Review Article | Published:

Mitochondria as central regulators of neural stem cell fate and cognitive function

Nature Reviews Neuroscience (2018) | Download Citation

Abstract

Emerging evidence now indicates that mitochondria are central regulators of neural stem cell (NSC) fate decisions and are crucial for both neurodevelopment and adult neurogenesis, which in turn contribute to cognitive processes in the mature brain. Inherited mutations and accumulated damage to mitochondria over the course of ageing serve as key factors underlying cognitive defects in neurodevelopmental disorders and neurodegenerative diseases, respectively. In this Review, we explore the recent findings that implicate mitochondria as crucial regulators of NSC function and cognition. In this respect, mitochondria may serve as targets for stem-cell-based therapies and interventions for cognitive defects.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Sorrells, S. F. et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555, 377–381 (2018).

  2. 2.

    Boldrini, M. et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22, 589–599 (2018).

  3. 3.

    Kempermann, G. et al. Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23, 25–30 (2018).

  4. 4.

    Altman, J. & Das, G. D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 (1965).

  5. 5.

    Lindsey, B. W. & Tropepe, V. A comparative framework for understanding the biological principles of adult neurogenesis. Prog. Neurobiol. 80, 281–307 (2006).

  6. 6.

    Bergmann, O., Spalding, K. L. & Frisén, J. Adult neurogenesis in humans. Cold Spring Harb. Perspect. Biol. 7, a018994 (2015).

  7. 7.

    Bond, A. M., Ming, G.-L. & Song, H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17, 385–395 (2015).

  8. 8.

    Song, J., Olsen, R. H. J., Sun, J., Ming, G.-L. & Song, H. Neuronal circuitry mechanisms regulating adult mammalian neurogenesis. Cold Spring Harb. Perspect. Biol. 8, a018937 (2016).

  9. 9.

    Feliciano, D. M., Bordey, A. & Bonfanti, L. Noncanonical sites of adult neurogenesis in the mammalian brain. Cold Spring Harb. Perspect. Biol. 7, a018846 (2015).

  10. 10.

    Inta, D., Cameron, H. A. & Gass, P. New neurons in the adult striatum: from rodents to humans. Trends Neurosci. 38, 517–523 (2015).

  11. 11.

    Kempermann, G. The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci. 31, 163–169 (2008).

  12. 12.

    Gould, E., Tanapat, P., Hastings, N. B. & Shors, T. J. Neurogenesis in adulthood: a possible role in learning. Trends Cogn. Sci. 3, 186–192 (1999).

  13. 13.

    Bruel-Jungerman, E., Rampon, C. & Laroche, S. Adult hippocampal neurogenesis, synaptic plasticity and memory: Facts and hypotheses. Rev. Neurosci. 18, 93–114 (2007).

  14. 14.

    Akers, K. G. et al. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344, 598–602 (2014).

  15. 15.

    Gao, A. et al. Elevation of hippocampal neurogenesis induces a temporally graded pattern of forgetting of contextual fear memories. J. Neurosci. 38, 3190–3198 (2018).

  16. 16.

    Aimone, J. B., Wiles, J. & Gage, F. H. Potential role for adult neurogenesis in the encoding of time in new memories. Nat. Neurosci. 9, 723–727 (2006).

  17. 17.

    Lledo, P.-M. & Saghatelyan, A. Integrating new neurons into the adult olfactory bulb: joining the network, life–death decisions, and the effects of sensory experience. Trends Neurosci. 28, 248–254 (2005).

  18. 18.

    Chandel, N. S. Mitochondria as signaling organelles. BMC Biol. 12, 34 (2014). This paper provides an excellent overview of mitochondrial signalling mechanisms.

  19. 19.

    Khacho, M. & Slack, R. S. Mitochondrial and reactive oxygen species signaling coordinate stem cell fate decisions and life long maintenance. Antioxid. Redox Signal. https://doi.org/10.1089/ars.2017.7228 (2017).

  20. 20.

    Khacho, M. & Slack, R. S. Mitochondrial activity in the regulation of stem cell self-renewal and differentiation. Curr. Opin. Cell Biol. 49, 1–8 (2017).

  21. 21.

    Nunnari, J. & Suomalainen, A. Mitochondria: in sickness and in health. Cell 148, 1145–1159 (2012).

  22. 22.

    Chandel, N. Navigating Metabolism (Cold Spring Harbor Laboratory Press, 2015).

  23. 23.

    Schell, J. C. et al. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat. Cell Biol. 19, 1027–1036 (2017).

  24. 24.

    Wei, P., Dove, K. K., Bensard, C., Schell, J. C. & Rutter, J. The force is strong with this one: metabolism (over)powers stem cell fate. Trends Cell Biol. 28, 551–559 (2018).

  25. 25.

    Alberts, B. et al. Molecular Biology of the Cell (Garland Science, 2002).

  26. 26.

    Kijima, K. et al. Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A. Hum. Genet. 116, 23–27 (2005).

  27. 27.

    Züchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36, 449–451 (2004).

  28. 28.

    Alexander, C. et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26, 211–215 (2000).

  29. 29.

    Delettre, C. et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26, 207–210 (2000).

  30. 30.

    Khacho, M. et al. Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19, 232–247 (2016). This study describes a novel mechanism by which changes in mitochondrial dynamics in NSCs and NPCs impair adult neurogenesis, ultimately resulting in defects in learning and memory.

  31. 31.

    Benard, G. & Rossignol, R. Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid. Redox Signal. 10, 1313–1342 (2008).

  32. 32.

    Chan, D. C. Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46, 265–287 (2012).

  33. 33.

    Chen, H. et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141, 280–289 (2010).

  34. 34.

    Cogliati, S. et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160–171 (2013).

  35. 35.

    Khacho, M. & Slack, R. S. Mitochondrial dynamics in neurodegeneration: from cell death to energetic states. AIMS Mol. Sci. 2, 161–174 (2015).

  36. 36.

    Liesa, M. & Shirihai, O. S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17, 491–506 (2013).

  37. 37.

    Ono, T., Isobe, K., Nakada, K. & Hayashi, J. I. Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat. Genet. 28, 272–275 (2001).

  38. 38.

    Patten, D. A. et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 33, 2676–2691 (2014).

  39. 39.

    Prigione, A., Fauler, B., Lurz, R., Lehrach, H. & Adjaye, J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28, 721–733 (2010).

  40. 40.

    Folmes, C. D. L. et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14, 264–271 (2011). This ground-breaking study demonstrates the requirement for a metabolic switch in nuclear reprogramming.

  41. 41.

    Kondoh, H. et al. A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid. Redox Signal. 9, 293–299 (2007).

  42. 42.

    St John, J. C. et al. The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Clon. Stem Cells 7, 141–153 (2005).

  43. 43.

    Varum, S. et al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLOS ONE 6, e20914 (2011).

  44. 44.

    Zhang, J. et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 30, 4860–4873 (2011).

  45. 45.

    Sánchez-Aragó, M., García-Bermúdez, J., Martínez-Reyes, I., Santacatterina, F. & Cuezva, J. M. Degradation of IF1 controls energy metabolism during osteogenic differentiation of stem cells. EMBO Rep. 14, 638–644 (2013).

  46. 46.

    Takubo, K. et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12, 49–61 (2013). This study reveals that metabolic status controlled by PDK regulates haematopoietic stem cell quiescence.

  47. 47.

    Flores, A. et al. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat. Cell Biol. 19, 1017–1026 (2017).

  48. 48.

    Maryanovich, M. et al. An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nat. Commun. 6, 7901 (2015).

  49. 49.

    Ahlqvist, K. J. et al. Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice. Cell Metab. 15, 100–109 (2012). This early study reveals that somatic stem cells and progenitor cells are sensitive to mtDNA damage.

  50. 50.

    Norddahl, G. L. et al. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell 8, 499–510 (2011). This study reveals that mitochondrial integrity is essential for stem cell differentiation.

  51. 51.

    Fox, R. G., Magness, S., Kujoth, G. C., Prolla, T. A. & Maeda, N. Mitochondrial DNA polymerase editing mutation, PolgD257A, disturbs stem-progenitor cell cycling in the small intestine and restricts excess fat absorption. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G914–G924 (2012).

  52. 52.

    Chen, M. L. et al. Erythroid dysplasia, megaloblastic anemia, and impaired lymphopoiesis arising from mitochondrial dysfunction. Blood 114, 4045–4053 (2009).

  53. 53.

    Berger, E. et al. Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat. Commun. 7, 13171 (2016).

  54. 54.

    Zhang, H. et al. NAD+repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016). This exciting study demonstrates that dietary supplementation can improve mitochondrial integrity and revitalize stem cell activity.

  55. 55.

    Tormos, K. V. et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 14, 537–544 (2011).

  56. 56.

    Owusu-Ansah, E. & Banerjee, U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537–541 (2009).

  57. 57.

    Lyublinskaya, O. G. et al. Reactive oxygen species are required for human mesenchymal stem cells to initiate proliferation after the quiescence exit. Oxid. Med. Cell. Longev. 2015, 502105 (2015).

  58. 58.

    Jang, Y.-Y. & Sharkis, S. J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110, 3056–3063 (2007).

  59. 59.

    Le Belle, J. E. et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59–71 (2011).

  60. 60.

    Zhou, G., Meng, S., Li, Y., Ghebre, Y. T. & Cooke, J. P. Optimal ROS signaling is critical for nuclear reprogramming. Cell Rep. 15, 919–925 (2016).

  61. 61.

    Kaelin, W. G. & McKnight, S. L. Influence of metabolism on epigenetics and disease. Cell 153, 56–69 (2013).

  62. 62.

    Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

  63. 63.

    Imai, S. & Guarente, L. NAD+and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471 (2014).

  64. 64.

    Saunders, L. R. et al. mi-RNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging 2, 415–431 (2010).

  65. 65.

    Calvanese, V. et al. Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc. Natl Acad. Sci. USA 107, 13736–13741 (2010).

  66. 66.

    Houtkooper, R. H., Pirinen, E. & Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell. Biol. 13, 225–238 (2012).

  67. 67.

    Ryall, J. G. et al. The NAD( + )-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16, 171–183 (2015).

  68. 68.

    Beckervordersandforth, R. et al. Role of mitochondrial metabolism in the control of early lineage progression and aging phenotypes in adult hippocampal neurogenesis. Neuron 93, 560–573 (2017). This study demonstrates that an intact mitochondrial ETC is required during adult neurogenesis and demonstrates that pharmacological enhancement of mitochondrial function can improve the neurogenesis defects associated with ageing.

  69. 69.

    Khacho, M. et al. Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Hum. Mol. Genet. 26, 3327–3341 (2017).

  70. 70.

    Khacho, M. & Slack, R. S. Mitochondrial dynamics in the regulation of neurogenesis: from development to the adult brain. Dev. Dyn. 247, 47–53 (2017).

  71. 71.

    Agostini, M., Annicchiarico-Petruzzelli, M., Melino, G. & Rufini, A. Metabolic pathways regulated by TAp73 in response to oxidative stress. Oncotarget 7, 29881–29900 (2016).

  72. 72.

    Llorens-Bobadilla, E. et al. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17, 329–340 (2015).

  73. 73.

    Shin, J. et al. Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360–372 (2015).

  74. 74.

    Stoll, E. A. et al. Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity. Stem Cells 33, 2306–2319 (2015).

  75. 75.

    Homem, C. C. F. et al. Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell 158, 874–888 (2014). This study reveals the connection between cellular metabolism and the regulation of stem cell proliferation in Drosophila.

  76. 76.

    Steib, K., Schäffner, I., Jagasia, R., Ebert, B. & Lie, D. C. Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J. Neurosci. 34, 6624–6633 (2014). This study shows that exercise-induced adult neurogenesis depends on changes in mitochondrial dynamics.

  77. 77.

    Finsterer, J. Cognitive dysfunction in mitochondrial disorders. Acta Neurol. Scand. 126, 1–11 (2012).

  78. 78.

    Theurey, P. & Pizzo, P. The aging mitochondria. Genes 9, 22 (2018).

  79. 79.

    Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

  80. 80.

    Fattal, O., Budur, K., Vaughan, A. J. & Franco, K. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 47, 1–7 (2006).

  81. 81.

    Kartsounis, L. D., Troung, D. D., Morgan-Hughes, J. A. & Harding, A. E. The neuropsychological features of mitochondrial myopathies and encephalomyopathies. Arch. Neurol. 49, 158–160 (1992).

  82. 82.

    Turconi, A. C. et al. Focal cognitive impairment in mitochondrial encephalomyopathies: a neuropsychological and neuroimaging study. J. Neurol. Sci. 170, 57–63 (1999).

  83. 83.

    Fromont, I. et al. Brain anomalies in maternally inherited diabetes and deafness syndrome. J. Neurol. 256, 1696–1704 (2009).

  84. 84.

    Kaufman, K. R., Zuber, N., Rueda-Lara, M. A. & Tobia, A. MELAS with recurrent complex partial seizures, nonconvulsive status epilepticus, psychosis, and behavioral disturbances: case analysis with literature review. Epilepsy Behav. 18, 494–497 (2010).

  85. 85.

    Salsano, E. et al. Mitochondrial dementia: a sporadic case of progressive cognitive and behavioral decline with hearing loss due to the rare m.3291T>C MELAS mutation. J. Neurol. Sci. 300, 165–168 (2011).

  86. 86.

    Deschauer, M. et al. Late-onset encephalopathy associated with a C11777A mutation of mitochondrial DNA. Neurology 60, 1357–1359 (2003).

  87. 87.

    Raspall-Chaure, M. et al. Paciente con lesión bilateral del estriado y distonía lentamente progresiva secundarias a la mutación T14487C en el gen ND6 del complejo I de la cadena respiratoria mitocondrial [Spanish]. Rev. Neurol. 39, 1129–1132 (2004).

  88. 88.

    Seeger, J. et al. Clinical and neuropathological findings in patients with TACO1 mutations. Neuromuscul. Disord. 20, 720–724 (2010).

  89. 89.

    Taylor, R. W., Singh-Kler, R., Hayes, C. M., Smith, P. E. & Turnbull, D. M. Progressive mitochondrial disease resulting from a novel missense mutation in the mitochondrial DNA ND3 gene. Ann. Neurol. 50, 104–107 (2001).

  90. 90.

    Chen, H., McCaffery, J. M. & Chan, D. C. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130, 548–562 (2007).

  91. 91.

    Kimmel, R. A. et al. Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev. 14, 1377–1389 (2000).

  92. 92.

    Fang, D., Yan, S., Yu, Q., Chen, D. & Yan, S. S. Mfn2 is required for mitochondrial development and synapse formation in human induced pluripotent stem cells/hiPSC derived cortical neurons. Sci. Rep. 6, 31462 (2016).

  93. 93.

    Spiegel, R. et al. Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation. J. Med. Genet. 53, 127–131 (2016).

  94. 94.

    Waterham, H. R. et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356, 1736–1741 (2007).

  95. 95.

    Ishihara, N. et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat. Cell Biol. 11, 958–966 (2009).

  96. 96.

    Wakabayashi, J. et al. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J. Cell Biol. 186, 805–816 (2009).

  97. 97.

    Hjelm, B. E. et al. Evidence of mitochondrial dysfunction within the complex genetic etiology of schizophrenia. Mol. Neuropsychiatry 1, 201–219 (2015).

  98. 98.

    Rajasekaran, A., Venkatasubramanian, G., Berk, M. & Debnath, M. Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Neurosci. Biobehav. Rev. 48, 10–21 (2015).

  99. 99.

    DiMario, F. J., Sahin, M. & Ebrahimi-Fakhari, D. Tuberous sclerosis complex. Pediatr. Clin. North Am. 62, 633–648 (2015).

  100. 100.

    Lipton, J. O. & Sahin, M. The neurology of mTOR. Neuron 84, 275–291 (2014).

  101. 101.

    Ebrahimi-Fakhari, D. et al. Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep. 17, 2162 (2016).

  102. 102.

    Barrett, T. G., Bundey, S. E., Fielder, A. R. & Good, P. A. Optic atrophy in Wolfram (DIDMOAD) syndrome. Eye Lond. Engl. 11, 882–888 (1997).

  103. 103.

    Hershey, T. et al. Early brain vulnerability in Wolfram syndrome. PLOS ONE 7, e40604 (2012).

  104. 104.

    Kanki, T. & Klionsky, D. J. Mitochondrial abnormalities drive cell death in Wolfram syndrome 2. Cell Res. 19, 922–923 (2009).

  105. 105.

    Ross-Cisneros, F. N. et al. Optic nerve histopathology in a case of Wolfram syndrome: a mitochondrial pattern of axonal loss. Mitochondrion 13, 841–845 (2013).

  106. 106.

    Cagalinec, M. et al. Role of mitochondrial dynamics in neuronal development: mechanism for Wolfram syndrome. PLOS Biol. 14, e1002511 (2016).

  107. 107.

    Uranova, N. et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res. Bull. 55, 597–610 (2001).

  108. 108.

    Norkett, R. et al. DISC1-dependent regulation of mitochondrial dynamics controls the morphogenesis of complex neuronal dendrites. J. Biol. Chem. 291, 613–629 (2016).

  109. 109.

    Beckervordersandforth, R. Mitochondrial metabolism-mediated regulation of adult neurogenesis. Brain Plast. 3, 73–87 (2017).

  110. 110.

    Almeida, A. S. & Vieira, H. L. A. Role of cell metabolism and mitochondrial function during adult neurogenesis. Neurochem. Res. 42, 1787–1794 (2017).

  111. 111.

    López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

  112. 112.

    Wang, W. et al. Mitochondrial DNA integrity is essential for mitochondrial maturation during differentiation of neural stem cells. Stem Cells 28, 2195–2204 (2010).

  113. 113.

    Wang, W. et al. Mitochondrial DNA damage level determines neural stem cell differentiation fate. J. Neurosci. 31, 9746–9751 (2011).

  114. 114.

    Calingasan, N. Y. et al. Influence of mitochondrial enzyme deficiency on adult neurogenesis in mouse models of neurodegenerative diseases. Neuroscience 153, 986–996 (2008).

  115. 115.

    Vermulst, M. et al. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat. Genet. 39, 540–543 (2007).

  116. 116.

    Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

  117. 117.

    Kujoth, G. C. et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005).

  118. 118.

    Hämäläinen, R. H. et al. mtDNA mutagenesis disrupts pluripotent stem cell function by altering redox signaling. Cell Rep. 11, 1614–1624 (2015).

  119. 119.

    Maryanovich, M. & Gross, A. A. ROS rheostat for cell fate regulation. Trends Cell Biol. 23, 129–134 (2013).

  120. 120.

    Walton, N. M. et al. Adult neurogenesis transiently generates oxidative stress. PLOS ONE 7, e35264 (2012).

  121. 121.

    Madhavan, L., Ourednik, V. & Ourednik, J. Increased ‘vigilance’ of antioxidant mechanisms in neural stem cells potentiates their capability to resist oxidative stress. Stem Cells 24, 2110–2119 (2006).

  122. 122.

    Rola, R. et al. Lack of extracellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis. Free Radic. Biol. Med. 42, 1133–1145 (2007).

  123. 123.

    Raber, J. et al. Irradiation enhances hippocampus-dependent cognition in mice deficient in extracellular superoxide dismutase. Hippocampus 21, 72–80 (2011).

  124. 124.

    Fishman, K. et al. Radiation-induced reductions in neurogenesis are ameliorated in mice deficient in CuZnSOD or MnSOD. Free Radic. Biol. Med. 47, 1459–1467 (2009).

  125. 125.

    Ali, A. A. et al. Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice. Aging 7, 435–449 (2015).

  126. 126.

    Prozorovski, T. et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat. Cell Biol. 10, 385–394 (2008).

  127. 127.

    Winner, B. & Winkler, J. Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 7, a021287 (2015).

  128. 128.

    Winner, B., Kohl, Z. & Gage, F. H. Neurodegenerative disease and adult neurogenesis. Eur. J. Neurosci. 33, 1139–1151 (2011).

  129. 129.

    Marxreiter, F., Regensburger, M. & Winkler, J. Adult neurogenesis in Parkinson’s disease. Cell. Mol. Life Sci. 70, 459–473 (2013).

  130. 130.

    Hollands, C., Bartolotti, N. & Lazarov, O. Alzheimer’s disease and hippocampal adult neurogenesis; exploring shared mechanisms. Front. Neurosci. https://doi.org/10.3389/fnins.2016.00178 (2016).

  131. 131.

    Kim, Y. et al. Mitochondrial aging defects emerge in directly reprogrammed human neurons due to their metabolic profile. Cell Rep. 23, 2550–2558 (2018).

  132. 132.

    Pivovarova, N. B., Hongpaisan, J., Andrews, S. B. & Friel, D. D. Depolarization-induced mitochondrial Ca accumulation in sympathetic neurons: spatial and temporal characteristics. J. Neurosci. 19, 6372–6384 (1999).

  133. 133.

    Polster, B. M. & Fiskum, G. Mitochondrial mechanisms of neural cell apoptosis. J. Neurochem. 90, 1281–1289 (2004).

  134. 134.

    Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet Lond. Engl. 386, 896–912 (2015).

  135. 135.

    Regensburger, M., Prots, I. & Winner, B. Adult hippocampal neurogenesis in Parkinson’s disease: impact on neuronal survival and plasticity. Neural Plast. 2014, 454696 (2014).

  136. 136.

    Brandt, M. D. et al. Early postnatal but not late adult neurogenesis is impaired in the Pitx3-mutant animal model of Parkinson’s disease. Front. Neurosci. 11, 471 (2017).

  137. 137.

    Li, W.-W. et al. Localization of alpha-synuclein to mitochondria within midbrain of mice. Neuroreport 18, 1543–1546 (2007).

  138. 138.

    Nakamura, K. et al. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein. J. Biol. Chem. 286, 20710–20726 (2011).

  139. 139.

    Devi, L., Raghavendran, V., Prabhu, B. M., Avadhani, N. G. & Anandatheerthavarada, H. K. Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 283, 9089–9100 (2008).

  140. 140.

    Winner, B. et al. Role of α-synuclein in adult neurogenesis and neuronal maturation in the dentate gyrus. J. Neurosci. 32, 16906–16916 (2012).

  141. 141.

    Kohl, Z. et al. Severely impaired hippocampal neurogenesis associates with an early serotonergic deficit in a BAC α-synuclein transgenic rat model of Parkinson’s disease. Neurobiol. Dis. 85, 206–217 (2016).

  142. 142.

    Valente, E. M. et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

  143. 143.

    van de Warrenburg, B. P. et al. Clinical and pathologic abnormalities in a family with parkinsonism and parkin gene mutations. Neurology 56, 555–557 (2001).

  144. 144.

    Agnihotri, S. K., Shen, R., Li, J., Gao, X. & Büeler, H. Loss of PINK1 leads to metabolic deficits in adult neural stem cells and impedes differentiation of newborn neurons in the mouse hippocampus. FASEB J. 31, 2839–2853 (2017).

  145. 145.

    Imaizumi, Y. et al. Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol. Brain 5, 35 (2012).

  146. 146.

    Chung, S. Y. et al. Parkin and PINK1 patient iPSC-derived midbrain dopamine neurons exhibit mitochondrial dysfunction and α-synuclein accumulation. Stem Cell Rep. 7, 664–677 (2016).

  147. 147.

    Albright, J. E., Stojkovska, I., Rahman, A. A., Brown, C. J. & Morrison, B. E. Nestin-positive/SOX2-negative cells mediate adult neurogenesis of nigral dopaminergic neurons in mice. Neurosci. Lett. 615, 50–54 (2016).

  148. 148.

    Zachrisson, O. et al. Restorative effects of platelet derived growth factor-BB in rodent models of Parkinson’s disease. J. Park. Dis. 1, 49–63 (2011).

  149. 149.

    Scheltens, P. et al. Alzheimer’s disease. Lancet Lond. Engl. 388, 505–517 (2016).

  150. 150.

    Hollands, C. et al. Depletion of adult neurogenesis exacerbates cognitive deficits in Alzheimer’s disease by compromising hippocampal inhibition. Mol. Neurodegener. 12, 64 (2017).

  151. 151.

    Hamilton, L. K. et al. Aberrant lipid metabolism in the forebrain niche suppresses adult neural stem cell proliferation in an animal model of Alzheimer’s disease. Cell Stem Cell 17, 397–411 (2015). This study reveals that defects in fatty acid metabolism found in a model of AD impair the function of adult NSCs.

  152. 152.

    Onyango, I. G., Dennis, J. & Khan, S. M. Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis. 7, 201–214 (2016).

  153. 153.

    Richetin, K. et al. Amplifying mitochondrial function rescues adult neurogenesis in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 102, 113–124 (2017).

  154. 154.

    Zheng, R. et al. Selenomethionine promoted hippocampal neurogenesis via the PI3K-Akt-GSK3β-Wnt pathway in a mouse model of Alzheimer’s disease. Biochem. Biophys. Res. Commun. 485, 6–15 (2017).

  155. 155.

    Godoy, J. A. et al. Wnt-5a ligand modulates mitochondrial fission-fusion in rat hippocampal neurons. J. Biol. Chem. 289, 36179–36193 (2014).

  156. 156.

    Bartolome, F. et al. Amyloid β-induced impairments on mitochondrial dynamics, hippocampal neurogenesis, and memory are restored by phosphodiesterase 7 inhibition. Alzheimers Res. Ther. 10, 24 (2018).

  157. 157.

    Knobloch, M. et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226–230 (2013). This studys uncovers a novel mechanism by which lipid metabolism affects adult NSCs.

  158. 158.

    Li, G. et al. GABAergic interneuron dysfunction impairs hippocampal neurogenesis in adult apolipoprotein E4 knockin mice. Cell Stem Cell 5, 634–645 (2009).

  159. 159.

    Yang, C.-P., Gilley, J. A., Zhang, G. & Kernie, S. G. ApoE is required for maintenance of the dentate gyrus neural progenitor pool. Development 138, 4351–4362 (2011).

  160. 160.

    Livingston, G. et al. Dementia prevention, intervention, and care. Lancet Lond. Engl. 390, 2673–2734 (2017).

  161. 161.

    Valero, J., Paris, I. & Sierra, A. Lifestyle shapes the dialogue between environment, microglia, and adult neurogenesis. ACS Chem. Neurosci. 7, 442–453 (2016).

  162. 162.

    Lazarov, O. & Hollands, C. Hippocampal neurogenesis: learning to remember. Prog. Neurobiol. 138–140, 1–18 (2016).

  163. 163.

    Jayaraman, A. & Pike, C. J. Alzheimer’s disease and type 2 diabetes: multiple mechanisms contribute to interactions. Curr. Diab. Rep. 14, 476 (2014).

  164. 164.

    Dorsemans, A.-C. et al. Diabetes, adult neurogenesis and brain remodeling: new insights from rodent and zebrafish models. Neurogenesis (Austin) 4, e1281862 (2017).

  165. 165.

    Tan, S., Zhi, P. K., Luo, Z. K. & Shi, J. Severe instead of mild hyperglycemia inhibits neurogenesis in the subventricular zone of adult rats after transient focal cerebral ischemia. Neuroscience 303, 138–148 (2015).

  166. 166.

    Lindqvist, A. et al. High-fat diet impairs hippocampal neurogenesis in male rats. Eur. J. Neurol. 13, 1385–1388 (2006).

  167. 167.

    Boitard, C. et al. Juvenile, but not adult exposure to high-fat diet impairs relational memory and hippocampal neurogenesis in mice. Hippocampus 22, 2095–2100 (2012).

  168. 168.

    Lee, J., Duan, W. & Mattson, M. P. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J. Neurochem. 82, 1367–1375 (2002).

  169. 169.

    Lee, J., Duan, W., Long, J. M., Ingram, D. K. & Mattson, M. P. Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J. Mol. Neurosci. 15, 99–108 (2000).

  170. 170.

    Lee, J., Seroogy, K. B. & Mattson, M. P. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J. Neurochem. 80, 539–547 (2002).

  171. 171.

    Vivar, C., Potter, M. C. & van Praag, H. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr. Top. Behav. Neurosci. 15, 189–210 (2013).

  172. 172.

    Kobilo, T. et al. Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn. Mem. 18, 605–609 (2011).

  173. 173.

    Fabel, K. et al. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front. Neurosci. 3, 50 (2009).

  174. 174.

    Tapia-Rojas, C., Aranguiz, F., Varela-Nallar, L. & Inestrosa, N. C. Voluntary running attenuates memory loss, decreases neuropathological changes and induces neurogenesis in a mouse model of Alzheimer’s disease. Brain Pathol. 26, 62–74 (2016).

  175. 175.

    Marlatt, M. W., Potter, M. C., Bayer, T. A., van Praag, H. & Lucassen, P. J. Prolonged running, not fluoxetine treatment, increases neurogenesis, but does not alter neuropathology, in the 3xTg mouse model of Alzheimer’s disease. Curr. Top. Behav. Neurosci. 15, 313–340 (2013).

  176. 176.

    Wolf, S. A. et al. Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biol. Psychiatry 60, 1314–1323 (2006).

  177. 177.

    Cotel, M.-C., Jawhar, S., Christensen, D. Z., Bayer, T. A. & Wirths, O. Environmental enrichment fails to rescue working memory deficits, neuron loss, and neurogenesis in APP/PS1KI mice. Neurobiol. Aging 33, 96–107 (2012).

  178. 178.

    Verdin, E. NAD + in aging, metabolism, and neurodegeneration. Science 350, 1208–1213 (2015).

  179. 179.

    Markowicz-Piasecka, M. et al. Metformin – a future therapy for neurodegenerative diseases. Pharm. Res. 34, 2614–2627 (2017).

  180. 180.

    Uttara, B., Singh, A. V., Zamboni, P. & Mahajan, R. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 7, 65–74 (2009).

  181. 181.

    Wang, J. et al. Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 11, 23–35 (2012).

  182. 182.

    Valente, T. et al. A diet enriched in polyphenols and polyunsaturated fatty acids, LMN diet, induces neurogenesis in the subventricular zone and hippocampus of adult mouse brain. J. Alzheimers Dis. 18, 849–865 (2009).

  183. 183.

    Haigis, M. C. & Sinclair, D. A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295 (2010).

  184. 184.

    Stein, L. R. & Imai, S. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J. 33, 1321–1340 (2014).

  185. 185.

    Lehmann, S., Costa, A. C., Celardo, I., Loh, S. H. Y. & Martins, L. M. Parp mutations protect against mitochondrial dysfunction and neurodegeneration in a PARKIN model of Parkinson’s disease. Cell Death Dis. 7, e2166 (2016).

  186. 186.

    Long, A. N. et al. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol. https://doi.org/10.1186/S12883-015-0272-X (2015).

  187. 187.

    Liu, D. et al. Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession. Neurobiol. Aging 34, 1564–1580 (2013).

  188. 188.

    Hou, Y. et al. NAD+supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc. Natl Acad. Sci. USA 115, E1876–E1885 (2018).

  189. 189.

    Pernicova, I. & Korbonits, M. Metformin — mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143–156 (2014).

  190. 190.

    Suwa, M., Egashira, T., Nakano, H., Sasaki, H. & Kumagai, S. Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J. Appl. Physiol. 101, 1685–1692 (2006).

  191. 191.

    Kane, D. A. et al. Metformin selectively attenuates mitochondrial H2O2 emission without affecting respiratory capacity in skeletal muscle of obese rats. Free Radic. Biol. Med. 49, 1082–1087 (2010).

  192. 192.

    Loubiere, C. et al. The energy disruptor metformin targets mitochondrial integrity via modification of calcium flux in cancer cells. Sci. Rep. 7, 5040 (2017).

  193. 193.

    Kuan, Y.-C., Huang, K.-W., Lin, C.-L., Hu, C.-J. & Kao, C.-H. Effects of metformin exposure on neurodegenerative diseases in elderly patients with type 2 diabetes mellitus. Prog. Neuropsychopharmacol. Biol. Psychiatry 79, 77–83 (2017).

  194. 194.

    Imfeld, P., Bodmer, M., Jick, S. S. & Meier, C. R. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population-based case-control study. J. Am. Geriatr. Soc. 60, 916–921 (2012).

  195. 195.

    Moore, E. M. et al. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care 36, 2981–2987 (2013).

  196. 196.

    Fatt, M. et al. Metformin acts on two different molecular pathways to enhance adult neural precursor proliferation/self-renewal and differentiation. Stem Cell Rep. 5, 988–995 (2015).

  197. 197.

    Liu, Y., Tang, G., Zhang, Z., Wang, Y. & Yang, G.-Y. Metformin promotes focal angiogenesis and neurogenesis in mice following middle cerebral artery occlusion. Neurosci. Lett. 579, 46–51 (2014).

  198. 198.

    Jin, Q. et al. Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain. Behav. Immun. 40, 131–142 (2014).

  199. 199.

    Ahmed, S. et al. Effect of metformin on adult hippocampal neurogenesis: comparison with donepezil and links to cognition. J. Mol. Neurosci. 62, 88–98 (2017).

  200. 200.

    Yuan, T.-F., Gu, S., Shan, C., Marchado, S. & Arias-Carrión, O. Oxidative stress and adult neurogenesis. Stem Cell Rev. Rep. 11, 706–709 (2015).

  201. 201.

    Manach, C., Scalbert, A., Morand, C., Rémésy, C. & Jiménez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79, 727–747 (2004).

  202. 202.

    Kim, S. J. et al. Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J. Biol. Chem. 283, 14497–14505 (2008).

  203. 203.

    Fernández-Fernández, L. et al. LMN diet, rich in polyphenols and polyunsaturated fatty acids, improves mouse cognitive decline associated with aging and Alzheimer’s disease. Behav. Brain Res. 228, 261–271 (2012).

  204. 204.

    Beltz, B. S., Tlusty, M. F., Benton, J. L. & Sandeman, D. C. Omega-3 fatty acids upregulate adult neurogenesis. Neurosci. Lett. 415, 154–158 (2007).

  205. 205.

    He, C., Qu, X., Cui, L., Wang, J. & Kang, J. X. Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc. Natl Acad. Sci. USA 106, 11370–11375 (2009).

  206. 206.

    Qu, Z. et al. Protective effects of a Rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat. PLOS ONE 7, e29641 (2012).

  207. 207.

    Reiter Russel, J. et al. Melatonin as an antioxidant: under promises but over delivers. J. Pineal Res. 61, 253–278 (2016).

  208. 208.

    Chu, J. et al. Effects of melatonin and its analogues on neural stem cells. Mol. Cell. Endocrinol. 420, 169–179 (2016).

  209. 209.

    López-Armas, G. et al. Prophylactic role of oral melatonin administration on neurogenesis in adult balb/C mice during REM sleep deprivation. Oxid. Med. Cell. Longev. 2016, 2136902 (2016).

  210. 210.

    Kilic, E. et al. Delayed melatonin administration promotes neuronal survival, neurogenesis and motor recovery, and attenuates hyperactivity and anxiety after mild focal cerebral ischemia in mice. J. Pineal Res. 45, 142–148 (2008).

  211. 211.

    Mendivil-Perez, P. et al. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J. Pineal Res. 63, e12415 (2017).

  212. 212.

    Bahmad, H. et al. Modeling human neurological and neurodegenerative diseases: from induced pluripotent stem cells to neuronal differentiation and its applications in neurotrauma. Front. Mol. Neurosci. https://doi.org/10.3389/fnmol.2017.00050 (2017).

  213. 213.

    Tang, Y., Yu, P. & Cheng, L. Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis. 8, e3108 (2017).

  214. 214.

    Nam, H., Lee, K.-H., Nam, D.-H. & Joo, K. M. Adult human neural stem cell therapeutics: Current developmental status and prospect. World J. Stem Cells 7, 126–136 (2015).

  215. 215.

    Cairns, D. M. et al. Expandable and rapidly differentiating human induced neural stem cell lines for multiple tissue engineering applications. Stem Cell Rep. 7, 557–570 (2016).

  216. 216.

    Zhang, J., Nuebel, E., Daley, G. Q., Koehler, C. M. & Teitell, M. A. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11, 589–595 (2012).

  217. 217.

    Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T. & Yamanaka, S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5, 237–241 (2009).

  218. 218.

    Zhu, S. et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7, 651–655 (2010).

  219. 219.

    Panopoulos, A. D. et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 22, 168–177 (2012).

  220. 220.

    Son, M. J., Jeong, B. R., Kwon, Y. & Cho, Y. S. Interference with the mitochondrial bioenergetics fuels reprogramming to pluripotency via facilitation of the glycolytic transition. Int. J. Biochem. Cell Biol. 45, 2512–2518 (2013).

  221. 221.

    Vazquez-Martin, A. et al. Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: new insight into the role of mitophagy in cell stemness. Aging 4, 393–401 (2012).

  222. 222.

    Son, M. J. et al. Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency. Cell Death Differ. 22, 1957–1969 (2015).

  223. 223.

    Agostini, M. et al. Metabolic reprogramming during neuronal differentiation. Cell Death Differ. 23, 1502–1514 (2016).

  224. 224.

    Yokota, M., Hatakeyama, H., Ono, Y., Kanazawa, M. & Goto, Y. Mitochondrial respiratory dysfunction disturbs neuronal and cardiac lineage commitment of human iPSCs. Cell Death Dis. 8, e2551 (2017).

  225. 225.

    Kang, E. et al. Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs. Cell Stem Cell 18, 625–636 (2016).

  226. 226.

    Folmes, C. D. L. et al. Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS. Stem Cells 31, 1298–1308 (2013).

  227. 227.

    Muratore, C. R. et al. The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum. Mol. Genet. 23, 3523–3536 (2014).

  228. 228.

    Hossini, A. M. et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer’s disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics https://doi.org/10.1186/s12864-015-1262-5 (2015).

  229. 229.

    Balez, R. et al. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci. Rep. 6, 31450 (2016).

  230. 230.

    Cooper, O. et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci. Transl Med. 4, 141ra90 (2012).

  231. 231.

    Cui, G., Shao, S., Yang, J., Liu, J. & Guo, H. Designer self-assemble peptides maximize the therapeutic benefits of neural stem cell transplantation for Alzheimer’s disease via enhancing neuron differentiation and paracrine action. Mol. Neurobiol. 53, 1108–1123 (2016).

  232. 232.

    Rockenstein, E. et al. Neuro-peptide treatment with Cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer disease. Stem Cell Res. 15, 54–67 (2015).

  233. 233.

    Chen, Y. et al. Treatment efficacy of NGF nanoparticles combining neural stem cell transplantation on Alzheimer’s disease model rats. Med. Sci. Monit. 21, 3608–3615 (2015).

  234. 234.

    Marsh, S. E. et al. HuCNS-SC human NSCs fail to differentiate, form ectopic clusters, and provide no cognitive benefits in a transgenic model of Alzheimer’s disease. Stem Cell Rep. 8, 235–248 (2017).

  235. 235.

    Ou, Z. et al. The combination of CRISPR/Cas9 and iPSC technologies in the gene therapy of human β-thalassemia in mice. Sci. Rep. 6, 32463 (2016).

  236. 236.

    Ortiz-Virumbrales, M. et al. CRISPR/Cas9-correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 N141I neurons. Acta Neuropathol. Commun. 5, 77 (2017).

  237. 237.

    CRISPR off-targets: a reassessment [Insight]. Nat. Methods 15, 229–230 (2018).

  238. 238.

    Gammage, P. A., Moraes, C. T. & Minczuk, M. Mitochondrial genome engineering: the revolution may not be CRISPR-Ized. Trends Genet. 34, 101–110 (2018).

  239. 239.

    Gammage, P. A., Rorbach, J., Vincent, A. I., Rebar, E. J. & Minczuk, M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol. Med. 6, 458–466 (2014).

  240. 240.

    Bacman, S. R., Williams, S. L., Pinto, M., Peralta, S. & Moraes, C. T. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 19, 1111–1113 (2013).

  241. 241.

    Sanders, L. H. et al. LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: reversal by gene correction. Neurobiol. Dis. 62, 381–386 (2014).

  242. 242.

    Yang, Y. et al. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell 9, 283–297 (2018).

  243. 243.

    Craven, L. et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465, 82–85 (2010).

  244. 244.

    Tachibana, M. et al. Towards germline gene therapy of inherited mitochondrial diseases. Nature 493, 627–631 (2013).

  245. 245.

    Paull, D. et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 493, 632–637 (2013).

  246. 246.

    Deuse, T. et al. SCNT-derived ESCs with mismatched mitochondria trigger an immune response in allogeneic hosts. Cell Stem Cell 16, 33–38 (2015).

  247. 247.

    Yamada, M. et al. Genetic drift can compromise mitochondrial replacement by nuclear transfer in human oocytes. Cell Stem Cell 18, 749–754 (2016).

  248. 248.

    Ma, H. et al. Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature 524, 234–238 (2015).

  249. 249.

    Tomlinson, B. E., Blessed, G. & Roth, M. Observations on the brains of non-demented old people. J. Neurol. Sci. 7, 331–356 (1968).

  250. 250.

    Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study(MRC CFAS). Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet 357, 169–175 (2001).

  251. 251.

    Katzman, R. et al. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann. Neurol. 23, 138–144 (1988).

  252. 252.

    Stern, Y. What is cognitive reserve? Theory and research application of the reserve concept. J. Int. Neuropsychol. Soc. 8, 448–460 (2002).

  253. 253.

    Stern, Y. Cognitive reserve. Neuropsychologia 47, 2015–2028 (2009).

  254. 254.

    Scarmeas, N. & Stern, Y. Cognitive reserve and lifestyle. J. Clin. Exp. Neuropsychol. 25, 625–633 (2003).

  255. 255.

    Kempermann, G., Kuhn, H. G. & Gage, F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).

  256. 256.

    van Praag, H., Kempermann, G. & Gage, F. H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2, 266–270 (1999).

  257. 257.

    Briley, D. et al. Preserved neurogenesis in non-demented individuals with AD neuropathology. Sci. Rep. 6, 27812 (2016).

  258. 258.

    Lazarov, O., Mattson, M. P., Peterson, D. A., Pimplikar, S. W. & van Praag, H. When neurogenesis encounters aging and disease. Trends Neurosci. 33, 569–579 (2010).

  259. 259.

    Liu, L. et al. Noise induced hearing loss impairs spatial learning/memory and hippocampal neurogenesis in mice. Sci. Rep. 6, 20374 (2016).

  260. 260.

    Csabai, D. et al. Low intensity, long term exposure to tobacco smoke inhibits hippocampal neurogenesis in adult mice. Behav. Brain Res. 302, 44–52 (2016).

  261. 261.

    Braak, H., Braak, E. & Bohl, J. Staging of Alzheimer-related cortical destruction. Eur. Neurol. 33, 403–408 (1993).

  262. 262.

    Soloveva, M. V., Jamadar, S. D., Poudel, G. & Georgiou-Karistianis, N. A. Critical review of brain and cognitive reserve in Huntington’s disease. Neurosci. Biobehav. Rev. 88, 155–169 (2018).

  263. 263.

    Poletti, M., Emre, M. & Bonuccelli, U. Mild cognitive impairment and cognitive reserve in Parkinson’s disease. Parkinsonism Relat. Disord. 17, 579–586 (2011).

  264. 264.

    Palmer, T. D. et al. Cell culture. Progenitor cells from human brain after death. Nature 411, 42–43 (2001).

  265. 265.

    Soldner, F. & Jaenisch, R. iPSC disease modeling. Science 338, 1155–1156 (2012).

  266. 266.

    Lee, A. S., Tang, C., Rao, M. S., Weissman, I. L. & Wu, J. C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med. 19, 998–1004 (2013).

  267. 267.

    Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009).

  268. 268.

    Thier, M. et al. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10, 473–479 (2012).

  269. 269.

    Han, D. W. et al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10, 465–472 (2012).

  270. 270.

    Lujan, E., Chanda, S., Ahlenius, H., Südhof, T. C. & Wernig, M. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc. Natl Acad. Sci. USA 109, 2527–2532 (2012).

  271. 271.

    Ring, K. L. et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11, 100–109 (2012).

  272. 272.

    Hemmer, K. et al. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain. Stem Cell Rep. 3, 423–431 (2014).

  273. 273.

    Hermann, A. et al. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J. Cell Sci. 117, 4411–4422 (2004).

  274. 274.

    Stewart, A. N. et al. Co-transplantation of mesenchymal and neural stem cells and overexpressing stromal-derived factor-1 for treating spinal cord injury. Brain Res. 1672, 91–105 (2017).

  275. 275.

    Lake, N. J., Compton, A. G., Rahman, S. & Thorburn, D. R. Leigh syndrome: one disorder, more than 75 monogenic causes. Ann. Neurol. 79, 190–203 (2016).

  276. 276.

    Alavi, M. V. & Fuhrmann, N. Dominant optic atrophy, OPA1, and mitochondrial quality control: understanding mitochondrial network dynamics. Mol. Neurodegener. 8, 32 (2013).

  277. 277.

    El-Hattab, A. W., Adesina, A. M., Jones, J. & Scaglia, F. MELAS syndrome: clinical manifestations, pathogenesis, and treatment options. Mol. Genet. Metab. 116, 4–12 (2015).

  278. 278.

    Diaz, F. Cytochrome c oxidase deficiency: patients and animal models. Biochim. Biophys. Acta 1802, 100–110 (2010).

  279. 279.

    Siddiqui, M. F., Elwell, C. & Johnson, M. H. Mitochondrial dysfunction in autism spectrum disorders. Autism Open Access 6, 1000190 (2016).

  280. 280.

    Kaushik, G. & Zarbalis, K. S. Prenatal neurogenesis in autism spectrum disorders. Front. Chem. https://doi.org/10.3389/fchem.2016.00012 (2016).

  281. 281.

    Valiente-Pallejà, A. et al. Genetic and clinical evidence of mitochondrial dysfunction in autism spectrum disorder and intellectual disability. Hum. Mol. Genet. 27, 891–900 (2018).

  282. 282.

    Marui, T. et al. The NADH-ubiquinone oxidoreductase 1 alpha subcomplex 5 (NDUFA5) gene variants are associated with autism. Acta Psychiatr. Scand. 123, 118–124 (2011).

  283. 283.

    Napoli, E., Wong, S. & Giulivi, C. Evidence of reactive oxygen species-mediated damage to mitochondrial DNA in children with typical autism. Mol. Autism 4, 2 (2013).

  284. 284.

    Iannitelli, A., Quartini, A., Tirassa, P. & Bersani, G. Schizophrenia and neurogenesis: a stem cell approach. Neurosci. Biobehav. Rev. 80, 414–442 (2017).

  285. 285.

    Reif, A. et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol. Psychiatry 11, 514–522 (2006).

  286. 286.

    Voloboueva, L. A. & Giffard, R. G. Inflammation, mitochondria and the inhibition of adult neurogenesis. J. Neurosci. Res. 89, 1989–1996 (2011).

  287. 287.

    Martí-Fàbregas, J. et al. Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology 74, 357–365 (2010).

  288. 288.

    Galán, L., Gómez-Pinedo, U., Guerrero, A., García-Verdugo, J. M. & Matías-Guiu, J. Amyotrophic lateral sclerosis modifies progenitor neural proliferation in adult classic neurogenic brain niches. BMC Neurol. 17, 173 (2017).

  289. 289.

    Muyderman, H. & Chen, T. Mitochondrial dysfunction in amyotrophic lateral sclerosis – a valid pharmacological target? Br. J. Pharmacol. 171, 2191–2205 (2014).

  290. 290.

    van den Berge, S. A., van Strien, M. E. & Hol, E. M. Resident adult neural stem cells in Parkinson’s disease — the brain’s own repair system? Eur. J. Pharmacol. 719, 117–127 (2013).

  291. 291.

    Höglinger, G. U. et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat. Neurosci. 7, 726–735 (2004).

  292. 292.

    van den Berge, S. A. et al. The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain J. Neurol. 134, 3249–3263 (2011).

  293. 293.

    O’Sullivan, S. S. et al. The effect of drug treatment on neurogenesis in Parkinson’s disease. Mov. Disord. 26, 45–50 (2011).

  294. 294.

    Jodeiri Farshbaf, M. & Ghaedi, K. Huntington’s disease and mitochondria. Neurotox. Res. 32, 518–529 (2017).

  295. 295.

    Curtis, M. A. et al. Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc. Natl Acad. Sci. USA 100, 9023–9027 (2003).

  296. 296.

    Gil-Mohapel, J., Simpson, J. M., Ghilan, M. & Christie, B. R. Neurogenesis in Huntington’s disease: can studying adult neurogenesis lead to the development of new therapeutic strategies? Brain Res. 1406, 84–105 (2011).

  297. 297.

    Jin, K. et al. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 101, 343–347 (2004).

  298. 298.

    Boekhoorn, K., Joels, M. & Lucassen, P. J. Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol. Dis. 24, 1–14 (2006).

  299. 299.

    Crews, L. et al. Increased BMP6 levels in the brains of Alzheimer’s disease patients and APP transgenic mice are accompanied by impaired neurogenesis. J. Neurosci. 30, 12252–12262 (2010).

Download references

Acknowledgements

The authors thank D. Lagace, D. Patten and B. Fong for critical review of the manuscript. M.K. was supported by postdoctoral fellowships from the Heart and Stroke Foundation of Canada (HSFC), the Canadian Partnership for Stroke Recovery and the Brain Canada/Krembil Foundation. R.H. is supported by a postdoctoral fellowship from the Parkinson’s Research Consortium. This research was supported by grants from the Canadian Institutes of Health Research, the Brain Canada/Krembil Foundation and the HSFC to R.S.S.

Reviewer information

Nature Reviews Neuroscience thanks A. Prigione, M. Boldrini and N. Chandel for their contribution to the peer review of this work.

Author information

Affiliations

  1. Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada

    • Mireille Khacho
  2. Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada

    • Richard Harris
    •  & Ruth S. Slack

Authors

  1. Search for Mireille Khacho in:

  2. Search for Richard Harris in:

  3. Search for Ruth S. Slack in:

Contributions

R.S.S., M.K. and R.H. researched data for the article and made substantial contributions to the discussion of content and the review and editing of the manuscript before submission. M.K. and R.H. wrote the article.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Ruth S. Slack.

Glossary

Tricarboxylic acid (TCA) cycle

A series of metabolic reactions within the mitochondrial matrix that convert reduced carbon molecules to reducing equivalents that can donate electrons to the electron transport chain.

Electron transport chain

(ETC). A series of protein complexes that accept electrons from reducing equivalents in order to pump hydrogen ions into the intermembrane space of the mitochondria for establishment of an electrochemical gradient used to generate ATP.

Optic atrophy

Degeneration of the optic nerve that can be caused by mutations in the OPA1 gene that promote mitochondrial inner membrane fusion.

Oxidative phosphorylation

(OXPHOS). The process by which electrons are donated to the electron transport chain in the mitochondria to establish an electrochemical gradient and generate ATP with oxygen as a final electron acceptor.

Jumonji C domain

A protein motif that has histone demethylase catalytic activity.

Acetylation marks

Post-translational modifications consisting of acetyl groups that are used as a reversible regulatory mechanism for modifying protein function.

Mitochondrial respiration

The process by which mitochondria use reduced carbon molecules and oxygen to generate energy in the form of ATP.

Wolfram syndrome

(WS). A rare genetic disease primarily caused by mutations to the WFS1 gene that regulates calcium balance in cells; WS results in diabetes, optic atrophy and deafness in children.

Leigh syndrome

A rare genetic disease primarily caused by mutations affecting oxidative phosphorylation; Leigh syndrome results in developmental delay, cognitive impairment and motor decline.

COX deficiency

A genetic disease caused by mutations in cytochrome c oxidase (COX), a complex of the electron transport chain, resulting in encephalomyopathy, muscle atrophy and Leigh syndrome.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41583-018-0091-3