Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Specializations for reward-guided decision-making in the primate ventral prefrontal cortex

Abstract

The estimated values of choices, and therefore decision-making based on those values, are influenced by both the chance that the chosen items or goods can be obtained (availability) and their current worth (desirability) as well as by the ability to link the estimated values to choices (a process sometimes called credit assignment). In primates, the prefrontal cortex (PFC) has been thought to contribute to each of these processes; however, causal relationships between particular subdivisions of the PFC and specific functions have been difficult to establish. Recent lesion-based research studies have defined the roles of two different parts of the primate PFC — the orbitofrontal cortex (OFC) and the ventral lateral frontal cortex (VLFC) — and their subdivisions in evaluating each of these factors and in mediating credit assignment during reward-based decision-making.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The anatomy of the OFC and VLFC.
Fig. 2: Selected behavioural tasks used to assess value-based decision-making.
Fig. 3: Effects of selective, excitotoxic lesions of the OFC and VLFC on availability-based or desirability-based choices.
Fig. 4: Independent contributions of the medial and lateral OFC to value-based decision-making.
Fig. 5: Effect of amygdala lesions on value coding in the OFC.

Similar content being viewed by others

References

  1. Gaffan, D. Against memory systems. Philos. Trans. R. Soc. Lond. B Biol Sci. 357, 1111–1121 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wilson, C. R., Gaffan, D., Browning, P. G. & Baxter, M. G. Functional localization within the prefrontal cortex: missing the forest for the trees? Trends Neurosci. 33, 533–540 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kolling, N. et al. Value, search, persistence and model updating in anterior cingulate cortex. Nat. Neurosci. 19, 1280–1285 (2016).

    Article  PubMed  CAS  Google Scholar 

  4. Shenhav, A., Cohen, J. D. & Botvinick, M. M. Dorsal anterior cingulate cortex and the value of control. Nat. Neurosci. 19, 1286–1291 (2016).

    Article  PubMed  CAS  Google Scholar 

  5. Meyer, H. C. & Bucci, D. J. Imbalanced activity in the orbitofrontal cortex and nucleus accumbens impairs behavioral inhibition. Curr. Biol. 26, 2834–2839 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Jones, B. & Mishkin, M. Limbic lesions and the problem of stimulus-reinforcement associations. Exp. Neurol. 36, 362–377 (1972).

    Article  PubMed  CAS  Google Scholar 

  7. Padoa-Schioppa, C. Neurobiology of economic choice: a good-based model. Annu. Rev. Neurosci. 34, 333–359 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Rolls, E. T. The Brain and Emotion. (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  9. Walton, M. E., Behrens, T. E., Buckley, M. J., Rudebeck, P. H. & Rushworth, M. F. Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning. Neuron 65, 927–939 (2010). This article presents a landmark study of the role of the macaque OFC in stimulus–reward association learning. Macaques with aspiration lesions of the OFC were unable to form contingent associations between choices and the rewards that immediately follow them.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wilson, R. C., Takahashi, Y. K., Schoenbaum, G. & Niv, Y. Orbitofrontal cortex as a cognitive map of task space. Neuron 81, 267–279 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wallis, J. D. Cross-species studies of orbitofrontal cortex and value-based decision-making. Nat. Neurosci. 15, 13–19 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Stalnaker, T. A., Cooch, N. K. & Schoenbaum, G. What the orbitofrontal cortex does not do. Nat. Neurosci. 18, 620–627 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Rudebeck, P. H. & Murray, E. A. The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron 84, 1143–1156 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Murray, E. A. & Rudebeck, P. H. The drive to strive: goal generation based on current needs. Front. Neurosci. 7, 112 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Menzel, C. R. Cognitive aspects of foraging in Japanese monkeys. Anim. Behav. 41, 397–402 (1991).

    Article  Google Scholar 

  16. Rudebeck, P. H., Saunders, R. C., Lundgren, D. A. & Murray, E. A. Specialized representations of value in the orbital and ventrolateral prefrontal cortex: desirability versus availability of outcomes. Neuron 95, 1208–1220 (2017). This paper presents a compelling demonstration of the independent contributions of the macaque OFC and VLFC to different kinds of value updating. Whereas the OFC represents the desirability of potential outcomes, the VLFC represents their availability.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Thorpe, S. J., Rolls, E. T. & Maddison, S. The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp. Brain Res. 49, 93–115 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. Wallis, J. D. & Miller, E. K. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur. J. Neurosci. 18, 2069–2081 (2003).

    Article  PubMed  Google Scholar 

  20. Kennerley, S. W. & Wallis, J. D. Evaluating choices by single neurons in the frontal lobe: outcome value encoded across multiple decision variables. Eur. J. Neurosci. 29, 2061–2073 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Padoa-Schioppa, C. & Assad, J. A. The representation of economic value in the orbitofrontal cortex is invariant for changes of menu. Nat. Neurosci. 11, 95–102 (2008). This article provides an elegant demonstration that OFC neurons in macaques respect transitivity in encoding the expected reward value of different juices, showing that this part of PFC encodes subjective value rather than relative preferences.

    Article  PubMed  CAS  Google Scholar 

  22. Rich, E. L. & Wallis, J. D. Decoding subjective decisions from orbitofrontal cortex. Nat. Neurosci. 19, 973–980 (2016). This study shows that, during decision-making, ensembles of neurons in the OFC represent the individual options as monkeys’ locus of attention shifts from one option to the next.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. McGinty, V. B., Rangel, A. & Newsome, W. T. Orbitofrontal cortex value signals depend on fixation location during free viewing. Neuron 90, 1299–1311 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rich, E. L. & Wallis, J. D. Medial-lateral organization of the orbitofrontal cortex. J. Cogn. Neurosci. 26, 1347–1362 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kobayashi, S., Pinto de, C. O. & Schultz, W. Adaptation of reward sensitivity in orbitofrontal neurons. J. Neurosci. 30, 534–544 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Katz, L. N., Yates, J. L., Pillow, J. W. & Huk, A. C. Dissociated functional significance of decision-related activity in the primate dorsal stream. Nature 535, 285–288 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Preuss, T. M. in Primate Origins: Adaptations and Evolution (eds Ravosa, M. J. & Dagasto, M.) 625–675 (Springer, 2007).

  28. Wise, S. P. Forward frontal fields: phylogeny and fundamental function. Trends Neurosci. 31, 599–608 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Walker, A. E. A cytoarchitectural study of the prefrontal area of the macaque monkey. J. Comp. Neurol. 73, 59–86 (1940).

    Article  Google Scholar 

  30. Carmichael, S. T. & Price, J. L. Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J. Comp. Neurol. 346, 366–402 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. Neubert, F. X., Mars, R. B., Thomas, A. G., Sallet, J. & Rushworth, M. F. Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81, 700–713 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. Neubert, F. X., Mars, R. B., Sallet, J. & Rushworth, M. F. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proc. Natl Acad. Sci. USA 112, E2695–E2704 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Porrino, L. J., Crane, A. M. & Goldman-Rakic, P. S. Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys. J. Comp. Neurol. 198, 121–136 (1981).

    Article  PubMed  CAS  Google Scholar 

  34. Ghashghaei, H. T., Hilgetag, C. C. & Barbas, H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 34, 905–923 (2007).

    Article  PubMed  CAS  Google Scholar 

  35. Saleem, K. S., Kondo, H. & Price, J. L. Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey. J. Comp. Neurol. 506, 659–693 (2008).

    Article  PubMed  Google Scholar 

  36. Saleem, K. S., Miller, B. & Price, J. L. Subdivisions and connectional networks of the lateral prefrontal cortex in the macaque monkey. J. Comp. Neurol. 522, 1641–1690 (2014).

    Article  PubMed  Google Scholar 

  37. Gerbella, M., Baccarini, M., Borra, E., Rozzi, S. & Luppino, G. Amygdalar connections of the macaque areas 45A and 45B. Brain Struct. Funct. 219, 831–842 (2014).

    Article  PubMed  Google Scholar 

  38. Ferry, A. T., Ongur, D., An, X. & Price, J. L. Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J. Comp. Neurol. 425, 447–470 (2000).

    Article  PubMed  CAS  Google Scholar 

  39. Haber, S. N., Kunishio, K., Mizobuchi, M. & Lynd-Balta, E. The orbital and medial prefrontal circuit through the primate basal ganglia. J. Neurosci. 15, 4851–4867 (1995).

    Article  PubMed  CAS  Google Scholar 

  40. Haber, S. N., Kim, K. S., Mailly, P. & Calzavara, R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J. Neurosci. 26, 8368–8376 (2006).

    Article  PubMed  CAS  Google Scholar 

  41. Giguere, M. & Goldman-Rakic, P. S. Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J. Comp. Neurol. 277, 195–213 (1988).

    Article  PubMed  CAS  Google Scholar 

  42. Ray, J. P. & Price, J. L. The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 337, 1–31 (1993).

    Article  PubMed  CAS  Google Scholar 

  43. Russchen, F. T., Amaral, D. G. & Price, J. L. The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey. Macaca fascicularis. J. Comp. Neurol. 256, 175–210 (1987).

    Article  PubMed  CAS  Google Scholar 

  44. Preuss, T. M. & Goldman-Rakic, P. S. Crossed corticothalamic and thalamocortical connections of macaque prefrontal cortex. J. Comp. Neurol. 257, 269–281 (1987).

    Article  PubMed  CAS  Google Scholar 

  45. Timbie, C. & Barbas, H. Specialized pathways from the primate amygdala to posterior orbitofrontal cortex. J. Neurosci. 34, 8106–8118 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Price, J. L. Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Ann. NY Acad. Sci. 1121, 54–71 (2007).

    Article  PubMed  Google Scholar 

  47. von Bonin, G. & Bailey, P. The Neocortex of Macaca mulatta (Univ. Illinois Press, 1947).

  48. Carmichael, S. T. & Price, J. L. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363, 642–664 (1995).

    Article  PubMed  CAS  Google Scholar 

  49. Petrides, M. & Pandya, D. N. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur. J. Neurosci. 16, 291–310 (2002).

    Article  PubMed  CAS  Google Scholar 

  50. Webster, M. J., Bachevalier, J. & Ungerleider, L. G. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb. Cortex 4, 470–483 (1994).

    Article  PubMed  CAS  Google Scholar 

  51. Gerbella, M., Belmalih, A., Borra, E., Rozzi, S. & Luppino, G. Cortical connections of the macaque caudal ventrolateral prefrontal areas 45A and 45B. Cereb. Cortex 20, 141–168 (2010).

    Article  PubMed  Google Scholar 

  52. Passingham, R. E., Stephan, K. E. & Kotter, R. The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3, 606–616 (2002).

    Article  PubMed  CAS  Google Scholar 

  53. Kondo, H., Saleem, K. S. & Price, J. L. Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys. J. Comp. Neurol. 493, 479–509 (2005).

    Article  PubMed  Google Scholar 

  54. Carmichael, S. T. & Price, J. L. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 371, 179–207 (1996).

    Article  PubMed  CAS  Google Scholar 

  55. Romanski, L. M., Bates, J. F. & Goldman-Rakic, P. S. Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 403, 141–157 (1999).

    Article  PubMed  CAS  Google Scholar 

  56. Critchley, H. D. & Rolls, E. T. Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J. Neurophysiol. 75, 1673–1686 (1996).

    Article  PubMed  CAS  Google Scholar 

  57. Pritchard, T. C. et al. Satiety-responsive neurons in the medial orbitofrontal cortex of the macaque. Behav. Neurosci. 122, 174–182 (2008).

    Article  PubMed  Google Scholar 

  58. Cai, X. & Padoa-Schioppa, C. Contributions of orbitofrontal and lateral prefrontal cortices to economic choice and the good-to-action transformation. Neuron 81, 1140–1151 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Tsujimoto, S., Genovesio, A. & Wise, S. P. Neuronal activity during a cued strategy task: comparison of dorsolateral, orbital, and polar prefrontal cortex. J. Neurosci. 32, 11017–11031 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Asaad, W. F., Lauro, P. M., Perge, J. A. & Eskandar, E. N. Prefrontal neurons encode a solution to the credit-assignment problem. J. Neurosci. 37, 6995–7007 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Izquierdo, A., Suda, R. K. & Murray, E. A. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J. Neurosci. 24, 7540–7548 (2004).

    Article  PubMed  CAS  Google Scholar 

  62. Machado, C. J. & Bachevalier, J. The effects of selective amygdala, orbital frontal cortex or hippocampal formation lesions on reward assessment in nonhuman primates. Eur. J. Neurosci. 25, 2885–2904 (2007).

    Article  PubMed  Google Scholar 

  63. Noonan, M. P. et al. Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex. Proc. Natl Acad. Sci. USA 107, 20547–20552 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Iversen, S. D. & Mishkin, M. Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp. Brain Res. 11, 376–386 (1970).

    Article  PubMed  CAS  Google Scholar 

  65. Rygula, R., Walker, S. C., Clarke, H. F., Robbins, T. W. & Roberts, A. C. Differential contributions of the primate ventrolateral prefrontal and orbitofrontal cortex to serial reversal learning. J. Neurosci. 30, 14552–14559 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Groman, S. M. et al. Monoamine levels within the orbitofrontal cortex and putamen interact to predict reversal learning performance. Biol. Psychiatry 73, 756–762 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Jocham, G. et al. Reward-guided learning with and without causal attribution. Neuron 90, 177–190 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Butter, C. M., McDonald, J. A. & Snyder, D. R. Orality, preference behavior, and reinforcement value of nonfood object in monkeys with orbital frontal lesions. Science 164, 1306–1307 (1969).

    Article  PubMed  CAS  Google Scholar 

  69. McEnaney, K. W. & Butter, C. M. Perseveration of responding and nonresponding in monkeys with orbital frontal ablations. J. Comp. Physiol. Psychol. 68, 558–561 (1969).

    Article  PubMed  CAS  Google Scholar 

  70. Mishkin, M. in The Frontal Granular Cortex and Behavior (eds Warren, J. M. & Akert, K.) 219–241 (McGraw-Hill, 1964).

  71. Butter, C. M. Perseveration in extinction and in discrimination reversal tasks following selective frontal ablations in Macaca mulatta. Physiol. Behav. 4, 163–171 (1969).

    Article  Google Scholar 

  72. Butter, C. M., Snyder, D. R. & McDonald, J. A. Effects of orbital frontal lesions on aversive and aggressive behaviors in rhesus monkeys. J. Comp. Physiol. Psychol. 72, 132–144 (1970).

    Article  PubMed  CAS  Google Scholar 

  73. Deng, W. et al. Separate neural systems for behavioral change and for emotional responses to failure during behavioral inhibition. Hum. Brain Mapp. 38, 3527–3537 (2017).

    Google Scholar 

  74. Kazama, A. & Bachevalier, J. Selective aspiration or neurotoxic lesions of orbital frontal areas 11 and 13 spared monkeys’ performance on the object discrimination reversal task. J. Neurosci. 29, 2794–2804 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Rudebeck, P. H. & Murray, E. A. Dissociable effects of subtotal lesions within the macaque orbital prefrontal cortex on reward-guided behavior. J. Neurosci. 31, 10569–10578 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lehman, J. F., Greenberg, B. D., McIntyre, C. C., Rasmussen, S. A. & Haber, S. N. Rules ventral prefrontal cortical axons use to reach their targets: implications for diffusion tensor imaging tractography and deep brain stimulation for psychiatric illness. J. Neurosci. 31, 10392–10402 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Rudebeck, P. H., Saunders, R. C., Prescott, A. T., Chau, L. S. & Murray, E. A. Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nat. Neurosci. 16, 1140–1145 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Izquierdo, A., Suda, R. K. & Murray, E. A. Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys. J. Neurosci. 25, 8534–8542 (2005).

    Article  PubMed  CAS  Google Scholar 

  79. Kalin, N. H., Shelton, S. E. & Davidson, R. J. Role of the primate orbitofrontal cortex in mediating anxious temperament. Biol. Psychiatry 62, 1134–1139 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rudebeck, P. H. et al. Frontal cortex subregions play distinct roles in choices between actions and stimuli. J. Neurosci. 28, 13775–13785 (2008).

    Article  PubMed  CAS  Google Scholar 

  81. Croxson, P. L. et al. Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J. Neurosci. 25, 8854–8866 (2005).

    Article  PubMed  CAS  Google Scholar 

  82. Schmahmann, J. D. et al. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130, 630–653 (2007).

    Article  PubMed  Google Scholar 

  83. Jbabdi, S., Lehman, J. F., Haber, S. N. & Behrens, T. E. Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography. J. Neurosci. 33, 3190–3201 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Camille, N., Tsuchida, A. & Fellows, L. K. Double dissociation of stimulus-value and action-value learning in humans with orbitofrontal or anterior cingulate cortex damage. J. Neurosci. 31, 15048–15052 (2011).

    Article  PubMed  CAS  Google Scholar 

  85. Hornak, J. et al. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J. Cogn. Neurosci. 16, 463–478 (2004).

    Article  PubMed  CAS  Google Scholar 

  86. O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J. & Andrews, C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat. Neurosci. 4, 95–102 (2001).

    Article  PubMed  Google Scholar 

  87. O’Doherty, J., Critchley, H., Deichmann, R. & Dolan, R. J. Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices. J. Neurosci. 23, 7931–7939 (2003).

    Article  PubMed  Google Scholar 

  88. Cools, R., Clark, L., Owen, A. M. & Robbins, T. W. Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J. Neurosci. 22, 4563–4567 (2002).

    Article  PubMed  CAS  Google Scholar 

  89. Ghahremani, D. G., Monterosso, J., Jentsch, J. D., Bilder, R. M. & Poldrack, R. A. Neural components underlying behavioral flexibility in human reversal learning. Cereb. Cortex 20, 1843–1852 (2010).

    Article  PubMed  Google Scholar 

  90. Baxter, M. G., Gaffan, D., Kyriazis, D. A. & Mitchell, A. S. Ventrolateral prefrontal cortex is required for performance of a strategy implementation task but not reinforcer devaluation effects in rhesus monkeys. Eur. J. Neurosci. 29, 2049–2059 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Reber, J. et al. Selective impairment of goal-directed decision-making following lesions to the human ventromedial prefrontal cortex. Brain 140, 1743–1756 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Noonan, M. P., Chau, B. K. H., Rushworth, M. F. S. & Fellows, L. K. Contrasting effects of medial and lateral orbitofrontal cortex lesions on credit assignment and decision-making in humans. J. Neurosci. 37, 7023–7035 (2017).

    Article  PubMed  CAS  Google Scholar 

  93. Fellows, L. K. & Farah, M. J. The role of ventromedial prefrontal cortex in decision making: judgment under uncertainty or judgment per se? Cereb. Cortex 17, 2669–2674 (2007).

    Article  PubMed  Google Scholar 

  94. Baylis, L. L. & Gaffan, D. Amygdalectomy and ventromedial prefrontal ablation produce similar deficits in food choice and in simple object discrimination learning for an unseen reward. Exp. Brain Res. 86, 617–622 (1991).

    Article  PubMed  CAS  Google Scholar 

  95. Buckley, M. J. et al. Dissociable components of rule-guided behavior depend on distinct medial and prefrontal regions. Science 325, 52–58 (2009).

    Article  PubMed  CAS  Google Scholar 

  96. Dias, R., Robbins, T. W. & Roberts, A. C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 69–72 (1996).

    Article  PubMed  CAS  Google Scholar 

  97. Rossi, A. F., Bichot, N. P., Desimone, R. & Ungerleider, L. G. Top down attentional deficits in macaques with lesions of lateral prefrontal cortex. J. Neurosci. 27, 11306–11314 (2007).

    Article  PubMed  CAS  Google Scholar 

  98. Rushworth, M. F. et al. Attentional selection and action selection in the ventral and orbital prefrontal cortex. J. Neurosci. 25, 11628–11636 (2005).

    Article  PubMed  CAS  Google Scholar 

  99. Bichot, N. P., Heard, M. T., DeGennaro, E. M. & Desimone, R. A. Source for feature-based attention in the prefrontal cortex. Neuron 88, 832–844 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Vaidya, A. R. & Fellows, L. K. Necessary contributions of human frontal lobe subregions to reward learning in a dynamic, multidimensional environment. J. Neurosci. 36, 9843–9858 (2016).

    Article  PubMed  CAS  Google Scholar 

  101. Bussey, T. J., Wise, S. P. & Murray, E. A. The role of ventral and orbital prefrontal cortex in conditional visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta). Behav. Neurosci. 115, 971–982 (2001).

    Article  PubMed  CAS  Google Scholar 

  102. Rushworth, M. F., Nixon, P. D., Eacott, M. J. & Passingham, R. E. Ventral prefrontal cortex is not essential for working memory. J. Neurosci. 17, 4829–4838 (1997).

    Article  PubMed  CAS  Google Scholar 

  103. Cadoret, G. & Petrides, M. Ventrolateral prefrontal neuronal activity related to active controlled memory retrieval in nonhuman primates. Cereb. Cortex 17 (Suppl. 1), i27–i40 (2007).

    Article  PubMed  Google Scholar 

  104. Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I. & Miyashita, Y. Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401, 699–703 (1999).

    Article  PubMed  CAS  Google Scholar 

  105. Fyall, A. M., El-Shamayleh, Y., Choi, H., Shea-Brown, E. & Pasupathy, A. Dynamic representation of partially occluded objects in primate prefrontal and visual cortex. eLife 6, e25784 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chau, B. K., Kolling, N., Hunt, L. T., Walton, M. E. & Rushworth, M. F. A neural mechanism underlying failure of optimal choice with multiple alternatives. Nat. Neurosci. 17, 463–470 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. FitzGerald, T. H., Seymour, B. & Dolan, R. J. The role of human orbitofrontal cortex in value comparison for incommensurable objects. J. Neurosci. 29, 8388–8395 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Rolls, E. T., Grabenhorst, F. & Parris, B. A. Neural systems underlying decisions about affective odors. J. Cogn. Neurosci. 22, 1069–1082 (2010).

    Article  PubMed  Google Scholar 

  109. Kable, J. W. & Glimcher, P. W. The neural correlates of subjective value during intertemporal choice. Nat. Neurosci. 10, 1625–1633 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Howard, J. D. & Kahnt, T. Identity-specific reward representations in orbitofrontal cortex are modulated by selective devaluation. J. Neurosci. 37, 2627–2638 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Suzuki, S., Cross, L. & O’Doherty, J. P. Elucidating the underlying components of food valuation in the human orbitofrontal cortex. Nat. Neurosci. 20, 1780–1786 (2017).

    Article  PubMed  CAS  Google Scholar 

  112. Price, J. L. Prefrontal cortical networks related to visceral function and mood. Ann. NY Acad. Sci. 877, 383–396 (1999).

    Article  PubMed  CAS  Google Scholar 

  113. Rudebeck, P. H. & Murray, E. A. Balkanizing the primate orbitofrontal cortex: distinct subregions for comparing and contrasting values. Ann. NY Acad. Sci. 1239, 1–13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lim, S. L., O’Doherty, J. P. & Rangel, A. The decision value computations in the vmPFC and striatum use a relative value code that is guided by visual attention. J. Neurosci. 31, 13214–13223 (2011).

    Article  PubMed  CAS  Google Scholar 

  115. Raghuraman, A. P. & Padoa-Schioppa, C. Integration of multiple determinants in the neuronal computation of economic values. J. Neurosci. 34, 11583–11603 (2014).

    Article  PubMed  CAS  Google Scholar 

  116. O’Neill, M. & Schultz, W. Coding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward value. Neuron 68, 789–800 (2010).

    Article  PubMed  CAS  Google Scholar 

  117. Murray, E. A., Moylan, E. J., Saleem, K. S., Basile, B. M. & Turchi, J. Specialized areas for value updating and goal selection in the primate orbitofrontal cortex. eLife 4, e11695 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wellman, L. L., Gale, K. & Malkova, L. GABAA-mediated inhibition of basolateral amygdala blocks reward devaluation in macaques. J. Neurosci. 25, 4577–4586 (2005).

    Article  PubMed  Google Scholar 

  119. Klein-Flugge, M. C., Barron, H. C., Brodersen, K. H., Dolan, R. J. & Behrens, T. E. Segregated encoding of reward-identity and stimulus-reward associations in human orbitofrontal cortex. J. Neurosci. 33, 3202–3211 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Teuber, H. L. Unity and diversity of frontal lobe functions. Acta Neurobiol. Exp. 32, 615–656 (1972).

    CAS  Google Scholar 

  121. Duncan, J., Emslie, H., Williams, P., Johnson, R. & Freer, C. Intelligence and the frontal lobe: the organization of goal-directed behavior. Cogn. Psychol. 30, 257–303 (1996).

    Article  PubMed  CAS  Google Scholar 

  122. McDannald, M. A., Jones, J. L., Takahashi, Y. K. & Schoenbaum, G. Learning theory: a driving force in understanding orbitofrontal function. Neurobiol. Learn. Mem. 108, 22–27 (2014).

    Article  PubMed  Google Scholar 

  123. Price, J. L. & Drevets, W. C. Neurocircuitry of mood disorders. Neuropsychopharmacology 35, 192–216 (2010).

    Article  PubMed  Google Scholar 

  124. Borra, E., Gerbella, M., Rozzi, S. & Luppino, G. Anatomical evidence for the involvement of the macaque ventrolateral prefrontal area 12r in controlling goal-directed actions. J. Neurosci. 31, 12351–12363 (2011).

    Article  PubMed  CAS  Google Scholar 

  125. Borra, E., Gerbella, M., Rozzi, S. & Luppino, G. The macaque lateral grasping network: A neural substrate for generating purposeful hand actions. Neurosci. Biobehav. Rev. 75, 65–90 (2017).

    Article  PubMed  Google Scholar 

  126. Takahara, D. et al. Multisynaptic projections from the ventrolateral prefrontal cortex to the dorsal premotor cortex in macaques - anatomical substrate for conditional visuomotor behavior. Eur. J. Neurosci. 36, 3365–3375 (2012). This study makes use of both traditional anterograde and retrograde tracers as well as a viral retrograde transneuronal tracer to identify multisynaptic routes from the VLFC to the dorsal premotor cortex in macaques. These routes are potential pathways for the OFC and VLFC to implement goal selection.

    Article  PubMed  Google Scholar 

  127. Morecraft, R. J. et al. Amygdala interconnections with the cingulate motor cortex in the rhesus monkey. J. Comp. Neurol. 500, 134–165 (2007).

    Article  PubMed  Google Scholar 

  128. Morecraft, R. J. & Van Hoesen, G. W. Convergence of limbic input to the cingulate motor cortex in the rhesus monkey. Brain Res. Bull. 45, 209–232 (1998).

    Article  PubMed  CAS  Google Scholar 

  129. Baxter, M. G., Parker, A., Lindner, C. C., Izquierdo, A. D. & Murray, E. A. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J. Neurosci. 20, 4311–4319 (2000).

    Article  PubMed  CAS  Google Scholar 

  130. Fiuzat, E. C., Rhodes, S. E. & Murray, E. A. The role of orbitofrontal-amygdala interactions in updating action-outcome valuations in macaques. J. Neurosci. 37, 2463–2470 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Rhodes, S. E. & Murray, E. A. Differential effects of amygdala, orbital prefrontal cortex, and prelimbic cortex lesions on goal-directed behavior in rhesus macaques. J. Neurosci. 33, 3380–3389 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Izquierdo, A. & Murray, E. A. Functional interaction of medial mediodorsal thalamic nucleus but not nucleus accumbens with amygdala and orbital prefrontal cortex is essential for adaptive response selection after reinforcer devaluation. J. Neurosci. 30, 661–669 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Izquierdo, A. Functional heterogeneity within rat orbitofrontal cortex in reward learning and decision making. J. Neurosci. 37, 10529–10540 (2017).

    Article  PubMed  CAS  Google Scholar 

  134. Lichtenberg, N. T. et al. Basolateral amygdala to orbitofrontal cortex projections enable cue-triggered reward expectations. J. Neurosci. 37, 8374–8384 (2017). This study uses designer receptor methodology to selectively inactivate information flow in each direction between the basolateral amygdala and the OFC. Only the activity in the projection from the basolateral amygdala to the OFC was necessary to allow the expectation of specific rewards to influence reward-seeking and decision-making.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Costa, V. D., Dal Monte, O., Lucas, D. R., Murray, E. A. & Averbeck, B. B. Amygdala and ventral striatum make distinct contributions to reinforcement learning. Neuron 92, 505–517 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Pritchard, T. C. et al. Gustatory neural responses in the medial orbitofrontal cortex of the old world monkey. J. Neurosci. 25, 6047–6056 (2005).

    Article  PubMed  CAS  Google Scholar 

  138. Rudebeck, P. H., Mitz, A. R., Chacko, R. V. & Murray, E. A. Effects of amygdala lesions on reward-value coding in orbital and medial prefrontal cortex. Neuron 80, 1519–1531 (2013).

    Article  PubMed  CAS  Google Scholar 

  139. Rudebeck, P. H., Ripple, J. A., Mitz, A. R., Averbeck, B. B. & Murray, E. A. Amygdala Contributions to stimulus-reward encoding in the macaque medial and orbital frontal cortex during learning. J. Neurosci. 37, 2186–2202 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Kringelbach, M. L. & Rolls, E. T. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog. Neurobiol. 72, 341–372 (2004).

    Article  PubMed  Google Scholar 

  141. Chudasama, Y., Kralik, J. D. & Murray, E. A. Rhesus monkeys with orbital prefrontal cortex lesions can learn to inhibit prepotent responses in the reversed reward contingency task. Cereb. Cortex 17, 1154–1159 (2007).

    Article  PubMed  CAS  Google Scholar 

  142. Passingham, R. E. & Wise, S. P. The Neurobiology of the Prefrontal Cortex. (Oxford Univ. Press, Oxford, 2012).

    Book  Google Scholar 

  143. Strait, C. E., Blanchard, T. C. & Hayden, B. Y. Reward value comparison via mutual inhibition in ventromedial prefrontal cortex. Neuron 82, 1357–1366 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Chib, V. S., Rangel, A., Shimojo, S. & O’Doherty, J. P. Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. J. Neurosci. 29, 12315–12320 (2009).

    Article  PubMed  CAS  Google Scholar 

  145. McNamee, D., Rangel, A. & O’Doherty, J. P. Category-dependent and category-independent goal-value codes in human ventromedial prefrontal cortex. Nat. Neurosci. 16, 479–485 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Schuck, N. W., Cai, M. B., Wilson, R. C. & Niv, Y. Human orbitofrontal cortex represents a cognitive map of state space. Neuron 91, 1402–1412 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Preuss, T. M. & Goldman-Rakic, P. S. Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J. Comp. Neurol. 310, 429–474 (1991).

    Article  PubMed  CAS  Google Scholar 

  148. Murray, E. A., Wise, S. P. & Graham, K. S. The Evolution of Memory Systems: Ancestors, Anatomy, and Adaptations. (Oxford Univ. Press, Oxford, 2017).

    Google Scholar 

  149. Schneider, B. & Koenigs, M. Human lesion studies of ventromedial prefrontal cortex. Neuropsychologia 107, 84–93 (2017).

    Article  PubMed  Google Scholar 

  150. Fellows, L. K. Orbitofrontal contributions to value-based decision making: evidence from humans with frontal lobe damage. Ann. NY Acad. Sci. 1239, 51–58 (2011).

    Article  PubMed  Google Scholar 

  151. Wallis, C. U., Cardinal, R. N., Alexander, L., Roberts, A. C. & Clarke, H. F. Opposing roles of primate areas 25 and 32 and their putative rodent homologs in the regulation of negative emotion. Proc. Natl Acad. Sci. USA 114, E4075–E4084 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Rudebeck, P. H. et al. A role for primate subgenual cingulate cortex in sustaining autonomic arousal. Proc. Natl Acad. Sci. USA 111, 5391–5396 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Apps, M. A., Rushworth, M. F. & Chang, S. W. The anterior cingulate gyrus and social cognition: tracking the motivation of others. Neuron 90, 692–707 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Murray, E. A. & Rhodes, S. E. V. in Living Without an Amygdala. (eds Amaral, D. G. & Adolphs, R.) 252–275 (Guilford Press, 2016).

Download references

Acknowledgements

The authors thank P.-Y. Chen for help with the preparation of figures and S. P. Wise for comments on an earlier version of this manuscript. This work was supported by the Intramural Research Program of the US National Institute of Mental Health (NIMH; ZIAMH002887 (E.A.M.)), an NIMH BRAINS award (R01 MH110822 (P.H.R.)) and a NARSAD Young Investigator Award (NARSAD grant 23638 (P.H.R.)).

Author information

Authors and Affiliations

Authors

Contributions

E.A.M. and P.H.R. researched data for the article, made substantial contributions to discussions of the content and wrote the article. E.A.M. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Elisabeth A. Murray.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Reward-guided learning

A general term that refers to any kind of learning facilitated by reward, including stimulus–outcome learning, action–outcome learning and stimulus–response learning.

Inhibitory control

The ability to inhibit choices or responses that have previously been rewarded. The concept of behavioural inhibition includes the ability to suppress default, habitual and prepotent behaviours.

Flexible stimulus–reward learning

The ability to quickly make and break associative links between objects (or other cues) and rewards.

Value-based decision-making

The ability to make facultative choices that optimize subjective value.

Credit assignment

The ability to learn that a particular outcome (in experiments, this is typically food or fluid) was produced by a particular choice.

Cognitive map

A neural representation of stimuli, actions and other sensory features that occur in association with outcomes in a multidimensional array. The cognitive map has been theorized to guide value-based decision-making.

Value updating

The process of registering a change in the neural representation of the desirability or availability of foods.

Cortical coupling

A pattern of correlated activity between different brain areas discerned from resting-state fMRI. Cortical coupling has been used to identify brain areas in macaques and humans that have similar connectivity profiles and perhaps comparable functions.

Aspiration lesion

A technique for removing grey matter (that is, neurons) that is based on subpial aspiration of tissue. Lesions are typically carried out with the aid of an operating microscope.

Reversal learning

A task in which, after subjects learn to choose a rewarded item over an unrewarded item, the stimulus–outcome contingencies switch without warning. Thus, the subject must now learn to choose the object that was initially unrewarded. The only feedback to guide choices is the occurrence of reward or nonreward.

Excitotoxic lesions

Lesions created using a technique for selectively removing grey matter (that is, neurons) and sparing white matter (that is, axons) that is based on the injection of neurotoxins. Injections are often carried out via a stereotaxic approach based on coordinates obtained from magnetic resonance images of the brain.

Attentional selection

Concentration of visual or other (for example, somatosensory or auditory) sensory processing resources towards behaviourally important spatial locations or visual features. This process enhances sensory perception so that responses can be faster and more accurate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, E.A., Rudebeck, P.H. Specializations for reward-guided decision-making in the primate ventral prefrontal cortex. Nat Rev Neurosci 19, 404–417 (2018). https://doi.org/10.1038/s41583-018-0013-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-018-0013-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing