Review Article | Published:

On the nature and use of models in network neuroscience

Nature Reviews Neurosciencevolume 19pages566578 (2018) | Download Citation

Abstract

Network theory provides an intuitively appealing framework for studying relationships among interconnected brain mechanisms and their relevance to behaviour. As the space of its applications grows, so does the diversity of meanings of the term network model. This diversity can cause confusion, complicate efforts to assess model validity and efficacy, and hamper interdisciplinary collaboration. In this Review, we examine the field of network neuroscience, focusing on organizing principles that can help overcome these challenges. First, we describe the fundamental goals in constructing network models. Second, we review the most common forms of network models, which can be described parsimoniously along the following three primary dimensions: from data representations to first-principles theory; from biophysical realism to functional phenomenology; and from elementary descriptions to coarse-grained approximations. Third, we draw on biology, philosophy and other disciplines to establish validation principles for these models. We close with a discussion of opportunities to bridge model types and point to exciting frontiers for future pursuits.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Golgi, C. Sulla Fina Anatomia Degliorgani Centrali del Sistema Nervosa. Revista Sperimentale di Freniatria Reprinted in Golgi, C. Opera Omnia (1903) (Milano, 1885).

  2. 2.

    Cajal, S. R. Estructura del cerebelo. Gac. Med. Catalana 11, 449–457 (1888).

  3. 3.

    Jones, E. G. Colgi, Cajal and the neuron doctrine. J. Hist. Neurosci. 8, 170–178 (1999). This article is a critical early review of the neuron doctrine.

  4. 4.

    Nicosia, V., Vertes, P. E., Schafer, W. R., Latora, V. & Bullmore, E. T. Phase transition in the economically modeled growth of a cellular nervous system. Proc. Nat. Acad. Sci. USA 110, 7880–7885 (2013).

  5. 5.

    Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

  6. 6.

    Harris, N. G. et al. Disconnection and hyperconnectivity underlie reorganization after TBI: a rodent functional connectomic analysis. Exp. Neurol. 277, 124–138 (2016).

  7. 7.

    Beul, S. F., Grant, S. & Hilgetag, C. C. A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Struct. Funct. 220, 3167–3184 (2015).

  8. 8.

    Scholtens, L. H., Schmidt, R., de Reus, M. A. & van den Heuvel, M. P. Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome. J. Neurosci. 34, 12192–12205 (2014).

  9. 9.

    Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLOS Biol. 6, e159 (2008).

  10. 10.

    Bollobas, B. Graph Theory: An Introductory Course (Springer-Verlag, 1979). This paper is a key early text on the fundamentals of graph theory.

  11. 11.

    Albert, E. & Barabasi, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002). This article is a foundational review on the statistical mechanics of complex networks.

  12. 12.

    Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J. & Grafton, S. T. Cross-linked structure of network evolution. Chaos 24, 013112 (2014).

  13. 13.

    Giusti, C., Ghrist, R. & Bassett, D. S. Two’s company, three (or more) is a simplex: algebraic-topological tools for understanding higher-order structure in neural data. J. Comput. Neurosci. 41, 1–14 (2016).

  14. 14.

    Calhoun, V. D., Miller, R., Pearlson, G. & Adali, T. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84, 262–274 (2014).

  15. 15.

    Betzel, R. F. & Bassett, D. S. Multi-scale brain networks. Neuroimage 160, 73–83 (2017).

  16. 16.

    Norton, H. K. et al. Detecting hierarchical 3D genome domain reconfiguration with network modularity. Nat. Methods 15, 199–122 (2017).

  17. 17.

    Malmersjo, S. et al. Neural progenitors organize in small-world networks to promote cell proliferation. Proc. Natl Acad. Sci. USA 110, E1524–E1532 (2013).

  18. 18.

    Bettencourt, L. M., Stephens, G. J., Ham, M. I. & Gross, G. W. Functional structure of cortical neuronal networks grown in vitro. Phys. Rev. E 75, 021915 (2007).

  19. 19.

    Carmeli, C., Bonifazi, P., Robinson, H. P. & Small, M. Quantifying network properties in multi-electrode recordings: spatiotemporal characterization and intertribal variation of evoked gamma oscillations in mouse somatosensory cortex in vitro. Front. Comput. Neurosci. 7, 134 (2013).

  20. 20.

    Burns, S. P. et al. Network dynamics of the brain and influence of the epileptic seizure onset zone. Proc. Natl Acad. Sci. USA 111, E5321–E5330 (2014).

  21. 21.

    Muldoon, S. F., Soltesz, I. & Cossart, R. Spatially clustered neuronal assemblies comprise the microstructure of synchrony in chronically epileptic networks. Proc. Natl Acad. Sci. USA 110, 3567–3572 (2013).

  22. 22.

    Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde (Johann Ambrosius Barth, 1909).

  23. 23.

    von Economo, C. F. & Koskinas, G. N. Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen (Springer, 1925).

  24. 24.

    Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

  25. 25.

    Zalesky, A. et al. Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50, 970–983 (2010).

  26. 26.

    Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29, 1860–1873 (2009).

  27. 27.

    Yu, Q. et al. Comparing brain graphs in which nodes are regions of interest or independent components: A simulation study. J. Neurosci. Methods 291, 61–68 (2017).

  28. 28.

    Craddock, R. C., James, G. A., Holtzheimer, 3rd, P. E., Hu, X. P. & Mayberg, H. S. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012).

  29. 29.

    Eickhoff, S. B., Thirion, B., Varoquaux, G. & Bzdok, D. Connectivity-based parcellation: critique and implications. Hum. Brain Mapp. 36, 4771–4792 (2015).

  30. 30.

    Wig, G. S., Laumann, T. O. & Petersen, S. E. An approach for parcellating human cortical areas using resting-state correlations. Neuroimage 93, 276–291 (2014).

  31. 31.

    Wang, D. et al. Parcellating cortical functional networks in individuals. Nat. Neurosci. 18, 1853–1860 (2015).

  32. 32.

    Chong, M. et al. Individual parcellation of resting fMRI with a group functional connectivity prior. Neuroimage 156, 87–100 (2017).

  33. 33.

    Bassett, D. S. et al. Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28, 9239–9248 (2008).

  34. 34.

    He, Y., Chen, Z. J. & Evans, A. C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17, 2407–2419 (2007).

  35. 35.

    Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H. & Chklovskii, D. B. Structural properties of the Caenorhabditis elegans neuronal network. PLOS Comput. Biol. 7, e1001066 (2011).

  36. 36.

    Bassett, D. S., Brown, J. A., Deshpande, V., Carlson, J. M. & Grafton, S. T. Conserved and variable architecture of human white matter connectivity. Neuroimage 54, 1262–1279 (2011).

  37. 37.

    Betzel, R. F. et al. The modular organization of human anatomical brain networks: accounting for the cost of wiring. Netw. Neurosci. 1, 42–68 (2017).

  38. 38.

    Friston, K. J. Functional and effective connectivity: a review. Brain Connect. 1, 13–36 (2011). This is a particularly important and clearly written review that defines functional connectivity and effective connectivity, and clarifies the differences between the two.

  39. 39.

    Kivel, M. et al. Multilayer networks. J. Complex. Netw. 2, 203–271 (2014). This paper is a comprehensive review on the applied mathematics of multilayer networks.

  40. 40.

    Tewarie, P. et al. Structural degree predicts functional network connectivity: a multimodal resting-state fMRI and MEG study. Neuroimage 97, 296–307 (2014).

  41. 41.

    Yu, Q. et al. Building an EEG-fMRI multi-modal brain graph: a concurrent EEG-fMRI study. Front. Hum. Neurosci. 10, 476 (2016).

  42. 42.

    Newman, M. E. J. & Clauset, A. Structure and inference in annotated networks. Nat. Commun. 7, 11863 (2016).

  43. 43.

    Murphy, A. C. et al. Explicitly linking regional activation and function connectivity: community structure of weighted networks with continuous annotation. arXiv 1611, 07962 (2016).

  44. 44.

    Holme, P. & Saramaki, J. Temporal networks. Phys. Rep. 519, 97–125 (2012).

  45. 45.

    Khambhati, A. N., Sizemore, A. E., Betzel, R. F. & Bassett, D. S. Modeling and interpreting mesoscale network dynamics. Neuroimage S1053–8119, 30500–30501 (2017).

  46. 46.

    Sizemore, A. E. & Bassett, D. S. Dynamic graph metrics: tutorial, toolbox, and tale. Neuroimage S1053-8119, 30564–30565 (2017).

  47. 47.

    Kopell, N. J., Gritton, H. J., Whittington, M. A. & Kramer, M. A. Beyond the connectome: the dynome. Neuron 83, 1319–1328 (2014).

  48. 48.

    Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340–352 (2017). This article is a particularly important recent review of dynamical models of large-scale brain activity.

  49. 49.

    Sporns, O. & Betzel, R. F. Modular brain networks. Annu. Rev. Psychol. 67, 613–640 (2016).

  50. 50.

    Sizemore, A. E. et al. Cliques and cavities in the human connectome. J. Comput. Neurosci. 44, 115–145 (2017).

  51. 51.

    Reimann, M. W. et al. Cliques of neurons bound into cavities provide a missing link between structure and function. Front. Comput. Neurosci. 11, 48 (2017).

  52. 52.

    Betzel, R. F. & Bassett, D. S. The specificity and robustness of long-distance connections in weighted, interareal connectomes. Proc. Natl Acad. Sci. USA 115, E4880–E4889 (2018).

  53. 53.

    Bassett, D. S. & Bullmore, E. T. Small-world brain networks revisited. Neuroscientist 23, 499–516 (2016).

  54. 54.

    van den Heuvel, M. P., Kahn, R. S., Goni, J. & Sporns, O. High-cost, high-capacity backbone for global brain communication. Proc. Natl Acad. Sci. USA 109, 11372–11377 (2012).

  55. 55.

    Bassett, D. S. et al. Task-based core-periphery organization of human brain dynamics. PLOS Comput. Biol. 9, e1003171 (2013).

  56. 56.

    Borgers, C. & Kopell, N. Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput. 15, 509–538 (2003).

  57. 57.

    Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).

  58. 58.

    Ganmor, E., Segev, R. & Schneidman, E. Sparse low-order interaction network underlies a highly correlated and learnable neural population code. Proc. Natl Acad. Sci. USA 108, 9679–9684 (2011).

  59. 59.

    Avena-Koenigsberger, A., Misic, B. & Sporns, O. Communication dynamics in complex brain networks. Nat. Rev. Neurosci. 19, 17–33 (2017).

  60. 60.

    Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017). This paper presents an important current description of the field of network neuroscience and its future directions.

  61. 61.

    Abbott, L. F. Theoretical neuroscience rising. Neuron 60, 489–495 (2008).

  62. 62.

    Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

  63. 63.

    Scannell, J. W., Blakemore, C. & Young, M. P. Analysis of connectivity in the cat cerebral cortex. J. Neurosci. 15, 1463–1483 (1995).

  64. 64.

    Young, M. P., Scannell, J. W., Burns, G. A. & Blakemore, C. Analysis of connectivity: neural systems in the cerebral cortex. Rev. Neurosci. 5, 227–250 (1994).

  65. 65.

    Hilgetag, C. C., O’Neill, M. A. & Young, M. P. Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Phil. Trans. R. Soc. Lond. B 355, 71–89 (2000).

  66. 66.

    Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998). This article is a historic contribution to the understanding of complex networks and their potential for collective dynamics.

  67. 67.

    Kaiser, M. & Hilgetag, C. C. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLOS Comput. Biol. 2, e95 (2006).

  68. 68.

    Bassett, D. S. & Bullmore, E. Small-world brain networks. Neuroscientist 12, 512–523 (2006).

  69. 69.

    Stam, C. J. Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci. Lett. 355, 25–28 (2004).

  70. 70.

    Achard, S., Salvador, R., Whitcher, B., Suckling, J. & Bullmore, E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006).

  71. 71.

    De Vico Fallani, F. et al. Brain connectivity structure in spinal cord injured: evaluation by graph analysis. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 988–991 (2006).

  72. 72.

    Micheloyannis, S. et al. Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr. Res. 87, 60–66 (2006).

  73. 73.

    Sporns, O., Tononi, G. & Kotter, R. The human connectome: a structural description of the human brain. PLOS Comput. Biol. 1, e42 (2005).

  74. 74.

    Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

  75. 75.

    van den Heuvel, M. P., Bullmore, E. T. & Sporns, O. Comparative connectomics. Trends Cogn. Sci. 20, 345–361 (2016).

  76. 76.

    Feldt, S., Bonifazi, P. & Cossart, R. Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insights. Trends Neurosci. 34, 225–236 (2011).

  77. 77.

    Sporns, O. Contributions and challenges for network models in cognitive neuroscience. Nat. Neurosci. 17, 652–660 (2014).

  78. 78.

    Medaglia, J. D., Lynall, M. E. & Bassett, D. S. Cognitive network neuroscience. J. Cogn. Neurosci. 27, 1471–1491 (2015).

  79. 79.

    Stam, C. J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695 (2014).

  80. 80.

    Braun, U. et al. From maps to multi-dimensional network mechanisms of mental disorders. Neuron 97, 14–31 (2018).

  81. 81.

    Lago-Fernandez, L. F., Huerta, R., Corbacho, F. & Siguenza, J. A. Fast response and temporal coherent oscillations in small-world networks. Phys. Rev. Lett. 84, 2758–2761 (2000).

  82. 82.

    Wu, Y., Gong, Y. & Wang, Q. Autaptic activity-induced synchronization transitions in Newman–Watts network of Hodgkin–Huxley neurons. Chaos 25, 043113 (2015).

  83. 83.

    Kim, S. Y. & Lim, W. Fast sparsely synchronized brain rhythms in a scale-free neural network. Phys. Rev. E 92, 022717 (2015).

  84. 84.

    Zhu, J., Chen, Z. & Liu, X. Effects of distance-dependent delay on small-world neuronal networks. Phys. Rev. E 93, 042417 (2016).

  85. 85.

    Fortuna, L., Frasca, M., La Rosa, M. & Spata, A. Dynamics of neuron populations in noisy environments. Chaos 15, 14102 (2005).

  86. 86.

    Stefanescu, R. A. & Jirsa, V. K. A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons. PLOS Comput. Biol. 4, e1000219 (2008).

  87. 87.

    Breakspear, M., Heitmann, S. & Daffertshofer, A. Generative models of cortical oscillations: neurobiological implications of the Kuramoto model. Front. Hum. Neurosci. 4, 190 (2010).

  88. 88.

    Melozzi, F., Woodman, M. M., Jirsa, V. K. & Bernard, C. The virtual mouse brain: a computational neuroinformatics platform to study whole mouse brain dynamics. eNeuro 4, ENEURO.0111-17.2017 (2017).

  89. 89.

    Bezgin, G., Solodkin, A., Bakker, R., Ritter, P. & McIntosh, A. R. Mapping complementary features of cross-species structural connectivity to construct realistic “Virtual Brains”. Hum. Brain Mapp. 38, 2080–2093 (2017).

  90. 90.

    Ritter, P., Schirner, M., McIntosh, A. R. & Jirsa, V. K. The virtual brain integrates computational modeling and multimodal neuroimaging. Brain Connect. 3, 121–145 (2013).

  91. 91.

    Roy, D. et al. Using the virtual brain to reveal the role of oscillations and plasticity in shaping brain’s dynamical landscape. Brain Connect. 4, 791–811 (2014).

  92. 92.

    Falcon, M. I., Jirsa, V. & Solodkin, A. A new neuroinformatics approach to personalized medicine in neurology: The Virtual Brain. Curr. Opin. Neurol. 29, 429–436 (2016).

  93. 93.

    Gu, S. et al. Controllability of structural brain networks. Nat. Commun. 6, 8414 (2015).

  94. 94.

    Kim, J. Z. et al. Role of graph architecture in controlling dynamical networks with applications to neural systems. Nat. Phys. 14, 91–98 (2018).

  95. 95.

    Yan, G. et al. Network control principles predict neuron function in the Caenorhabditis elegans connectome. Nature 550, 519–523 (2017).

  96. 96.

    Betzel, R. F. & Bassett, D. S. Generative models for network neuroscience: prospects and promise. J. R. Soc. Interface 14, 20170623 (2017).

  97. 97.

    Zhang, X., Moore, C. & Newman, M. E. J. Random graph models for dynamic networks. Eur. Phys. B 90, 200 (2017).

  98. 98.

    Junuthula, R. R., Haghdan, M., Xu, K. S. & Devabhaktuni, V. K. The block point process model for continuous-time event-based dynamic networks. arXiv 1711, 10967 (2017).

  99. 99.

    Gerstner, W., Sprekeler, H. & Deco, G. Theory and simulation in neuroscience. Science 338, 60–65 (2012).

  100. 100.

    Gao, P. & Ganguli, S. On simplicity and complexity in the brave new world of large-scale neuroscience. Curr. Opin. Neurobiol. 32, 148–155 (2015).

  101. 101.

    Eliasmith, C. & Trujillo, O. The use and abuse of largescale brain models. Curr. Opin. Neurobiol. 25, 1–6 (2014).

  102. 102.

    Bassett, D. S. et al. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLOS Comput. Biol. 6, e1000748 (2010).

  103. 103.

    Kailath, T. Linear Systems (Prentice-Hall, Inc., 1980).

  104. 104.

    Liu, Y.-Y., Slotine, J.-J. & Barabasi, A.-L. Controllability of complex networks. Nature 473, 167–173 (2011). This important early paper opened up a field of study on the controllability of complex networks.

  105. 105.

    Taylor, P. N. et al. Optimal control based seizure abatement using patient derived connectivity. Front. Neurosci. 9, 202 (2015).

  106. 106.

    Tang, E. & Bassett, D. S. Control of dynamics in brain networks. Rev. Mod. Phys. (in the press).

  107. 107.

    Pinto, D. J., Jones, S. R., Kaper, T. J. & Kopell, N. Analysis of state-dependent transitions in frequency and long-distance coordination in a model oscillatory cortical circuit. J. Comput. Neurosci. 15, 283–298 (2003).

  108. 108.

    Reimann, M. W., Horlemann, A. L., Ramaswamy, S., Muller, E. B. & Markram, H. Morphological diversity strongly constrains synaptic connectivity and plasticity. Cereb. Cortex 27, 4570–4585 (2017).

  109. 109.

    Cherniak, C. Local optimization of neuron arbors. Biol. Cybern. 66, 503–510 (1992).

  110. 110.

    Borisyuk, R., Al Azad, A. K., Conte, D., Roberts, A. & Soffe, S. R. A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model. PLOS One 9, e89461 (2014).

  111. 111.

    Sautois, B., Soffe, S. R., Li, W. C. & Roberts, A. Role of type-specific neuron properties in a spinal cord motor network. J. Comput. Neurosci. 23, 59–77 (2007).

  112. 112.

    Cortes, J. M. et al. Short-term synaptic plasticity in the deterministic Tsodyks–Markram model leads to unpredictable network dynamics. Proc. Natl Acad. Sci. USA 110, 16610–16615 (2013).

  113. 113.

    Brody, C. D. Correlations without synchrony. Neural Comput. 11, 1537–1551 (1999).

  114. 114.

    Brody, C. D. Disambiguating different covariation types. Neural Comput. 11, 1527–1535 (1999).

  115. 115.

    Gabrieli, J. D., Ghosh, S. S. & Whitfield-Gabrieli, S. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 85, 11–26 (2015).

  116. 116.

    Chung, J. E. et al. A fully automated approach to spike sorting. Neuron 95, 1381–1394 (2017).

  117. 117.

    van Diessen, E. et al. Opportunities and methodological challenges in EEG and MEG resting state functional brain network research. Clin. Neurophysiol. 126, 1468–1481 (2015).

  118. 118.

    Chu, C. J. et al. Emergence of stable functional networks in long-term human electroencephalography. J. Neurosci. 32, 2703–2713 (2012).

  119. 119.

    Khambhati, A. N., Davis, K. A., Lucas, T. H., Litt, B. & Bassett, D. S. Virtual cortical resection reveals push-pull network control preceding seizure evolution. Neuron 91, 1170–1182 (2016).

  120. 120.

    Graham, D. & Rockmore, D. The packet switching brain. J. Cogn. Neurosci. 23, 267–276 (2011).

  121. 121.

    Tang, A. et al. A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. J. Neurosci. 28, 505–518 (2008).

  122. 122.

    Granot-Atedgi, E., Tkacik, G., Segev, R. & Schneidman, E. Stimulus-dependent maximum entropy models of neural population codes. PLOS Comput. Biol. 9, e1002922 (2013).

  123. 123.

    Watanabe, T. et al. A pairwise maximum entropy model accurately describes resting-state human brain networks. Nat. Commun. 4, 1370 (2013).

  124. 124.

    Gu, S. et al. The energy landscape of neurophysiological activity implicit in brain network structure. Sci. Rep. 8, 2507 (2018).

  125. 125.

    Honey, C. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

  126. 126.

    Hermundstad, A. M. et al. Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc. Natl Acad. Sci. USA 110, 6169–6174 (2013).

  127. 127.

    Goni, J. et al. Resting-brain functional connectivity predicted by analytic measures of network communication. Proc. Natl Acad. Sci. USA 111, 833–838 (2014).

  128. 128.

    Smith, S. M. et al. Network modelling methods for fMRI. Neuroimage 54, 875–891 (2011).

  129. 129.

    Ng, B., Varoquaux, G., Poline, J. B., Greicius, M. & Thirion, B. Transport on Riemannian manifold for connectivity-based brain decoding. IEEE Trans. Med. Imaging 35, 208–216 (2016).

  130. 130.

    Dawson, D. A., Cha, K., Lewis, L. B., Mendola, J. D. & Shmuel, A. Evaluation and calibration of functional network modeling methods based on known anatomical connections. Neuroimage 67, 331–343 (2013).

  131. 131.

    Butts, C. T. Revisiting the foundations of network analysis. Science 325, 414–416 (2009).

  132. 132.

    Betzel, R. F., Medaglia, J. D. & Bassett, D. S. Diversity of meso-scale architecture in human and nonhuman connectomes. Nat. Commun. 9, 346 (2018).

  133. 133.

    Teller, S. et al. Emergence of assortative mixing between clusters of cultured neurons. PLOS Comput. Biol. 10, e1003796 (2014).

  134. 134.

    Kaiser, M. Mechanisms of connectome development. Trends Cogn. Sci. 21, 703–717 (2017).

  135. 135.

    Mahadevan, A. R., Grandel, N. E., Robinson, J. T. & Qutub, A. A. Living neural networks: dynamic network analysis of developing neural progenitor cells. bioRxiv https://doi.org/10/1101/055533 (2017).

  136. 136.

    Long, B. L. et al. GAIN: A graphical method to automatically analyze individual neurite outgrowth. J. Neurosci. Methods 283, 62–71 (2017).

  137. 137.

    Norton, H. K. et al. Detecting hierarchical genome folding with network modularity. Nat. Methods 15, 119–122 (2018).

  138. 138.

    Kadano, L. P. More is the same; phase transitions and mean field theories. J. Statist. Phys. 137, 777–797 (2009).

  139. 139.

    Hadley, K. R. & McCabe, C. Coarse-grained molecular models of water: a review. Mol. Simul. 38, 671–681 (2012).

  140. 140.

    Baron, R. et al. Comparison of thermodynamic properties of coarse-grained and atomic-level simulation models. ChemPhysChem 8, 452–461 (2007).

  141. 141.

    de la Cruz, R., Guerrero, P., Calvo, J. & Alarcon, T. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth. J. Comput. Phys. 350, 974–991 (2017).

  142. 142.

    Getz, W. M. et al. Making ecological models adequate. Ecol. Lett. 21, 153–166 (2017).

  143. 143.

    Truccolo, W. From point process observations to collective neural dynamics: nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining. J. Physiol. Paris 110, 336–347 (2016).

  144. 144.

    Steyn-Ross, M. L. & Steyn-Ross, D. A. From individual spiking neurons to population behavior: systematic elimination of short-wavelength spatial modes. Phys. Rev. E 93, 022402 (2016).

  145. 145.

    Thomas, P. J. & Cowan, J. D. Generalized spin models for coupled cortical feature maps obtained by coarse graining correlation based synaptic learning rules. J. Math. Biol. 65, 1149–1186 (2012).

  146. 146.

    Cai, D., Tao, L. & McLaughlin, D. W. An embedded network approach for scale-up of fluctuation-driven systems with preservation of spike information. Proc. Natl Acad. Sci. USA 101, 14288–14293 (2004).

  147. 147.

    Kim, B. J. Geographical coarse graining of complex networks. Phys. Rev. Lett. 93, 168701 (2004).

  148. 148.

    Kujala, R. et al. Graph coarse-graining reveals differences in the module-level structure of functional brain networks. Eur. J. Neurosci. 44, 2673–2684 (2016).

  149. 149.

    van den Heuvel, M. P. & Yeo, B. T. T. A spotlight on bridging microscale and macroscale human brain architecture. Neuron 93, 1248–1251 (2017).

  150. 150.

    Flack, J. C. Coarse-graining as a downward causation mechanism. Philos. Trans. A Math. Phys. Eng. Sci. 375, 20160338 (2017).

  151. 151.

    Liao, X., Vasilakos, A. V. & He, Y. Small-world human brain networks: perspectives and challenges. Neurosci. Biobehav Rev. 77, 286–300 (2017).

  152. 152.

    Vertes, P. E. et al. Simple models of human brain functional networks. Proc. Natl Acad. Sci. USA 109, 5868–5873 (2012).

  153. 153.

    Shmueli, G. To explain or to predict? Statist. Sci. 25, 289–310 (2010).

  154. 154.

    Willner, P. The validity of animal models of depression. Psychopharmacology 83, 1–16 (1984).

  155. 155.

    Belzung, C. & Lemoine, M. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol. Mood Anxiety Disord. 1, 9 (2011).

  156. 156.

    McKinney, W. T. J. & Bunney, W. E. J. Animal model of depression. I. Review of evidence: implications for research. Arch. Gen. Psychiatry 21, 240–248 (1969).

  157. 157.

    Willner, P. Reliability of the chronic mild stress model of depression: a user survey. Neurobiol. Stress 6, 68–77 (2017).

  158. 158.

    Rubinov, M. & Sporns, O. Weight-conserving characterization of complex functional brain networks. Neuroimage 56, 2068–2079 (2011).

  159. 159.

    Bullmore, E. et al. Generic aspects of complexity in brain imaging data and other biological systems. Neuroimage 47, 1125–1134 (2009).

  160. 160.

    Bassett, D. S. & Gazzaniga, M. S. Understanding complexity in the human brain. Trends Cogn. Sci. 15, 200–209 (2011).

  161. 161.

    Amari, S. et al. Neuroinformatics: the integration of shared databases and tools towards integrative neuroscience. J. Integr. Neurosci. 1, 117–128 (2002).

  162. 162.

    Cohen, A. L. et al. Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41, 45–57 (2008).

  163. 163.

    Nelson, S. M. et al. A parcellation scheme for human left lateral parietal cortex. Neuron 67, 156–170 (2010).

  164. 164.

    Blumensath, T. et al. Spatially constrained hierarchical parcellation of the brain with resting-state fMRI. Neuroimage 76, 313–324 (2013).

  165. 165.

    Nelson, B. G., Bassett, D. S., Camchong, J., Bullmore, E. T. & Lim, K. O. Comparison of large-scale human brain functional and anatomical networks in schizophrenia. Neuroimage Clin. 15, 439–448 (2017).

  166. 166.

    Shah, P. et al. Mapping the structural and functional network architecture of the medial temporal lobe using 7T MRI. Hum. Brain Mapp. 39, 851–865 (2018).

  167. 167.

    Turk, E., Scholtens, L. H. & van den Heuvel, M. P. Cortical chemoarchitecture shapes macroscale effective functional connectivity patterns in macaque cerebral cortex. Hum. Brain Mapp. 37, 1856–1865 (2016).

  168. 168.

    Cao, H. et al. The 5-HTTLPR polymorphism affects network-based functional connectivity in the visual-limbic system in healthy adults. Neuropsychopharmacology 43, 406–414 (2018).

  169. 169.

    Braun, U. et al. Dynamic reconfiguration of brain networks: a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function. Proc. Natl Acad. Sci. USA 113, 12568–12573 (2016).

  170. 170.

    van den Heuvel, M. P. et al. Multimodal analysis of cortical chemoarchitecture and macroscale fmri resting-state functional connectivity. Hum. Brain Mapp. 37, 3103–3113 (2016).

  171. 171.

    Barbey, A. K. Network neuroscience theory of human intelligence. Trends Cogn. Sci. 22, 8–20 (2018).

  172. 172.

    Padula, M. C. et al. Altered structural network architecture is predictive of the presence of psychotic symptoms in patients with 22q11.2 deletion syndrome. Neuroimage Clin. 16, 142–150 (2017).

  173. 173.

    Alloza, C. et al. Central and non-central networks, cognition, clinical symptoms, and polygenic risk scores in schizophrenia. Hum. Brain Mapp. 38, 5919–5930 (2017).

  174. 174.

    Meyer-Lindenberg, A. & Tost, H. Neuroimaging and plasticity in schizophrenia. Restor. Neurol. Neurosci. 32, 119–127 (2014).

  175. 175.

    Gao, W. et al. Functional network development during the first year: relative sequence and socioeconomic correlations. Cereb. Cortex 25, 2919–2928 (2015).

  176. 176.

    Esslinger, C. et al. Neural mechanisms of a genome-wide supported psychosis variant. Science 324, 605 (2009).

  177. 177.

    Roberts, G. et al. Functional dysconnection of the inferior frontal gyrus in young people with bipolar disorder or at genetic high risk. Biol. Psychiatry 81, 718–727 (2017).

  178. 178.

    Doucet, G. E., Bassett, D. S., Yao, N., Glahn, D. C. & Frangou, S. The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder. Am. J. Psychiatry 174, 1214–1222 (2017).

  179. 179.

    Liao, X., Cao, M., Xia, M. & He, Y. Individual differences and time-varying features of modular brain architecture. Neuroimage 152, 94–107 (2017).

  180. 180.

    Mattar, M. G. et al. Predicting future learning from baseline network architecture. NeuroImage 172, 107–117 (2018).

  181. 181.

    Balasubramanian, V. Statistical inference, Occam’s Razor, and statistical mechanics on the space of probability distributions. Neural Comput. 9, 349–368 (1997).

  182. 182.

    Barron, A. R. & Cover, T. M. Minimum complexity density estimation. IEEE Trans. Inf. Theory 37, 1034–1054 (1991).

  183. 183.

    Barron, A. R., Rissanen, J. & Yu, B. The minimum description length principle in coding and modeling. IEEE Trans. Inf. Theory 44, 2743–2760 (1998).

  184. 184.

    Vitanyi, P. M. B. & Li, M. Minimum description length induction, Bayesianism, and Kolmogorov complexity. IEEE Trans. Inf. Theory 46, 446–464 (2000).

  185. 185.

    Daunizeau, J., Preuschoff, K., Friston, K. & Stephan, K. Optimizing experimental design for comparing models of brain function. PLOS Comput. Biol. 7, e1002280 (2011).

  186. 186.

    Chen, S., Witten, D. M. & Shojaie, A. Selection and estimation for mixed graphical models. Biometrika 102, 47–64 (2015).

  187. 187.

    Thorne, T. NetDiff — Bayesian model selection for differential gene regulatory network inference. Sci. Rep. 6, 39224 (2016).

  188. 188.

    Friston, K. J., Li, B., Daunizeau, J. & Stephan, K. E. Network discovery with DCM. Neuroimage 56, 1202–1221 (2011).

  189. 189.

    Ferrarini, L. et al. Non-parametric model selection for subject-specific topological organization of resting-state functional connectivity. Neuroimage 56, 1453–1462 (2011).

  190. 190.

    Simpson, S. L., Moussa, M. N. & Laurienti, P. J. An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks. Neuroimage 60, 1117–1126 (2012).

  191. 191.

    Betzel, R. F. et al. Generative models of the human connectome. Neuroimage 124, 1054–1064 (2016).

  192. 192.

    Klimm, F., Bassett, D. S., Carlson, J. M. & Mucha, P. J. Resolving structural variability in network models and the brain. PLOS Comput. Biol. 10, e1003491 (2014).

  193. 193.

    Onnela, J. P. et al. Taxonomies of networks from community structure. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86, 036104–036104 (2012).

  194. 194.

    Sizemore, A. E., Giusti, C. & Bassett, D. S. Classification of weighted networks through mesoscale homological features. J. Complex. Netw. 5, 245–273 (2017).

  195. 195.

    Attar, N. & Aliakbary, S. Classification of complex networks based on similarity of topological network features. Chaos 27, 091102 (2017).

  196. 196.

    Tegner, J., Zenil, H., Kiani, N. A., Ball, G. & Gomez-Cabrero, D. A perspective on bridging scales and design of models using low-dimensional manifolds and data-driven model inference. Philos. Trans. A Math. Phys. Eng. Sci. 374, 20160144 (2016).

  197. 197.

    Shneider, A. M. Four stages of a scientific discipline; four types of scientist. Trends Biochem. Sci. 34, 217–223 (2009).

  198. 198.

    Proix, T., Bartolomei, F., Guye, M. & Jirsa, V. K. Individual brain structure and modelling predict seizure propagation. Brain 140, 641–654 (2017).

  199. 199.

    Medaglia, J. D. et al. Brain network efficiency is influenced by the pathologic source of corticobasal syndrome. Neurology 89, 1373–1381 (2017).

  200. 200.

    Khazaee, A., Ebrahimzadeh, A. & Babajani-Feremi, A. Identifying patients with alzheimer’s disease using resting-state fMRI and graph theory. Clin. Neurophysiol. 126, 2132–2141 (2015).

  201. 201.

    Hojjati, S. H., Ebrahimzadeh, A., Khazaee, A., Babajani-Feremi, A. & Initiative, A. D. N. Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. J. Neurosci. Methods 282, 69–80 (2017).

  202. 202.

    Leaver, A. M. et al. Fronto-temporal connectivity predicts ECT outcome in major depression. Front. Psychiatry 9, 92 (2018).

  203. 203.

    He, X. et al. Presurgical thalamic “hubness” predicts surgical outcome in temporal lobe epilepsy. Neurology 88, 2285–2293 (2017).

  204. 204.

    Matthews, P. M. & Hampshire, A. Clinical concepts emerging from fMRI functional connectomics. Neuron 91, 511–528 (2016).

  205. 205.

    Hartmann, S. & Frigg, R. The Philosophy of Science: An. Encyclopedia Vol. 2 (eds Sarkar, S. & Pfeifer, J.) 740–749 (Routledge, 2012).

  206. 206.

    Frigg, R. & Hartmann, S. Models in science. Standford Encyclopedia of Philosophy https://plato.stanford.edu/entries/models-science (2012).

  207. 207.

    Barbrousse, A. & Ludwig, P. in Fictions in Science: Philosophical Essays on Modelling and Idealization (ed. Suarez, M.) 56–75 (Routledge, 2009).

  208. 208.

    Frigg, R. Models and fiction. Synthese 172, 251–268 (2010).

  209. 209.

    Frigg, R. & Nguyen, J. The fiction view of models reloaded. The Monist 99, 225–242 (2016).

  210. 210.

    Godfrey-Smith, P. Models and fictions in science. Philos. Studies 143, 101–116 (2009).

  211. 211.

    Toon, A. Models as Make-Believe: Imagination, Fiction, and Scientific Representation (Palgrave, 2012).

  212. 212.

    Almeder, R. Pragmatism and philosophy of science: a critical survey. Int. Studies Philos. Sci. 12, 171–195 (2007).

  213. 213.

    Shook, J. Conference on neuroscience and pragmatism: productive prospects. Philos. Ethics Humanit. Med. 6, 14 (2011).

  214. 214.

    van Bergen, R. S. & Jehee, J. F. M. Modeling correlated noise is necessary to decode uncertainty. Neuroimage S1053-8119, 30662–30666 (2017).

  215. 215.

    Kanitscheider, I., Coen-Cagli, R. & Pouget, A. Origin of information-limiting noise correlations. Proc. Natl Acad. Sci. USA 112, E6973–E6982 (2015).

  216. 216.

    Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

  217. 217.

    Dosenbach, N. U. et al. Prediction of individual brain maturity using fMRI. Science 329, 1358–1361 (2010).

  218. 218.

    Horn, A. et al. Connectivity predicts deep brain stimulation outcome in parkinson disease. Ann. Neurol. 82, 67–78 (2017).

  219. 219.

    Bonifazi, P. et al. GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326, 1419–1424 (2009).

  220. 220.

    Zhao, J., Zhou, Y., Zhang, X. & Chen, L. Part mutual information for quantifying direct associations in networks. Proc. Natl Acad. Sci. USA 113, 5130–5135 (2016).

  221. 221.

    Kohn, A., Coen-Cagli, R., Kanitscheider, I. & Pouget, A. Correlations and neuronal population information. Annu. Rev. Neurosci. 39, 237–256 (2016).

  222. 222.

    Jaynes, E. T. Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957). This article is a widely acclaimed and highly influential historical reference on information theory.

  223. 223.

    Jaynes, E. T. Information theory and statistical mechanics ii. Phys. Rev. 108, 171–190 (1957).

  224. 224.

    Schneidman, E., Still, S., Berry, M. J. n. & Bialek, W. Network information and connected correlations. Phys. Rev. Lett. 91, 238701 (2003).

  225. 225.

    Lizier, J. T. JIDT: An information-theoretic toolkit for studying the dynamics of complex systems. Front. Robot. AI 1, 11 (2014).

  226. 226.

    Stetter, O., Battaglia, D., Soriano, J. & Geisel, T. Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. PLOS Comput. Biol. 8, e1002653 (2012).

  227. 227.

    Palmigiano, A., Geisel, T., Wolf, F. & Battaglia, D. Flexible information routing by transient synchrony. Nat. Neurosci. 20, 1014–1022 (2017).

  228. 228.

    Pathak, J., Lu, Z., Hunt, B. R., Girvan, M. & Ott, E. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos 27, 121102 (2017).

  229. 229.

    Sussillo, D., Jozefowicz, R., Abbott, L. F. & Pandarinath, C. LFADS — latent factor analysis via dynamical systems. arXiv 1608, 06315 (2016). This particularly exciting paper informs a machine-learning algorithm with a specified dynamical system.

Download references

Acknowledgements

The authors thank Blevmore Laboratories and A. E. Sizemore for efforts in graphic design. The authors also thank D. Lydon-Staley, A. E. Sizemore, E. J. Cornblath and D. Zhou for helpful comments on an earlier version of this manuscript. D.S.B. acknowledges support from the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, the ISI Foundation, the Paul Allen Foundation, the US Army Research Laboratory (W911NF-10-2-0022), the US Army Research Office (Bassett-W911NF-14-1-0679, Grafton-W911NF-16-1-0474 and DCIST-W911NF-17-2-0181), the US Office of Naval Research, the US National Institute of Mental Health (2-R01-DC-009209-11, R01-MH112847, R01-MH107235 and R21-M MH-106799), the US National Institute of Child Health and Human Development (1R01HD086888-01), the US National Institute of Neurological Disorders and Stroke (R01-NS099348) and the US National Science Foundation (BCS-1441502, BCS-1430087, NSF PHY-1554488 and BCS-1631550). J.I.G. acknowledges support from the US National Science Foundation (NSF NCS-1533623), the US National Eye Institute (R01-EY015260) and the US National Institute of Mental Health (R01-MH115557). The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies.

Reviewer information

Nature Reviews Neuroscience thanks M. Kramer, L. Uddin and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

  1. Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA

    • Danielle S. Bassett
  2. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA

    • Danielle S. Bassett
  3. Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

    • Danielle S. Bassett
  4. Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA

    • Danielle S. Bassett
  5. Department of Philosophy, American University, Washington, DC, USA

    • Perry Zurn
  6. Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA

    • Joshua I. Gold

Authors

  1. Search for Danielle S. Bassett in:

  2. Search for Perry Zurn in:

  3. Search for Joshua I. Gold in:

Contributions

The authors all researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Danielle S. Bassett.

Glossary

Network

In its simplest form, a set of nodes (or vertices) that are linked in pairs by so-called edges.

Graph

A set of objects, some pairs of which are related.

Hypergraphs

Extensions of graphs in which a single edge can connect more than two nodes.

Simplicial complexes

Comprise a set of vertices V and a collection of subsets of V that is closed under taking subsets.

Structural connectivity

A measure of the physical link between two cells, ensembles or areas and is not equivalent to either functional connectivity or effective connectivity.

Functional connectivity

A statistical similarity in time series, which can be estimated using a plethora of similarity measures and is not equivalent to either effective connectivity or structural connectivity.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41583-018-0038-8