Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Imaging the evolution and pathophysiology of Alzheimer disease

Abstract

Technologies for imaging the pathophysiology of Alzheimer disease (AD) now permit studies of the relationships between the two major proteins deposited in this disease — amyloid-β (Aβ) and tau — and their effects on measures of neurodegeneration and cognition in humans. Deposition of Aβ in the medial parietal cortex appears to be the first stage in the development of AD, although tau aggregates in the medial temporal lobe (MTL) precede Aβ deposition in cognitively healthy older people. Whether aggregation of tau in the MTL is the first stage in AD or a fairly benign phenomenon that may be transformed and spread in the presence of Aβ is a major unresolved question. Despite a strong link between Aβ and tau, the relationship between Aβ and neurodegeneration is weak; rather, it is tau that is associated with brain atrophy and hypometabolism, which, in turn, are related to cognition. Although there is support for an interaction between Aβ and tau resulting in neurodegeneration that leads to dementia, the unknown nature of this interaction, the strikingly different patterns of brain Aβ and tau deposition and the appearance of neurodegeneration in the absence of Aβ and tau are challenges to this model that ultimately must be explained.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Patterns of brain amyloid-β deposition.
Fig. 2: Patterns of brain atrophy and glucose hypometabolism in Alzheimer disease.
Fig. 3: Tau deposition in ageing and Alzheimer disease.
Fig. 4: Relationships between canonical resting-state networks and amyloid-β deposition.
Fig. 5: Proposed relationships between pathological protein accumulation, neurodegeneration and drivers of the Alzheimer disease process.

References

  1. Small, S. A., Schobel, S. A., Buxton, R. B., Witter, M. P. & Barnes, C. A. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat. Rev. Neurosci. 12, 585–601 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nelson, P. T. et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71, 362–381 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. Ittner, L. M. & Gotz, J. Amyloid-β and tau — a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neurosci. 12, 65–72 (2011).

    CAS  PubMed  Google Scholar 

  4. Hyman, B. T. et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 8, 1–13 (2012).

    PubMed  PubMed Central  Google Scholar 

  5. Price, J. L. & Morris, J. C. Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann. Neurol. 45, 358–368 (1999).

    CAS  PubMed  Google Scholar 

  6. Bennett, D. A. et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66, 1837–1844 (2006).

    CAS  PubMed  Google Scholar 

  7. Jack, C. R. Jr. et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013). This paper proposes a model of the pathophysiology of AD that has been influential in guiding and interpreting human studies.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    CAS  PubMed  Google Scholar 

  9. Wingo, T. S., Lah, J. J., Levey, A. I. & Cutler, D. J. Autosomal recessive causes likely in early-onset Alzheimer disease. Arch. Neurol. 69, 59–64 (2012).

    PubMed  Google Scholar 

  10. Cacace, R., Sleegers, K. & Van Broeckhoven, C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement. 12, 733–748 (2016).

    PubMed  Google Scholar 

  11. Josephs, K. A. et al. Rates of hippocampal atrophy and presence of post-mortem TDP-43 in patients with Alzheimer’s disease: a longitudinal retrospective study. Lancet Neurol. 16, 917–924 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Schneider, J. A., Arvanitakis, Z., Leurgans, S. E. & Bennett, D. A. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann. Neurol. 66, 200–208 (2009).

    PubMed  PubMed Central  Google Scholar 

  13. Bertram, L., Lill, C. M. & Tanzi, R. E. The genetics of Alzheimer disease: back to the future. Neuron 68, 270–281 (2010).

    CAS  PubMed  Google Scholar 

  14. Lopera, F. et al. Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. JAMA 277, 793–799 (1997).

    CAS  PubMed  Google Scholar 

  15. Buckner, R. L. et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 25, 7709–7717 (2005).

    CAS  PubMed  Google Scholar 

  16. Grothe, M. J., Teipel, S. J. & Alzheimer’s Disease Neuroimaging Initiative. Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer’s disease correspond to dissociable functional brain networks. Hum. Brain Mapp. 37, 35–53 (2016).

    PubMed  Google Scholar 

  17. Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29, 1860–1873 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Daianu, M. et al. Rich club analysis in the Alzheimer’s disease connectome reveals a relatively undisturbed structural core network. Hum. Brain Mapp. 36, 3087–3103 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. Fox, N. C. et al. Presymptomatic hippocampal atrophy in Alzheimer’s disease. A longitudinal MRI study. Brain 119, 2001–2007 (1996).

    PubMed  Google Scholar 

  20. Scholl, M. et al. Low PiB PET retention in presence of pathologic CSF biomarkers in Arctic APP mutation carriers. Neurology 79, 229–236 (2012).

    PubMed  Google Scholar 

  21. Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 367, 795–804 (2012). This article is an examination of the sequence of pathophysiological events in the presymptomatic phase of ADAD.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fleisher, A. S. et al. Florbetapir PET analysis of amyloid-β deposition in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: a cross-sectional study. Lancet Neurol. 11, 1057–1065 (2012).

    CAS  PubMed  Google Scholar 

  23. Benzinger, T. L. et al. Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease. Proc. Natl Acad. Sci. USA 110, E4502–E4509 (2013).

    CAS  PubMed  Google Scholar 

  24. Fleisher, A. S. et al. Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: a cross-sectional study. JAMA Neurol. 72, 316–324 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Chhatwal, J. P. et al. Impaired default network functional connectivity in autosomal dominant Alzheimer disease. Neurology 81, 736–744 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Klunk, W. E. et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J. Neurosci. 27, 6174–6184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Villemagne, V. L. et al. High striatal amyloid β-peptide deposition across different autosomal Alzheimer disease mutation types. Arch. Neurol. 66, 1537–1544 (2009).

    PubMed  Google Scholar 

  28. Gordon, B. A. et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol. 17, 241–250 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Quiroz, Y. T. et al. Association between amyloid and tau accumulation in young adults with autosomal dominant Alzheimer disease. JAMA Neurol. 75, 548–556 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. Gorno-Tempini, M. L. et al. Classification of primary progressive aphasia and its variants. Neurology 76, 1006–1014 (2011).

    PubMed  PubMed Central  Google Scholar 

  31. Mendez, M. F., Ghajarania, M. & Perryman, K. M. Posterior cortical atrophy: clinical characteristics and differences compared to Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 14, 33–40 (2002).

    PubMed  Google Scholar 

  32. Ossenkoppele, R. et al. The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain 138, 2732–2749 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. Rabinovici, G. D. et al. Aβ amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann. Neurol. 64, 388–401 (2008).

    PubMed  PubMed Central  Google Scholar 

  34. de Souza, L. C. et al. Similar amyloid-β burden in posterior cortical atrophy and Alzheimer’s disease. Brain 134, 2036–2043 (2011).

    PubMed  Google Scholar 

  35. Lehmann, M. et al. Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain 136, 844–858 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. Ossenkoppele, R. et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139, 1551–1567 (2016). This report shows the strong relationships between tau, glucose metabolism and cognitive phenotype in EOAD.

    PubMed  PubMed Central  Google Scholar 

  37. Mielke, R., Herholz, K., Grond, M., Kessler, J. & Heiss, W. D. Differences of regional cerebral glucose metabolism between presenile and senile dementia of Alzheimer type. Neurobiol. Aging 13, 93–98 (1992).

    CAS  PubMed  Google Scholar 

  38. Kim, E. J. et al. Glucose metabolism in early onset versus late onset Alzheimer’s disease: an SPM analysis of 120 patients. Brain 128, 1790–1801 (2005).

    CAS  PubMed  Google Scholar 

  39. Rabinovici, G. D. et al. Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden. Brain 133, 512–528 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. Xia, C. et al. Association of in vivo [18F]AV-1451 tau PET imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease. JAMA Neurol. 74, 427–436 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Schöll, M. et al. Distinct 18F-AV-1451 tau PET retention patterns in early- and late-onset Alzheimer’s disease. Brain 140, 2286–2294 (2017).

    PubMed  Google Scholar 

  42. Bejanin, A. et al. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 140, 3286–3300 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Iaccarino, L. et al. Local and distant relationships between amyloid, tau and neurodegeneration in Alzheimer’s disease. Neuroimage Clin. 17, 452–464 (2018).

    PubMed  Google Scholar 

  44. Whitwell, J. L. et al. [18F]AV-1451 clustering of entorhinal and cortical uptake in Alzheimer’s disease. Ann. Neurol. 83, 248–257 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Klunk, W. E. et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann. Neurol. 55, 306–319 (2004). This article presents the initial report of the use of amyloid imaging in the study of ageing and dementia.

    CAS  PubMed  Google Scholar 

  46. Rowe, C. C. et al. Imaging β-amyloid burden in aging and dementia. Neurology 68, 1718–1725 (2007).

    CAS  PubMed  Google Scholar 

  47. Furst, A. J. et al. Cognition, glucose metabolism and amyloid burden in Alzheimer’s disease. Neurobiol. Aging 33, 215–225 (2012).

    CAS  PubMed  Google Scholar 

  48. Singh, V. et al. Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer’s disease. Brain 129, 2885–2893 (2006).

    PubMed  Google Scholar 

  49. Dickerson, B. C. et al. The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex 19, 497–510 (2009). This paper reports on the use of MRI to identify a characteristic pattern of regional brain atrophy associated with AD and in asymptomatic older people.

    PubMed  Google Scholar 

  50. Whitwell, J. L. et al. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain 130, 1777–1786 (2007).

    PubMed  PubMed Central  Google Scholar 

  51. Silverman, D. H. et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 286, 2120–2127 (2001).

    CAS  PubMed  Google Scholar 

  52. Fouquet, M. et al. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer’s disease. Brain 132, 2058–2067 (2009).

    PubMed  PubMed Central  Google Scholar 

  53. Landau, S. M. et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol. Aging 32, 1207–1218 (2011).

    PubMed  Google Scholar 

  54. De Santi, S. et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol. Aging 22, 529–539 (2001).

    PubMed  Google Scholar 

  55. Jack, C. R. Jr. et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62, 591–600 (2004).

    PubMed  PubMed Central  Google Scholar 

  56. Jack, C. R. Jr. et al. Brain β-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease. Brain 133, 3336–3348 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Chetelat, G. et al. Relationship between atrophy and β-amyloid deposition in Alzheimer disease. Ann. Neurol. 67, 317–324 (2010).

    CAS  PubMed  Google Scholar 

  58. Ewers, M. et al. CSF biomarker and PIB-PET-derived β-amyloid signature predicts metabolic, gray matter, and cognitive changes in nondemented subjects. Cereb. Cortex 22, 1993–2004 (2012).

    PubMed  Google Scholar 

  59. Tosun, D. et al. Spatial patterns of brain amyloid-β burden and atrophy rate associations in mild cognitive impairment. Brain 134, 1077–1088 (2011).

    PubMed  PubMed Central  Google Scholar 

  60. Archer, H. A. et al. Amyloid load and cerebral atrophy in Alzheimer’s disease: an 11C-PIB positron emission tomography study. Ann. Neurol. 60, 145–147 (2006).

    PubMed  Google Scholar 

  61. Greicius, M. D., Srivastava, G., Reiss, A. L. & Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl Acad. Sci. USA 101, 4637–4642 (2004). This paper presents the initial report showing the effects of AD on resting-state connectivity in the DMN.

    CAS  PubMed  Google Scholar 

  62. Badhwar, A. et al. Resting-state network dysfunction in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimers Dement. 8, 73–85 (2017).

    Google Scholar 

  63. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991). This landmark report describes the results of autopsy studies of AD pathology that proposed a widely utilized staging scheme for tau pathology.

    CAS  PubMed  Google Scholar 

  64. Schwarz, A. J. et al. Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 139, 1539–1550 (2016).

    PubMed  Google Scholar 

  65. Johnson, K. A. et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann. Neurol. 79, 110–119 (2016). This report examines the use of tau-PET in individuals ranging from those who were cognitively healthy to those with dementia.

    PubMed  Google Scholar 

  66. Cho, H. et al. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann. Neurol. 80, 247–258 (2016).

    CAS  PubMed  Google Scholar 

  67. Brier, M. R. et al. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. Sci. Transl Med. 8, 338ra66 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. Pontecorvo, M. J. et al. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain 140, 748–763 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Wang, L. et al. Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between β-amyloid and tauopathy. JAMA Neurol. 73, 1070–1077 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Hansson, O. et al. Tau pathology distribution in Alzheimer’s disease corresponds differentially to cognition-relevant functional brain networks. Front. Neurosci. 11, 167 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. Hoenig, M. C. et al. Networks of tau distribution in Alzheimer’s disease. Brain 141, 568–581 (2018).

    PubMed  Google Scholar 

  72. Bischof, G. N. et al. Impact of tau and amyloid burden on glucose metabolism in Alzheimer’s disease. Ann. Clin. Transl Neurol. 3, 934–939 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jansen, W. J. et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313, 1924–1938 (2015).

    PubMed  PubMed Central  Google Scholar 

  74. Morris, J. C. et al. APOE predicts amyloid-β but not tau Alzheimer pathology in cognitively normal aging. Ann. Neurol. 67, 122–131 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Farrer, L. A. et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278, 1349–1356 (1997).

    CAS  PubMed  Google Scholar 

  76. Villeneuve, S. et al. Existing Pittsburgh compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. Brain 138, 2020–2033 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. Palmqvist, S. et al. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 8, 1214 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Hedden, T., Oh, H., Younger, A. P. & Patel, T. A. Meta-analysis of amyloid-cognition relations in cognitively normal older adults. Neurology 80, 1341–1348 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Jansen, W. J. et al. Association of cerebral amyloid-β aggregation with cognitive functioning in persons without dementia. JAMA Psychiatry 75, 84–95 (2018).

    PubMed  Google Scholar 

  80. Donohue, M. C. et al. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA 317, 2305–2316 (2017). This large multisite study analyses the relationship between Aβ and cognitive decline in healthy older people.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dubois, B. et al. Cognitive and neuroimaging features and brain β-amyloidosis in individuals at risk of Alzheimer’s disease (INSIGHT-preAD): a longitudinal observational study. Lancet Neurol. 17, 335–346 (2018).

    CAS  PubMed  Google Scholar 

  82. Mormino, E. C. et al. Amyloid and APOE ε4 interact to influence short-term decline in preclinical Alzheimer disease. Neurology 82, 1760–1767 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Farrell, M. E. et al. Association of longitudinal cognitive decline with amyloid burden in middle-aged and older adults: evidence for a dose-response relationship. JAMA Neurol. 74, 830–838 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Becker, J. A. et al. Amyloid-β associated cortical thinning in clinically normal elderly. Ann. Neurol. 69, 1032–1042 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chetelat, G. et al. Accelerated cortical atrophy in cognitively normal elderly with high β-amyloid deposition. Neurology 78, 477–484 (2012).

    CAS  PubMed  Google Scholar 

  86. Dore, V. et al. Cross-sectional and longitudinal analysis of the relationship between Aβ deposition, cortical thickness, and memory in cognitively unimpaired individuals and in Alzheimer disease. JAMA Neurol. 70, 903–911 (2013).

    PubMed  Google Scholar 

  87. Villemagne, V. L. et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 12, 357–367 (2013).

    CAS  PubMed  Google Scholar 

  88. Lowe, V. J. et al. Association of hypometabolism and amyloid levels in aging, normal subjects. Neurology 82, 1959–1967 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Reiman, E. M. et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc. Natl Acad. Sci. USA 101, 284–289 (2004).

    CAS  PubMed  Google Scholar 

  90. Jagust, W. J. & Landau, S. M. & Alzheimer’s Disease Neuroimaging Initiative. Apolipoprotein E, not fibrillar β-amyloid, reduces cerebral glucose metabolism in normal aging. J. Neurosci. 32, 18227–18233 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Altmann, A. et al. Regional brain hypometabolism is unrelated to regional amyloid plaque burden. Brain 138, 3734–3746 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Cohen, A. D. et al. Basal cerebral metabolism may modulate the cognitive effects of Aβ in mild cognitive impairment: an example of brain reserve. J. Neurosci. 29, 14770–14778 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Johnson, S. C. et al. Amyloid burden and neural function in people at risk for Alzheimer’s disease. Neurobiol. Aging 35, 576–584 (2014).

    CAS  PubMed  Google Scholar 

  94. Oh, H., Madison, C., Baker, S., Rabinovici, G. & Jagust, W. Dynamic relationships between age, amyloid-β deposition, and glucose metabolism link to the regional vulnerability to Alzheimer’s disease. Brain 139, 2275–2289 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. Hedden, T. et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J. Neurosci. 29, 12686–12694 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Mormino, E. C. et al. Relationships between β-amyloid and functional connectivity in different components of the default mode network in aging. Cereb. Cortex 21, 2399–2407 (2011).

    PubMed  PubMed Central  Google Scholar 

  97. Jones, D. T. et al. Cascading network failure across the Alzheimer’s disease spectrum. Brain 139, 547–562 (2016).

    PubMed  Google Scholar 

  98. Mormino, E. C. et al. Aβ deposition in aging is associated with increases in brain activation during successful memory encoding. Cereb. Cortex 22, 1813–1823 (2012).

    PubMed  Google Scholar 

  99. Sperling, R. A. et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63, 178–188 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kennedy, K. M. et al. Effects of β-amyloid accumulation on neural function during encoding across the adult lifespan. Neuroimage 62, 1–8 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Schöll, M. et al. PET imaging of tau deposition in the aging human brain. Neuron 89, 971–982 (2016).

    PubMed  PubMed Central  Google Scholar 

  102. Braak, H. & Del Tredici, K. Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr. Opin. Neurol. 25, 708–714 (2012).

    CAS  PubMed  Google Scholar 

  103. Tosun, D. et al. Association between tau deposition and antecedent amyloid-β accumulation rates in normal and early symptomatic individuals. Brain 140, 1499–1512 (2017).

    PubMed  Google Scholar 

  104. Leal, S. L., Lockhart, S. N., Maass, A., Bell, R. K. & Jagust, W. J. Subthreshold amyloid predicts tau deposition in aging. J. Neurosci. 38, 4482–4489 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lowe, V. J. et al. Widespread brain tau and its association with ageing, Braak stage and Alzheimer’s dementia. Brain 141, 271–287 (2018).

    PubMed  Google Scholar 

  106. Jack, C. R. Jr. et al. Longitudinal tau PET in ageing and Alzheimer’s disease. Brain 141, 1517–1528 (2018).

    PubMed  PubMed Central  Google Scholar 

  107. Sepulcre, J. et al. In vivo tau, amyloid, and gray matter profiles in the aging brain. J. Neurosci. 36, 7364–7374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lockhart, S. N. et al. Amyloid and tau PET demonstrate region-specific associations in normal older people. Neuroimage 150, 191–199 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Maass, A. et al. Entorhinal tau pathology, episodic memory decline, and neurodegeneration in aging. J. Neurosci. 38, 530–543 (2018). This paper reports on the structural and cognitive effects of MTL tau deposition in normal ageing.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. LaPoint, M. R. et al. The association between tau PET and retrospective cortical thinning in clinically normal elderly. Neuroimage 157, 612–622 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Hanseeuw, B. J. et al. Fluorodeoxyglucose metabolism associated with tau-amyloid interaction predicts memory decline. Ann. Neurol. 81, 583–596 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Adams, J. N., Lockhart, S. N., Li, L. & Jagust, W. J. Relationships between tau and glucose metabolism reflect Alzheimer’s disease pathology in cognitively normal older adults. Cereb. Cortex. https://doi.org/10.1093/cercor/bhy078 (2018).

    Article  PubMed  Google Scholar 

  113. Sepulcre, J. et al. Tau and amyloid β proteins distinctively associate to functional network changes in the aging brain. Alzheimers Dement. 13, 1261–1269 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. Marks, S. M., Lockhart, S. N., Baker, S. L. & Jagust, W. J. Tau and β-amyloid are associated with medial temporal lobe structure, function, and memory encoding in normal aging. J. Neurosci. 37, 3192–3201 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. DeCarli, C. et al. Measures of brain morphology and infarction in the framingham heart study: establishing what is normal. Neurobiol. Aging 26, 491–510 (2005).

    PubMed  Google Scholar 

  116. Gautam, P., Cherbuin, N., Sachdev, P. S., Wen, W. & Anstey, K. J. Relationships between cognitive function and frontal grey matter volumes and thickness in middle aged and early old-aged adults: the PATH Through Life study. Neuroimage 55, 845–855 (2011).

    PubMed  Google Scholar 

  117. Zuendorf, G., Kerrouche, N., Herholz, K. & Baron, J. C. Efficient principal component analysis for multivariate 3D voxel-based mapping of brain functional imaging data sets as applied to FDG-PET and normal aging. Hum. Brain Mapp. 18, 13–21 (2003).

    PubMed  Google Scholar 

  118. Smith, C. D. et al. Brain structural alterations before mild cognitive impairment. Neurology 68, 1268–1273 (2007).

    CAS  PubMed  Google Scholar 

  119. Dickerson, B. C. et al. Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 76, 1395–1402 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. de Leon, M. J. et al. Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/poitron-emission tomography (FDG/PET). Proc. Natl Acad. Sci. USA 98, 10966–10971 (2001).

    PubMed  Google Scholar 

  121. Jagust, W. et al. Brain imaging evidence of preclinical Alzheimer’s disease in normal aging. Ann. Neurol. 59, 673–681 (2006).

    PubMed  Google Scholar 

  122. Knopman, D. S. et al. Brain injury biomarkers are not dependent on β-amyloid in normal elderly. Ann. Neurol. 73, 472–480 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Bakkour, A., Morris, J. C., Wolk, D. A. & Dickerson, B. C. The effects of aging and Alzheimer’s disease on cerebral cortical anatomy: specificity and differential relationships with cognition. Neuroimage 76, 332–344 (2013).

    PubMed  PubMed Central  Google Scholar 

  124. Fjell, A. M. et al. Brain changes in older adults at very low risk for Alzheimer’s disease. J. Neurosci. 33, 8237–8242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Jack, C. R. Jr. et al. Suspected non-Alzheimer disease pathophysiology — concept and controversy. Nat. Rev. Neurol. 12, 117–124 (2016). This article reviews the factors that may be associated with neurodegeneration in the absence of AD pathology.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Burnham, S. C. et al. Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study. Lancet Neurol. 15, 1044–1053 (2016).

    PubMed  Google Scholar 

  127. Crary, J. F. et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128, 755–766 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Mormino, E. C. et al. Heterogeneity in suspected non-Alzheimer disease pathophysiology among clinically normal older individuals. JAMA Neurol. 73, 1185–1191 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. Jack, C. R. Jr. et al. Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50–95 years: a cross-sectional study. Lancet Neurol. 16, 435–444 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Brookmeyer, R. & Abdalla, N. Estimation of lifetime risks of Alzheimer’s disease dementia using biomarkers for preclinical disease. Alzheimers Dement. 14, 981–988 (2018).

    PubMed  PubMed Central  Google Scholar 

  131. Caminiti, S. P. et al. FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort. Neuroimage Clin. 18, 167–177 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. Lehmann, M. et al. Intrinsic connectivity networks in healthy subjects explain clinical variability in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 110, 11606–11611 (2013).

    CAS  PubMed  Google Scholar 

  133. DeKosky, S. T. & Scheff, S. W. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann. Neurol. 27, 457–464 (1990).

    CAS  PubMed  Google Scholar 

  134. Terry, R. D. et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    CAS  PubMed  Google Scholar 

  135. Chen, M. K. et al. Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2018.1836 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kuhl, D. E. et al. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52, 691–699 (1999).

    CAS  PubMed  Google Scholar 

  137. Nitsch, R. M., Farber, S. A., Growdon, J. H. & Wurtman, R. J. Release of amyloid beta-protein precursor derivatives by electrical depolarization of rat hippocampal slices. Proc. Natl Acad. Sci. USA 90, 5191–5193 (1993).

    CAS  PubMed  Google Scholar 

  138. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    CAS  PubMed  Google Scholar 

  139. Cirrito, J. R. et al. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48, 913–922 (2005).

    CAS  PubMed  Google Scholar 

  140. Bero, A. W. et al. Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat. Neurosci. 14, 750–756 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Pooler, A. M., Phillips, E. C., Lau, D. H., Noble, W. & Hanger, D. P. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 14, 389–394 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wu, J. W. et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat. Neurosci. 19, 1085–1092 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Elman, J. A. et al. Effects of beta-amyloid on resting state functional connectivity within and between networks reflect known patterns of regional vulnerability. Cereb. Cortex 26, 695–707 (2016).

    PubMed  Google Scholar 

  144. Tomasi, D., Wang, G. J. & Volkow, N. D. Energetic cost of brain functional connectivity. Proc. Natl Acad. Sci. USA 110, 13642–13647 (2013).

    CAS  PubMed  Google Scholar 

  145. Grothe, M. J. et al. Molecular properties underlying regional vulnerability to Alzheimer’s disease pathology. Brain 141, 2755–2771 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Vlassenko, A. G. et al. Spatial correlation between brain aerobic glycolysis and amyloid-β (Aβ) deposition. Proc. Natl Acad. Sci. USA 107, 17763–17767 (2010).

    CAS  PubMed  Google Scholar 

  147. Leal, S. L., Landau, S. M., Bell, R. K. & Jagust, W. J. Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline. Elife 8, e22978 (2017).

    Google Scholar 

  148. Schultz, A. P. et al. Phases of hyperconnectivity and hypoconnectivity in the default mode and salience networks track with amyloid and tau in clinically normal individuals. J. Neurosci. 37, 4323–4331 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Bakker, A. et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74, 467–474 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L. & Greicius, M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009). This paper provides a description of how the patterns of neurodegeneration in different diseases reflect patterns of connectivity and large-scale neural systems.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kfoury, N., Holmes, B. B., Jiang, H., Holtzman, D. M. & Diamond, M. I. Trans-cellular propagation of tau aggregation by fibrillar species. J. Biol. Chem. 287, 19440–19451 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L. & Seeley, W. W. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73, 1216–1227 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Jacobs, H. L. L. et al. Structural tract alterations predict down-stream tau accumulation in amyloid positive older individuals. Nat. Neurosci. 21, 424–431 (2018). This article provides compelling evidence for Aβ-facilitated spread of tau through the human episodic memory network.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Filippini, N. et al. Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. Proc. Natl Acad. Sci. USA 106, 7209–7214 (2009).

    CAS  PubMed  Google Scholar 

  156. Machulda, M. M. et al. Effect of APOE ε4 status on intrinsic network connectivity in cognitively normal elderly subjects. Arch. Neurol. 68, 1131–1136 (2011).

    PubMed  PubMed Central  Google Scholar 

  157. Grimmer, T. et al. Progression of cerebral amyloid load is associated with the apolipoprotein E ε4 genotype in Alzheimer’s disease. Biol. Psychiatry 68, 879–884 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Resnick, S. M. et al. Changes in Aβ biomarkers and associations with APOE genotype in 2 longitudinal cohorts. Neurobiol. Aging 36, 2333–2339 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Lim, Y. Y., Mormino, E. C. & Alzheimer’s Disease Neuroimaging Initiative. APOE genotype and early β-amyloid accumulation in older adults without dementia. Neurology 89, 1028–1034 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Mishra, S. et al. Longitudinal brain imaging in preclinical Alzheimer disease: impact of APOE ε4 genotype. Brain 141, 1828–1839 (2018).

    PubMed  PubMed Central  Google Scholar 

  161. Liu, C. C. et al. ApoE4 accelerates early seeding of amyloid pathology. Neuron 96, 1024–1032.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Shi, Y. et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549, 523–527 (2017).

    PubMed  PubMed Central  Google Scholar 

  163. Kantarci, K. et al. APOE modifies the association between Aβ load and cognition in cognitively normal older adults. Neurology 78, 232–240 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Wolk, D. A., & Dickerson, B. C. & Alzheimer’s Disease Neuroimaging Initiative. Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional-executive network function in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 107, 10256–10261 (2010).

    CAS  PubMed  Google Scholar 

  165. Chang, L. et al. Gray matter maturation and cognition in children with different APOE epsilon genotypes. Neurology 87, 585–594 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Schneider, J. A., Wilson, R. S., Bienias, J. L., Evans, D. A. & Bennett, D. A. Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology. Neurology 62, 1148–1155 (2004).

    CAS  PubMed  Google Scholar 

  167. de Groot, J. C. et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann. Neurol. 47, 145–151 (2000).

    PubMed  Google Scholar 

  168. Price, T. R. et al. Silent brain infarction on magnetic resonance imaging and neurological abnormalities in community-dwelling older adults. The Cardiovascular Health Study. CHS Collaborative Research Group. Stroke 28, 1158–1164 (1997).

    CAS  PubMed  Google Scholar 

  169. Gurol, M. E. et al. Cerebral amyloid angiopathy burden associated with leukoaraiosis: a positron emission tomography/magnetic resonance imaging study. Ann. Neurol. 73, 529–536 (2013).

    PubMed  PubMed Central  Google Scholar 

  170. Hedden, T. et al. Cognitive profile of amyloid burden and white matter hyperintensities in cognitively normal older adults. J. Neurosci. 32, 16233–16242 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Provenzano, F. A. et al. White matter hyperintensities and cerebral amyloidosis: necessary and sufficient for clinical expression of Alzheimer disease? JAMA Neurol. 70, 455–461 (2013).

    PubMed  PubMed Central  Google Scholar 

  172. Vemuri, P. et al. Vascular and amyloid pathologies are independent predictors of cognitive decline in normal elderly. Brain 138, 761–771 (2015).

    PubMed  PubMed Central  Google Scholar 

  173. Langbaum, J. B. et al. Blood pressure is associated with higher brain amyloid burden and lower glucose metabolism in healthy late middle-age persons. Neurobiol. Aging 33, 827.e11–827.e19 (2012).

    CAS  Google Scholar 

  174. Rodrigue, K. M. et al. Risk factors for β-amyloid deposition in healthy aging: vascular and genetic effects. JAMA Neurol. 70, 600–606 (2013).

    PubMed  PubMed Central  Google Scholar 

  175. Reed, B. et al. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol. 71, 195–200 (2014).

    PubMed  PubMed Central  Google Scholar 

  176. Gottesman, R. F. et al. Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA 317, 1443–1450 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Vemuri, P. et al. Evaluation of amyloid protective factors and Alzheimer disease neurodegeneration protective factors in elderly individuals. JAMA Neurol. 74, 718–726 (2017).

    PubMed  PubMed Central  Google Scholar 

  178. Vemuri, P. et al. Age, vascular health, and Alzheimer disease biomarkers in an elderly sample. Ann. Neurol. 82, 706–718 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. DeCarli, C. et al. Predictors of brain morphology for the men of the NHLBI twin study. Stroke 30, 529–536 (1999).

    CAS  PubMed  Google Scholar 

  180. Mungas, D. et al. MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer’s disease. Neurology 57, 2229–2235 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Stern, Y. What is cognitive reserve? Theory and research application of the reserve concept. JINS 8, 448–460 (2002).

    PubMed  Google Scholar 

  182. Head, D. et al. Exercise engagement as a moderator of the effects of APOE genotype on amyloid deposition. Arch. Neurol. 69, 636–643 (2012).

    PubMed  PubMed Central  Google Scholar 

  183. Brown, B. M. et al. Physical activity and amyloid-β plasma and brain levels: results from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing. Mol. Psychiatry 18, 875–881 (2013).

    CAS  PubMed  Google Scholar 

  184. Landau, S. M. et al. Association of lifetime cognitive engagement and low β-amyloid deposition. Arch. Neurol. 69, 623–629 (2012).

    PubMed  PubMed Central  Google Scholar 

  185. Wirth, M., Villeneuve, S., La Joie, R., Marks, S. M. & Jagust, W. J. Gene-environment interactions: lifetime cognitive activity, APOE genotype, and β-amyloid burden. J. Neurosci. 34, 8612–8617 (2014).

    PubMed  PubMed Central  Google Scholar 

  186. Vemuri, P. et al. Effect of intellectual enrichment on AD biomarker trajectories: longitudinal imaging study. Neurology 86, 1128–1135 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Spira, A. P. et al. Self-reported sleep and β-amyloid deposition in community-dwelling older adults. JAMA Neurol. 70, 1537–1543 (2013).

    PubMed  PubMed Central  Google Scholar 

  188. Sprecher, K. E. et al. Amyloid burden is associated with self-reported sleep in nondemented late middle-aged adults. Neurobiol. Aging 36, 2568–2576 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Mander, B. A. et al. β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat. Neurosci. 18, 1051–1057 (2015). This report describes relationships between slow-wave sleep, amyloid accumulation and memory loss that define a potential vicious cycle in an amyloid–sleep relationship.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    CAS  PubMed  Google Scholar 

  191. Salter, M. W. & Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 23, 1018–1027 (2017).

    CAS  PubMed  Google Scholar 

  192. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

    CAS  PubMed  Google Scholar 

  193. Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).

    CAS  PubMed  Google Scholar 

  194. Kreisl, W. C. et al. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain 136, 2228–2238 (2013).

    PubMed  PubMed Central  Google Scholar 

  195. Hamelin, L. et al. Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18F-DPA-714 PET imaging. Brain 139, 1252–1264 (2016).

    PubMed  Google Scholar 

  196. Parbo, P. et al. Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer’s disease. Brain 140, 2002–2011 (2017).

    PubMed  Google Scholar 

  197. Villain, N. et al. Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: a voxelwise PiB-PET longitudinal study. Brain 135, 2126–2139 (2012).

    PubMed  Google Scholar 

  198. Jack, C. R. Jr. et al. Brain β-amyloid load approaches a plateau. Neurology 80, 890–896 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Duyckaerts, C. et al. PART is part of Alzheimer disease. Acta Neuropathol. 129, 749–756 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. La Joie, R. et al. Region-specific hierarchy between atrophy, hypometabolism, and β-amyloid (Aβ) load in Alzheimer’s disease dementia. J. Neurosci. 32, 16265–16273 (2012).

    PubMed  Google Scholar 

  201. Giasson, B. I. et al. Initiation and synergistic fibrillization of tau and α-synuclein. Science 300, 636–640 (2003).

    CAS  PubMed  Google Scholar 

  202. Botha, H. et al. FDG-PET in tau-negative amnestic dementia resembles that of autopsy-proven hippocampal sclerosis. Brain 141, 1201–1217 (2018).

    PubMed  PubMed Central  Google Scholar 

  203. Clark, C. M. et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol. 11, 669–678 (2012).

    CAS  PubMed  Google Scholar 

  204. Sabri, O. et al. Florbetaben PET imaging to detect amyloid β plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. 11, 964–974 (2015).

    PubMed  Google Scholar 

  205. Curtis, C. et al. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 72, 287–294 (2015).

    PubMed  Google Scholar 

  206. Schonhaut, D. R. et al. 18F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: a multicenter study. Ann. Neurol. 82, 622–634 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Wirth, M. et al. Alzheimer’s disease neurodegenerative biomarkers are associated with decreased cognitive function but not β-amyloid in cognitively normal older individuals. J. Neurosci. 33, 5553–5563 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Maass, A. et al. Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer’s disease. Neuroimage 157, 448–463 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research described in this article was supported in part by US National Institutes of Health grants AG034570, AG045611 and AG019724. The author is indebted to R. La Joie, S. Landau, A. Maass and G. Rabinovici for their thoughtful comments.

Reviewer information

Nature Reviews Neuroscience thanks K. Josephs, P. Matthews and M. Rossor for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Jagust.

Ethics declarations

Competing interests

The author serves as a consultant to BioClinica, Novartis and Genentech.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Aβ plaques

Also termed neuritic or senile plaques, Aβ plaques are one of the pathological hallmarks of AD and are composed of aggregates of the Aβ protein that are found at postmortem examination of the brain.

Neurofibrillary tangles

The other major pathological hallmark of AD, they are composed of aggregated forms of hyperphosphorylated tau protein as intraneuronal paired helical filaments.

Mild cognitive impairment

(MCI). An intermediate stage between normal cognition and dementia; individuals with MCI usually experience amnesia and are at increased risk of developing AD.

Amyloid cascade hypothesis

A dominant hypothesis in the AD research field proposing that Aβ generation is the inciting event that leads to subsequent downstream processes of tau deposition and neurodegeneration, eventuating in dementia.

Default-mode network

(DMN). A canonical resting-state network of the brain that is active when individuals are not engaged in attending to or responding to external stimuli.

Hubs

Brain regions (or nodes) that have many connections to other brain regions and serve as areas of convergence of information from multiple processing streams.

Rich club

A group of brain regions (or nodes) that are highly connected to one another and that show a high degree of hub-like connectivity to many other brain regions.

Braak neuropathological staging

A widely adopted method of classification of tau pathology based on cross-sectional autopsy data that proposes a progression of tau neurofibrillary pathology from the MTL (Braak stages I/II) through a limbic stage (III/IV) to a diffuse neocortical stage (V/VI).

Apolipoprotein E

(APOE). A polymorphic gene with three alleles; the APOE ε4 allele is a risk factor for LOAD.

Suspected non-Alzheimer pathophysiology

(SNAP). A descriptive term for evidence of neurodegeneration in the absence of biomarker evidence of Aβ.

Primary age-related tauopathy

(PART). An autopsy finding reflecting neurofibrillary tau pathology in the absence of Aβ pathology; fairly common in older people and with an unknown relationship to AD.

Cognitive reserve

A hypothetical construct proposing differences in individual susceptibility to account for why people with similar levels of disease pathology show different levels of cognitive ability.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jagust, W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat Rev Neurosci 19, 687–700 (2018). https://doi.org/10.1038/s41583-018-0067-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-018-0067-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing