest, D. J. & Zoran, M. J. Circadian rhythms of extracellular ATP accumulation in suprachiasmatic nucleus cells and cultured astrocytes. Eur. J. Neurosci. 30, 869–876 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Prosser, R. A., Edgar, D. M., Heller, H. C. & Miller, J. D. A possible glial role in the mammalian circadian clock. Brain Res. 643, 296–301 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Barca-Mayo, O. et al. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat. Commun. 8, 14336 (2017). This article is one of three studies demonstrating the central role of astrocyte signalling for circadian pacemaking in the SCN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brancaccio, M., Patton, A. P., Chesham, J. E., Maywood, E. S. & Hastings, M. H. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 93, 1420–1435 (2017). This article is one of three studies demonstrating the central role of astrocyte signalling for circadian pacemaking in the SCN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tso, C. F. et al. Astrocytes regulate daily rhythms in the suprachiasmatic nucleus and behavior. Curr. Biol. 27, 1055–1061 (2017). This article is one of three studies demonstrating the central role of astrocyte signalling for circadian pacemaking in the SCN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, C. & Reppert, S. M. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 25, 123–128 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Albus, H., Vansteensel, M. J., Michel, S., Block, G. D. & Meijer, J. H. A. GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr. Biol. 15, 886–893 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Yoon, B. E., Woo, J. & Lee, C. J. Astrocytes as GABA-ergic and GABA-ceptive cells. Neurochem. Res. 37, 2474–2479 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Doengi, M. et al. GABA uptake-dependent Ca2+ signaling in developing olfactory bulb astrocytes. Proc. Natl Acad. Sci. USA 106, 17570–17575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Araque, A. et al. Gliotransmitters travel in time and space. Neuron 81, 728–739 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pellerin, L. & Magistretti, P. J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl Acad. Sci. USA 91, 10625–10629 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwartz, W. J. & Gainer, H. Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker. Science 197, 1089–1091 (1977).

    Article  CAS  PubMed  Google Scholar 

  32. Dash, M. B., Bellesi, M., Tononi, G. & Cirelli, C. Sleep/wake dependent changes in cortical glucose concentrations. J. Neurochem. 124, 79–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Spanagel, R. et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat. Med. 11, 35–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Clasadonte, J., Scemes, E., Wang, Z., Boison, D. & Haydon, P. G. Connexin 43-mediated astroglial metabolic networks contribute to the regulation of the sleep-wake cycle. Neuron 95, 1365–1380 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Myers, M. G. Jr & Olson, D. P. Central nervous system control of metabolism. Nature 491, 357–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Abe, M. et al. Circadian rhythms in isolated brain regions. J. Neurosci. 22, 350–356 (2002). This study was one of the first to show that extra-SCN brain regions harbour an autonomous circadian oscillator.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Williams, K. W. & Elmquist, J. K. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat. Neurosci. 15, 1350–1355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guzman-Ruiz, M. et al. The suprachiasmatic nucleus changes the daily activity of the arcuate nucleus α-MSH neurons in male rats. Endocrinology 155, 525–535 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Yi, C. X. et al. Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus. Endocrinology 147, 283–294 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Akabayashi, A., Levin, N., Paez, X., Alexander, J. T. & Leibowitz, S. F. Hypothalamic neuropeptide Y and its gene expression: relation to light/dark cycle and circulating corticosterone. Mol. Cell Neurosci. 5, 210–218 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Xu, B., Kalra, P. S., Farmerie, W. G. & Kalra, S. P. Daily changes in hypothalamic gene expression of neuropeptide Y, galanin, proopiomelanocortin, and adipocyte leptin gene expression and secretion: effects of food restriction. Endocrinology 140, 2868–2875 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Li, A. J. et al. Leptin-sensitive neurons in the arcuate nuclei contribute to endogenous feeding rhythms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1313–R1326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wiater, M. F. et al. Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1569–R1583 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chao, P. T., Yang, L., Aja, S., Moran, T. H. & Bi, S. Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab. 13, 573–583 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Erion, R., King, A. N., Wu, G., Hogenesch, J. B. & Sehgal, A. Neural clocks and Neuropeptide F/Y regulate circadian gene expression in a peripheral metabolic tissue. eLife 5, e13552 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Turek, F. W. et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308, 1043–1045 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Storch, K. F. & Weitz, C. J. Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc. Natl Acad. Sci. USA 106, 6808–6813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang, S. et al. The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 150, 2153–2160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feillet, C. A. et al. Lack of food anticipation in Per2 mutant mice. Curr. Biol. 16, 2016–2022 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, E. E. et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat. Med. 16, 1152–1156 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Iijima, M. et al. Altered food-anticipatory activity rhythm in cryptochrome-deficient mice. Neurosci. Res. 52, 166–173 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, Z. et al. PER1 phosphorylation specifies feeding rhythm in mice. Cell Rep. 7, 1509–1520 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Chappuis, S. et al. Role of the circadian clock gene Per2 in adaptation to cold temperature. Mol. Metab. 2, 184–193 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gerhart-Hines, Z. et al. The nuclear receptor Rev-erbα controls circadian thermogenic plasticity. Nature 503, 410–413 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Delezie, J. et al. Rev-erbα in the brain is essential for circadian food entrainment. Sci. Rep. 6, 29386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Orozco-Solis, R. et al. The circadian clock in the ventromedial hypothalamus controls cyclic energy expenditure. Cell Metab. 23, 467–478 (2016). This study identified a novel function of the VMH clock for circadian energy expenditure control.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Refinetti, R. & Menaker, M. The circadian rhythm of body temperature. Physiol. Behav. 51, 613–637 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Morrison, S. F., Madden, C. J. & Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bartness, T. J., Song, C. K. & Demas, G. E. SCN efferents to peripheral tissues: implications for biological rhythms. J. Biol. Rhythms 16, 196–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Guzman-Ruiz, M. A. et al. Role of the suprachiasmatic and arcuate nuclei in diurnal temperature regulation in the rat. J. Neurosci. 35, 15419–15429 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grayson, B. E., Seeley, R. J. & Sandoval, D. A. Wired on sugar: the role of the CNS in the regulation of glucose homeostasis. Nat. Rev. Neurosci. 14, 24–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Lagerlof, O. et al. The nutrient sensor OGT in PVN neurons regulates feeding. Science 351, 1293–1296 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Li, M. D. et al. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab. 17, 303–310 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Asher, G. & Sassone-Corsi, P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161, 84–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Panda, S. Circadian physiology of metabolism. Science 354, 1008–1015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Masri, S. & Sassone-Corsi, P. The circadian clock: a framework linking metabolism, epigenetics and neuronal function. Nat. Rev. Neurosci. 14, 69–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. LeSauter, J., Romero, P., Cascio, M. & Silver, R. Attachment site of grafted SCN influences precision of restored circadian rhythm. J. Biol. Rhythms 12, 327–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Silver, R., LeSauter, J., Tresco, P. A. & Lehman, M. N. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382, 810–813 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Lehman, M. N. et al. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J. Neurosci. 7, 1626–1638 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guo, H., Brewer, J. M., Champhekar, A., Harris, R. B. & Bittman, E. L. Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proc. Natl Acad. Sci. USA 102, 3111–3116 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gamble, K. L., Berry, R., Frank, S. J. & Young, M. E. Circadian clock control of endocrine factors. Nat. Rev. Endocrinol. 10, 466–475 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Spiga, F., Walker, J. J., Terry, J. R. & Lightman, S. L. HPA axis-rhythms. Compr. Physiol. 4, 1273–1298 (2014).

    Article  PubMed  Google Scholar 

  73. Simpson, E. R. & Waterman, M. R. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu. Rev. Physiol. 50, 427–440 (1988).

    Article  CAS  PubMed  Google Scholar 

  74. Buijs, R. M. et al. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur. J. Neurosci. 11, 1535–1544 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Ishida, A. et al. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab. 2, 297–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Oster, H. et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 4, 163–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Son, G. H. et al. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc. Natl Acad. Sci. USA 105, 20970–20975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. So, A. Y., Bernal, T. U., Pillsbury, M. L., Yamamoto, K. R. & Feldman, B. J. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc. Natl Acad. Sci. USA 106, 17582–17587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Reddy, A. B. et al. Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology 45, 1478–1488 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Yamamoto, T. et al. Acute physical stress elevates mouse period1 mRNA expression in mouse peripheral tissues via a glucocorticoid-responsive element. J. Biol. Chem. 280, 42036–42043 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Stimson, R. H. et al. Acute physiological effects of glucocorticoids on fuel metabolism in humans are permissive but not direct. Diabetes Obes. Metab. 19, 883–891 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee, P. et al. Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans. Cell Metab. 23, 602–609 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Brown, S. A., Zumbrunn, G., Fleury-Olela, F., Preitner, N. & Schibler, U. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol. 12, 1574–1583 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Buhr, E. D., Yoo, S. H. & Takahashi, J. S. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330, 379–385 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Saini, C., Morf, J., Stratmann, M., Gos, P. & Schibler, U. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev. 26, 567–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tamaru, T. et al. Synchronization of circadian Per2 rhythms and HSF1-BMAL1:CLOCK interaction in mouse fibroblasts after short-term heat shock pulse. PLOS ONE 6, e24521 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Morf, J. et al. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 338, 379–383 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Borjigin, J., Zhang, L. S. & Calinescu, A. A. Circadian regulation of pineal gland rhythmicity. Mol. Cell Endocrinol. 349, 13–19 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Slominski, R. M., Reiter, R. J., Schlabritz-Loutsevitch, N., Ostrom, R. S. & Slominski, A. T. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol. Cell Endocrinol. 351, 152–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Alonso-Vale, M. I. et al. Melatonin and the circadian entrainment of metabolic and hormonal activities in primary isolated adipocytes. J. Pineal Res. 45, 422–429 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Peschke, E., Bach, A. G. & Muhlbauer, E. Parallel signaling pathways of melatonin in the pancreatic β-cell. J. Pineal Res. 40, 184–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Peschke, E. et al. Receptor (MT1) mediated influence of melatonin on cAMP concentration and insulin secretion of rat insulinoma cells INS-1. J. Pineal Res. 33, 63–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Muhlbauer, E., Albrecht, E., Hofmann, K., Bazwinsky-Wutschke, I. & Peschke, E. Melatonin inhibits insulin secretion in rat insulinoma β-cells (INS-1) heterologously expressing the human melatonin receptor isoform MT2. J. Pineal Res. 51, 361–372 (2011).

    Article  PubMed  CAS  Google Scholar 

  95. Lima, F. B. et al. Pinealectomy causes glucose intolerance and decreases adipose cell responsiveness to insulin in rats. Am. J. Physiol. 275, E934–E941 (1998).

    CAS  PubMed  Google Scholar 

  96. Picinato, M. C., Haber, E. P., Carpinelli, A. R. & Cipolla-Neto, J. Daily rhythm of glucose-induced insulin secretion by isolated islets from intact and pinealectomized rat. J. Pineal Res. 33, 172–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Tuomi, T. et al. Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab. 23, 1067–1077 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. La Fleur, S. E. Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue. J. Neuroendocrinol. 15, 315–322 (2003).

    Article  PubMed  Google Scholar 

  99. la Fleur, S. E., Kalsbeek, A., Wortel, J., Fekkes, M. L. & Buijs, R. M. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes 50, 1237–1243 (2001).

    Article  PubMed  Google Scholar 

  100. Yamamoto, H., Nagai, K. & Nakagawa, H. Role of SCN in daily rhythms of plasma glucose, FFA, insulin and glucagon. Chronobiol. Int. 4, 483–491 (1987).

    Article  CAS  PubMed  Google Scholar 

  101. Ruiter, M. et al. The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior. Diabetes 52, 1709–1715 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Lamia, K. A., Storch, K. F. & Weitz, C. J. Physiological significance of a peripheral tissue circadian clock. Proc. Natl Acad. Sci. USA 105, 15172–15177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nonogaki, K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43, 533–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Kalsbeek, A., La Fleur, S., Van Heijningen, C. & Buijs, R. M. Suprachiasmatic GABAergic inputs to the paraventricular nucleus control plasma glucose concentrations in the rat via sympathetic innervation of the liver. J. Neurosci. 24, 7604–7613 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yi, C. X. et al. A major role for perifornical orexin neurons in the control of glucose metabolism in rats. Diabetes 58, 1998–2005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tsuneki, H., Wada, T. & Sasaoka, T. Role of orexin in the regulation of glucose homeostasis. Acta Physiol. (Oxf.) 198, 335–348 (2010).

    Article  CAS  Google Scholar 

  107. Yoshida, K., McCormack, S., Espana, R. A., Crocker, A. & Scammell, T. E. Afferents to the orexin neurons of the rat brain. J. Comp. Neurol. 494, 845–861 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhang, S. et al. Lesions of the suprachiasmatic nucleus eliminate the daily rhythm of hypocretin-1 release. Sleep 27, 619–627 (2004).

    Article  PubMed  Google Scholar 

  109. Gotter, A. L. et al. The duration of sleep promoting efficacy by dual orexin receptor antagonists is dependent upon receptor occupancy threshold. BMC Neurosci. 14, 90 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Tsuneki, H. et al. Hypothalamic orexin prevents hepatic insulin resistance via daily bidirectional regulation of autonomic nervous system in mice. Diabetes 64, 459–470 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Nishino, S., Ripley, B., Overeem, S., Lammers, G. J. & Mignot, E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Schuld, A., Hebebrand, J., Geller, F. & Pollmacher, T. Increased body-mass index in patients with narcolepsy. Lancet 355, 1274–1275 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Honda, Y., Doi, Y., Ninomiya, R. & Ninomiya, C. Increased frequency of non-insulin-dependent diabetes mellitus among narcoleptic patients. Sleep 9, 254–259 (1986).

    Article  CAS  PubMed  Google Scholar 

  114. Lopez, M., Nogueiras, R., Tena-Sempere, M. & Dieguez, C. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat. Rev. Endocrinol. 12, 421–432 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Minokoshi, Y. et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Kalsbeek, A. et al. The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 142, 2677–2685 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Kettner, N. M. et al. Circadian dysfunction induces leptin resistance in mice. Cell Metab. 22, 448–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Barnea, M., Chapnik, N., Genzer, Y. & Froy, O. The circadian clock machinery controls adiponectin expression. Mol. Cell Endocrinol. 399, 284–287 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Gavrila, A. et al. Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J. Clin. Endocrinol. Metab. 88, 2838–2843 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Kubota, N. et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 6, 55–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Um, J. H. et al. AMPK regulates circadian rhythms in a tissue- and isoform-specific manner. PLOS ONE 6, e18450 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437–440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cao, R. et al. Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 signaling. Neuron 79, 712–724 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Zheng, X. & Sehgal, A. AKT and TOR signaling set the pace of the circadian pacemaker. Curr. Biol. 20, 1203–1208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ramanathan, C. et al. mTOR signaling regulates central and peripheral circadian clock function. PLOS Genet. 14, e1007369 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Brooks, C. L. & Gu, W. How does SIRT1 affect metabolism, senescence and cancer? Nat. Rev. Cancer 9, 123–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+salvage pathway by CLOCK-SIRT1. Science 324, 654–657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ramsey, K. M. et al. Circadian clock feedback cycle through NAMPT-mediated NAD+biosynthesis. Science 324, 651–654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ramadori, G. et al. SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 12, 78–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cakir, I. et al. Hypothalamic Sirt1 regulates food intake in a rodent model system. PLOS ONE 4, e8322 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Orozco-Solis, R., Ramadori, G., Coppari, R. & Sassone-Corsi, P. SIRT1 relays nutritional inputs to the circadian clock through the Sf1 neurons of the ventromedial hypothalamus. Endocrinology 156, 2174–2184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ramadori, G. et al. Brain SIRT1: anatomical distribution and regulation by energy availability. J. Neurosci. 28, 9989–9996 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yoon, M. J. et al. SIRT1-mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD+ and function in mice. Cell Metab. 21, 706–717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Badman, M. K. et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5, 426–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Galman, C. et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab. 8, 169–174 (2008).

    Article  PubMed  CAS  Google Scholar 

  138. Tong, X. et al. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J. Biol. Chem. 285, 36401–36409 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chavan, R. et al. REV-ERBalpha regulates Fgf21 expression in the liver via hepatic nuclear factor 6. Biol. Open 6, 1–7 (2017).

    PubMed  Google Scholar 

  140. Oishi, K., Uchida, D. & Ishida, N. Circadian expression of FGF21 is induced by PPARalpha activation in the mouse liver. FEBS Lett. 582, 3639–3642 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Andersen, B., Beck-Nielsen, H. & Hojlund, K. Plasma FGF21 displays a circadian rhythm during a 72-h fast in healthy female volunteers. Clin. Endocrinol. (Oxf.) 75, 514–519 (2011).

    Article  CAS  Google Scholar 

  142. Bookout, A. L. et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 19, 1147–1152 (2013). This is a nice example of how a peripheral metabolic regulator can modulate the central clock in the SCN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bass, J. & Lazar, M. A. Circadian time signatures of fitness and disease. Science 354, 994–999 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mukherji, A. et al. Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc. Natl Acad. Sci. USA 112, E6691–E6698 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Kohsaka, A. et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6, 414–421 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Meyer-Kovac, J. et al. Hepatic gene therapy rescues high-fat diet responses in circadian Clock mutant mice. Mol. Metab. 6, 512–523 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Vollmers, C. et al. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl Acad. Sci. USA 106, 21453–21458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hatori, M. et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 15, 848–860 (2012). This study is a nice demonstration of how feeding time can impact peripheral circadian rhythms and metabolic fitness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chaix, A., Zarrinpar, A., Miu, P. & Panda, S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 20, 991–1005 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Acosta-Rodriguez, V. A., de Groot, M. H. M., Rijo-Ferreira, F., Green, C. B. & Takahashi, J. S. Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab. 26, 267–277 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wehrens, S. M. T. et al. Meal timing regulates the human circadian system. Curr. Biol. 27, 1768–1775 (2017). This study demonstrates that meal timing affects daily rhythms also in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gill, S. & Panda, S. A. Smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 22, 789–798 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mendoza, J., Pevet, P. & Challet, E. High-fat feeding alters the clock synchronization to light. J. Physiol. 586, 5901–5910 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dyar, K. A. et al. Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell 174, 1571–1585 (2018). This study provides a comprehensive analysis of circadian metabolic profiles across multiple tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Eckel-Mahan, K. L. et al. Reprogramming of the circadian clock by nutritional challenge. Cell 155, 1464–1478 (2013). This study provides the first comprehensive evidence that nutritional challenges can rewire peripheral clocks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ryan, K. K. et al. A role for central nervous system PPAR-gamma in the regulation of energy balance. Nat. Med. 17, 623–626 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Abbondante, S., Eckel-Mahan, K. L., Ceglia, N. J., Baldi, P. & Sassone-Corsi, P. Comparative circadian metabolomics reveal differential effects of nutritional challenge in the serum and liver. J. Biol. Chem. 291, 2812–2828 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Sato, S. et al. Circadian reprogramming in the liver identifies metabolic pathways of aging. Cell 170, 664–677 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Solanas, G. et al. Aged stem cells reprogram their daily rhythmic functions to adapt to stress. Cell 170, 678–692 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Verdin, E. NAD+ in aging, metabolism, and neurodegeneration. Science 350, 1208–1213 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Zhu, X. H., Lu, M., Lee, B. Y., Ugurbil, K. & Chen, W. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc. Natl Acad. Sci. USA 112, 2876–2881 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yoshino, J., Baur, J. A. & Imai, S. I. NAD+intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab. 27, 513–528 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  164. Masri, S. et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 158, 659–672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chang, H. C. & Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448–1460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mendoza, J., Drevet, K., Pevet, P. & Challet, E. Daily meal timing is not necessary for resetting the main circadian clock by calorie restriction. J. Neuroendocrinol. 20, 251–260 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Carneiro, L. et al. Evidence for hypothalamic ketone body sensing: impact on food intake and peripheral metabolic responses in mice. Am. J. Physiol. Endocrinol. Metab. 310, E103–E115 (2016).

    Article  PubMed  Google Scholar 

  168. Chavan, R. et al. Liver-derived ketone bodies are necessary for food anticipation. Nat. Commun. 7, 10580 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Genzer, Y., Dadon, M., Burg, C., Chapnik, N. & Froy, O. Ketogenic diet delays the phase of circadian rhythms and does not affect AMP-activated protein kinase (AMPK) in mouse liver. Mol. Cell Endocrinol. 417, 124–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Shimazu, T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Tognini, P. et al. Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet. Cell Metab. 26, 523–538 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Xie, Z. et al. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol. Cell 62, 194–206 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Paoli, A., Rubini, A., Volek, J. S. & Grimaldi, K. A. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur. J. Clin. Nutr. 67, 789–796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Newman, J. C. et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 26, 547–557 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Valnegri, P. et al. A circadian clock in hippocampus is regulated by interaction between oligophrenin-1 and Rev-erbα. Nat. Neurosci. 14, 1293–1301 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Fernandez, F. et al. Circadian rhythm. Dysrhythmia in the suprachiasmatic nucleus inhibits memory processing. Science 346, 854–857 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gill, S., Le, H. D., Melkani, G. C. & Panda, S. Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science 347, 1265–1269 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Katewa, S. D. et al. Peripheral circadian clocks mediate dietary restriction-dependent changes in lifespan and fat metabolism in Drosophila. Cell Metab. 23, 143–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Eckel-Mahan, K. & Sassone-Corsi, P. Metabolism and the circadian clock converge. Physiol. Rev. 93, 107–135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Gallego, M. & Virshup, D. M. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8, 139–148 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Ceglia, N. et al. CircadiOmics: circadian omic web portal. Nucleic Acids Res. 46, W157–W162 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Guan, D. et al. Diet-induced circadian enhancer remodeling synchronizes opposing hepatic lipid metabolic processes. Cell 174, 831–842 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Sassone–Corsi laboratory for helpful discussions. Funding for C.M.G. was provided by the National Cancer Institute of the US National Institutes of Health (NIH T32 2T32CA009054-36A1) and by the European Research Council (ERC MSCA-IF-2016 MetEpiClock 749869). Financial support for P.S.-C. was provided by the National Institute of Health, INSERM, a KAUST–UCI partnership and a Novo Nordisk Challenge Grant.

Reviewer information

Nature Reviews Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

P.S.-C. and C.M.G. researched data for article, made substantial contributions to discussion of content and wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Paolo Sassone–Corsi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Promoter element

The proximal DNA regulatory element immediately upstream of the transcription start site (TSS).

Chromatin transitions

Promoter elements governed by specific epigenetic modifications that can shift from an ‘active’ accessible state to a ‘repressed’ state and vice versa.

Oscillators

Timing systems composed of transcriptional and translational feedback loops with an endogenous periodicity of approximately 24 hours.

Hyperphagic

Characterized by an abnormal increase of food consumption.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greco, C.M., Sassone–Corsi, P. Circadian blueprint of metabolic pathways in the brain. Nat Rev Neurosci 20, 71–82 (2019). https://doi.org/10.1038/s41583-018-0096-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-018-0096-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing