Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stiff-person syndrome and related disorders — diagnosis, mechanisms and therapies

Abstract

Stiff-person syndrome (SPS) is the prototypical and most common autoimmune neuronal hyperexcitability disorder. It presents with stiffness in the limbs and axial muscles, stiff gait with uncontrolled falls, and episodic painful muscle spasms triggered by anxiety, task-specific phobias and startle responses, collectively leading to disability. Increased awareness of SPS among patients and physicians has created concerns about diagnosis, misdiagnosis and treatment. This Review addresses the evolving diagnostic challenges in SPS and overlapping glutamic acid decarboxylase (GAD) antibody spectrum disorders, highlighting the growing number of overdiagnoses and focusing on the progress made in our understanding of SPS pathophysiology, antibodies against GAD and other inhibitory synaptic antigens, and the fundamentals of neuronal hyperexcitability. It considers the role of impaired GABAergic or glycinergic inhibition in the cortex and at multiple levels in the neuraxis; the underlying autoimmunity and involvement of GAD antibodies; immunopathogenic mechanisms beyond antibodies, including environmental triggers; familial and immunogenetic susceptibility; and potential T cell cytotoxicity. Finally, the mechanistic rationale for target-specific therapeutic interventions is presented along with the available therapeutic approaches, including enhancers of GABA signalling drugs and immunotherapies.

Key points

  • Stiff-person syndrome (SPS) is the most common form of glutamic acid decarboxylase (GAD) antibody spectrum disorder; others include cerebellar ataxia, encephalitis and autoimmune epilepsy.

  • SPS is characterized by stiffness, muscle spasms and task-specific phobias; GAD antibody titres are essential for diagnosis and, if titres are low, the presence of GAD antibodies in the cerebrospinal fluid is required.

  • Stiffness and task-specific phobias are explained by impaired reciprocal GABAergic inhibition, reductions in brain levels of GABA, and cortical hyperexcitability.

  • GAD antibodies have some effects on GABAergic neurons and GABA production in vitro and in vivo, but convincing evidence that GAD antibodies are pathogenic is lacking.

  • Intrathecal GAD antibody synthesis occurs in SPS, and circulating GAD-reactive B cells can differentiate into antibody-producing cells in the peripheral blood and bone marrow.

  • Therapeutic approaches to SPS include targeting of GABAergic inhibition with GABA-enhancing antispasmodic drugs, such as baclofen, gabapentin and diazepam, followed by immunotherapy, such as intravenous immunoglobulin or rituximab. Novel immunotherapies are in the offing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of the major milestones in the field of stiff-person syndrome.
Fig. 2: Clinical manifestations of stiff-person syndrome.
Fig. 3: Pathophysiology and electrophysiology of reciprocal inhibition in health and stiff-person syndrome.
Fig. 4: Known antigenic targets involved in inhibitory synaptic transmission in glutamic acid decarboxylase antibody spectrum disorders.

Similar content being viewed by others

References

  1. Dalakas, M. C. Stiff-person syndrome and GAD antibody-spectrum disorders: GABAergic neuronal excitability, immunopathogenesis and update on antibody therapies. Neurotherapeutics https://doi.org/10.1007/s13311-022-01188-w (2022).

  2. Graus, F., Saiz, A. & Dalmau, J. GAD antibodies in neurological disorders — insights and challenges. Nat. Rev. Neurol. 16, 353–365 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Martinez-Hernandez, E. et al. Clinical and immunologic investigations in patients with stiff-person spectrum disorder. JAMA Neurol. 73, 714–720 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Balint, B. & Bhatia, K. P. Stiff person syndrome and other immune‐mediated movement disorders — new insights. Curr. Opin. Neurol. 29, 496–506 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Tsiortou, P., Alexopoulos, H. & Dalakas, M. C. GAD antibody-spectrum disorders: progress in clinical phenotypes, immunopathogenesis and therapeutic interventions. Ther. Adv. Neurol. 14, 17562864211003486 (2021).

    CAS  Google Scholar 

  6. McKeon, A. et al. Stiff-man syndrome and variants clinical course, treatments, and outcomes. Arch. Neurol. 69, 230–238 (2012).

    Article  PubMed  Google Scholar 

  7. Moersch, F. P. & Woltman, H. W. Progressive fluctuating muscular rigidity and spasm (“stiff-man” syndrome); report of a case and some observations in 13 other cases. Proc. Staff Meet. Mayo Clin. 31, 421–427 (1956).

    CAS  PubMed  Google Scholar 

  8. Solimena, M. et al. Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. N. Engl. J. Med. 318, 1012–1020 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Meinck, H. M., Ricker, K. & Conrad, B. The stiff-man syndrome: new pathophysiological aspects from abnormal exteroceptive reflexes and the response to clomipramine, clonidine, and tizanidine. J. Neurol. Neurosurg. Psychiatry 47, 280–287 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dalakas, M. C. et al. Stiff person syndrome: quantification, specificity, and intrathecal synthesis of GAD65 antibodies. Neurology 57, 780–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Dinkel, K. et al. Inhibition of gamma-aminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome. Ann. Neurol. 44, 194–201 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Folli, F. et al. Autoantibodies to a 128-kd synaptic protein in three women with the stiff-man syndrome and breast cancer. N. Engl. J. Med. 328, 546–551 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. De Camilli, P. et al. The synaptic vesicle-associated protein amphiphysin is the 128-kD autoantigen of stiff-man syndrome with breast cancer. J. Exp. Med. 178, 2219–2223 (1993).

    Article  PubMed  Google Scholar 

  14. Butler, M. H. et al. Autoimmunity to gephyrin in stiff-man syndrome. Neuron 26, 307–312 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Dalakas, M. C. et al. The clinical spectrum of anti-GAD antibody-positive patients with stiff-person syndrome. Neurology 55, 1531–1535 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Dalakas, M. C. Autoantibodies and immunopathogenesis of the stiff-person syndrome; NIH clinical conference “the stiff-person syndrome: an autoimmune disorder affecting neurotransmission of g-aminobutyric acid”. Ann. Intern. Med. 131, 523–524 (1999).

    Google Scholar 

  17. Levy, L. M., Dalakas, M. C. & Floeter, M. K. The stiff-person syndrome: an autoimmune disorder affecting neurotransmission of gamma-aminobutyric acid. Ann. Intern. Med. 131, 522–530 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Sandbrink, F. et al. Motor cortex excitability in stiff-person syndrome. Brain 123, 2231–2239 (2000).

    Article  PubMed  Google Scholar 

  19. Molloy, F. M., Dalakas, M. C. & Floeter, M. K. Increased brainstem excitability in stiff-person syndrome. Neurology 59, 449–451 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Levy, L. M. et al. Brain gamma-aminobutyric acid changes in stiff-person syndrome. Arch. Neurol. 62, 970–974 (2005).

    Article  PubMed  Google Scholar 

  21. Raju, R. et al. Analysis of GAD65 autoantibodies in stiff-person syndrome patients. J. Immunol. 175, 7755–7762 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Raju, R. et al. Autoimmunity to GABAA-receptor-associated protein in stiff-person syndrome. Brain 129, 3270–3276 (2006).

    Article  PubMed  Google Scholar 

  23. Burbelo, P. D. et al. High definition profiling of autoantibodies to glutamic acid decarboxylases GAD65/GAD67 in stiff-person syndrome. Biochem. Biophys. Res. Commun. https://doi.org/10.1016/j.bbrc.2007.11.077 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Dalakas, M. C. et al. High-dose intravenous immune globulin for stiff-person syndrome. N. Engl. J. Med. 345, 1870–1876 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Dalakas, M. C. et al. A double-blind, placebo-controlled study of rituximab in patients with stiff person syndrome. Ann. Neurol. 82, 271–277 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Honnorat, J. et al. Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of 14 patients. Arch. Neurol. 58, 225–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Malter, M. P. et al. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann. Neurol. 67, 470–478 (2010).

    Article  PubMed  Google Scholar 

  28. Kim, J. et al. Higher autoantibody levels and recognition of a linear NH2-terminal epitope in the autoantigen GAD65, distinguish stiff-man syndrome from insulin-dependent diabetes mellitus. J. Exp. Med. 180, 595–606 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Ishida, K. et al. Selective suppression of cerebellar GABAergic transmission by an autoantibody to glutamic acid decarboxylase. Ann. Neurol. 46, 263–267 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Gultekin, S. H. et al. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain 123, 1481–1494 (2000).

    Article  PubMed  Google Scholar 

  31. Rakocevic, G. et al. Stiff person syndrome with cerebellar disease and high-titer anti-GAD antibodies. Neurology 67, 1068–1070 (2006).

    Article  PubMed  Google Scholar 

  32. Dalakas, M. C. Stiff person syndrome: advances in pathogenesis and therapeutic interventions. Curr. Treat. Options Neurol. 11, 102–110 (2009).

    Article  PubMed  Google Scholar 

  33. Meinck, H. M. & Thompson, P. D. Stiff man syndrome and related conditions. Mov. Disord. 17, 853–866 (2002).

    Article  PubMed  Google Scholar 

  34. Dalakas, M. C. Stiff person syndrome and GAD antibody-spectrum disorders. Continuum 30, 1110–1135 (2024).

    PubMed  Google Scholar 

  35. Alexopoulos, H. & Dalakas, M. C. Immunology of stiff person syndrome and other GAD-associated neurological disorders. Expert. Rev. Clin. Immunol. 9, 1043–1053 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Dalakas, M. C. Progress and stiff challenges in understanding the role of GAD-antibodies in stiff-person syndrome. Exp. Neurol. 247, 303–307 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. McKeon, A. & Tracy J. A. GAD 65 neurological autoimmunity muscle nerve. Muscle Nerve 56, 15–27 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Gresa-Arribas, N. et al. Antibodies to inhibitory synaptic proteins in neurological syndromes associated with glutamic acid decarboxylase autoimmunity. PLoS ONE 10, e0121364 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. McKeon, A. et al. Glycine receptor autoimmune spectrum with stiff-man syndrome phenotype. JAMA Neurol. 70, 44–50 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Alexopoulos, H., Akrivou, S. & Dalakas, M. C. Glycine receptor antibodies in stiff-person syndrome and other GAD-positive CNS disorders. Neurology 81, 1962–1964 (2013).

    Article  PubMed  Google Scholar 

  41. Munoz-Lopetegi, A. et al. Neurologic syndromes related to anti-GAD65: clinical and serologic response to treatment. Neurol. Neuroimmunol. Neuroinflamm. 7, e696 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Saiz, A. et al. Autoantibodies to glutamic acid decarboxylase in three patients with cerebellar ataxia, late-onset insulin-dependent diabetes mellitus, and polyendocrine autoimmunity. Neurology 49, 1026–1030 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Budhram, A. et al. Clinical spectrum of high-titre GAD65 antibodies. J. Neurol. Neurosurg. Psychiatry 92, 645–654 (2021).

    Article  PubMed  Google Scholar 

  44. Elsalti, A., Darkhabani, M., Alrifaai, M. A. & Mahroum, N. Celebrities and medical awareness — the case of Celine Dion and stiff-person syndrome. Int. J. Environ. Res. Public Health 20, 1936 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chia, N. H. et al. Stiff person spectrum disorder diagnosis and misdiagnosis: clinical and ancillary testing characteristics and suggested diagnostic criteria. Ann. Clin. Transl. Neurol. 10, 1083–1094 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Matsui, N. et al. Prevalence, clinical profiles, and prognosis of stiff-person syndrome in a Japanese nationwide survey. Neurol. Neuroimmunol. Neuroinflamm. 10, e200165 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dalakas, M. C. Therapies in stiff-person syndrome: advances and future prospects based on disease pathophysiology. Neurol. Neuroimmunol. Neuroinflamm. 10, e200109 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Barker, R. A. et al. Review of 23 patients affected by the stiff man syndrome: clinical subdivision into stiff trunk (man) syndrome, stiff limb syndrome, and progressive encephalomyelitis with rigidity. J. Neurol. Neurosurg. Psychiatry 65, 633–640 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rakocevic, G., Alexopoulos, H. & Dalakas, M. C. Quantitative clinical and autoimmune assessments in stiff person syndrome: evidence for a progressive disorder. BMC Neurol. 19, 1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Henningsen, P., Clement, U., Küchenhoff, J., Simon, F. & Meinck Psychological, H. M. Psychological factors in the diagnosis and pathogenesis of stiff-man syndrome. Neurology 47, 38–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Ameli, R. et al. A neuropsychological assessment of phobias in patients with stiff person syndrome. Neurology 64, 1961–1963 (2005).

    Article  PubMed  Google Scholar 

  52. Nicolaus, S., Antke, C., Beu, M. & Müller, H.-W. Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders — results from in vivo imaging studies. Rev. Neurosci. 21, 119–139 (2010).

    Google Scholar 

  53. Benavides, D. R. & Newsome, S. D. Serotonin‐norepinephrine reuptake inhibitors may exacerbate stiff‐person syndrome. Neurol. Neuroimmunol. Neuroinflamm. 3, e281 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Vlad, V., Wang, Y., Newsome, S. D. & Balint, B. Stiff person spectrum disorders — an update and outlook on clinical, pathophysiological and treatment perspectives. Biomedicines 11, 2500 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lambe, J. et al. Retinal pathology occurs in stiff-person syndrome. Neurology 94, e2126–e2131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ariño, H. et al. Paraneoplastic neurological syndromes and glutamic acid decarboxylase antibodies. JAMA Neurol. 72, 874–881 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Murinson, B. B. & Guarnaccia, J. B. Stiff-person syndrome with amphiphysin antibodies: distinctive features of a rare disease. Neurology 71, 1955–1958 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dimitriadou, M. M. et al. Anti-neuronal antibodies within the IVIg preparations: importance in clinical practice. Neurotherapeutics 17, 235–242 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. de Bruijn, M. A. et al. Antibodies contributing to focal epilepsy signs and symptoms score. Ann. Neurol. 89, 698–710 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Peltola, J. et al. Autoantibodies to glutamic acid decarboxylase in patients with therapy-resistant epilepsy. Neurology 55, 46–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Makela, K. M. et al. Clinical management of epilepsy with glutamic acid decarboxylase antibody positivity: the interplay between immunotherapy and anti-epileptic drugs. Front. Neurol. 9, 579 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Quek, A. M. et al. Autoimmune epilepsy: clinical characteristics and response to immunotherapy. Arch. Neurol. 69, 582–593 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Falip, M. et al. Prevalence and immunological spectrum of temporal lobe epilepsy with glutamic acid decarboxylase antibodies. Eur. J. Neurol. 19, 827–833 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Smith, K. M. et al. Musicogenic epilepsy: expanding the spectrum of glutamic acid decarboxylase 65 neurological autoimmunity. Epilepsia 62, e76–e81 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Antonini, G. et al. Autoantibodies to glutamic acid decarboxylase in downbeat nystagmus. J. Neurol. Neurosurg. Psychiatry 74, 998–999 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ances, B. M. et al. Downbeating nystagmus and muscle spasms in a patient with glutamic-acid decarboxylase antibodies. Am. J. Ophthalmol. 140, 142–144 (2005).

    Article  PubMed  Google Scholar 

  67. Pierrot-Deseilligny, C. & Milea, D. Vertical nystagmus: clinical facts and hypotheses. Brain 128, 1237–1246 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Carvajal-Gonzalez, A. et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 137, 2178–2192 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hinson, S. R. et al. Glycine receptor modulating antibody predicting treatable stiff-person spectrum disorders. Neurol. Neuroimmunol. Neuroinflamm. 5, e438 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mas, N. et al. Antiglycine-receptor encephalomyelitis with rigidity. J. Neurol. Neurosurg. Psychiatry 82, 1399–1401 (2011).

    Article  PubMed  Google Scholar 

  71. Iizuka, T. et al. Glycine receptor antibodies are detected in progressive encephalomyelitis with rigidity and myoclonus (PERM) but not in saccadic oscillations. J. Neurol. 259, 1566–1573 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Tobin, W. O. et al. DPPX potassium channel antibody frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 83, 1797–1803 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Balint, B. et al. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology 82, 1521–1528 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Hiemstra, H. S. et al. Cytomegalovirus in autoimmunity: T cell crossreactivity to viral antigen and autoantigen glutamic acid decarboxylase. Proc. Natl Acad. Sci. USA 98, 3988–3991 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Atkinson, M. A. et al. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J. Clin. Invest. 94, 2125–2129 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kaufman, D. L. et al. Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J. Clin. Invest. 89, 283–292 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bach, J. M. et al. Identification of mimicry peptides based on sequential motifs of epitopes derived from 65-kDa glutamic acid decarboxylase. Eur. J. Immunol. 28, 1902–1910 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Hassin-Baer, S. et al. Stiff-person syndrome following West Nile fever. Arch. Neurol. 61, 938–941 (2004).

    Article  PubMed  Google Scholar 

  79. Dalakas, M. C. Severe stiff person syndrome after COVID: the first video-documented COVID-exacerbation and viral implications. Neurol. Neuroimmunol. Neuroinflamm. 11, e200192 (2024).

    Article  PubMed  Google Scholar 

  80. Giacomozzi, S. et al. Glycine receptor antibody-associated progressive encephalomyelitis with rigidity and myoclonus (PERM) during SARS-CoV-2 infection: a video-case report. Mov. Disord. Clin. Pract. 10, 824–826 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Giler, G. & Dalakas, M. C. Covid-19-booster in 2 neurologically asymptomatic GAD-positive patients with diabetes mellitus type 1 (M139). Ann. Neurol. 94, S1–S303 (2023).

    Google Scholar 

  82. Muñiz‐Castrillo, S. et al. Familial autoimmunity in neurological patients with GAD65 antibodies: an interview‐based study. J. Neurol. 268, 2515–2522 (2021).

    Article  PubMed  Google Scholar 

  83. Muniz-Castrillo, S. et al. Primary DQ effect in the association between HLA and neurological syndromes with anti-GAD65 antibodies. J. Neurol. 267, 906–1911 (2020).

    Article  Google Scholar 

  84. Belbezier, A. et al. Multiplex family with GAD65-Abs neurologic syndromes. Neurol. Neuroimmunol. Neuroinflamm. 5, e416 (2018).

    Article  PubMed  Google Scholar 

  85. Tsiortou, P. et al. Clinical and immunological studies in a 3-generation family with very high titers of anti-GAD antibodies. Neurology https://doi.org/10.1212/WNL.92.15_supplement.S21.007 (2019).

  86. Thaler, F. S. et al. Possible link of genetic variants to autoimmunity in GAD-antibody-associated neurological disorders. J. Neurol. Sci. 413, 116860 (2020).

    Article  PubMed  Google Scholar 

  87. Strippel, C. et al. A genome-wide association study in autoimmune neurological syndromes with anti-GAD65 autoantibodies. Brain 146, 977–990 (2023).

    Article  PubMed  Google Scholar 

  88. Meinck, H. M., Ricker, K., Hulser, P. J. & Solimena, M. Stiff man syndrome: neurophysiological findings in eight patients. J. Neurol. 242, 134–142 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Fenalti, G. & Buckle, A. M. Structural biology of the GAD autoantigen. Autoimmun. Rev. 9, 148–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Fenalti, G. et al. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat. Struct. Mol. Biol. 14, 280–286 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Jayakrishnan, B. et al. An analysis of the cross-reactivity of autoantibodies to GAD65 and GAD67 in diabetes. PLoS ONE 6, e18411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Butler, M. H. et al. Identification of a dominant epitope of glutamic acid decarboxylase (GAD-65) recognized by autoantibodies in stiff-man syndrome. J. Exp. Med. 178, 2097–2106 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Fouka, P. et al. GAD65 epitope mapping and search for novel autoantibodies in GAD-associated neurological disorders. J. Neuroimmunol. 281, 73–77 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Manto, M. et al. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions. Front. Behav. Neurosci. 9, 78 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rakocevic, G., Raju, R. & Dalakas, M. C. Anti-GAD antibodies in the serum and CSF of patients with stiff person syndrome: correlation with clinical severity. Arch. Neurol. 61, 902–904 (2004).

    Article  PubMed  Google Scholar 

  96. Thaler, F. S. et al. Abundant glutamic acid decarboxylase (GAD)-reactive B cells in GAD-antibody-associated neurological disorders. Ann. Neurol. 85, 448–454 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Skorstad, G. et al. GAD65 IgG autoantibodies in stiff person syndrome: clonality, avidity and persistence. Eur. J. Neurol. 15, 973–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Ishida, K., Mitoma, H. & Mizusawa, H. Reversibility of cerebellar GABAergic synapse impairment induced by anti-glutamic acid decarboxylase autoantibodies. J. Neurol. Sci. 271, 186–190 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Mitoma, H. et al. Presynaptic impairment of cerebellar inhibitory synapses by an autoantibody to glutamate decarboxylase. J. Neurol. Sci. 175, 40–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Manto, M. U. et al. Effects of anti-glutamic acid decarboxylase antibodies associated with neurological diseases. Ann. Neurol. 61, 544–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Patel, A. B. et al. Evidence that GAD65 mediates increased GABA synthesis during intense neuronal activity in vivo. J. Neurochem. 97, 385–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Hansen, N. et al. Human stiff person syndrome IgG-containing high-titer anti-GAD65 autoantibodies induce motor dysfunction in rats. Exp. Neurol. 239, 202–209 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Stemmler, N. et al. Serum from a patient with GAD65 antibody-associated limbic encephalitis did not alter GABAergic neurotransmission in cultured hippocampal networks. Front. Neurol. 6, 189 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Werner, C. et al. Stiff person-syndrome IgG affects presynaptic GABAergic release mechanisms. J. Neural Transm. 122, 357–362 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Sommer, C. et al. Paraneoplastic stiff-person syndrome: passive transfer to rats by means of IgG antibodies to amphiphysin. Lancet 365, 1406–1411 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Geis, C. et al. Human IgG directed against amphiphysin induces anxiety behavior in a rat model after intrathecal passive transfer. J. Neural Transm. 119, 981–985 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Crisp, S. J. et al. Glycine receptor autoantibodies disrupt inhibitory neurotransmission. Brain 142, 3398–3410 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wiessler, A.-L. et al. Glycine receptor β-targeting autoantibodies contribute to the pathology of autoimmune diseases. Neurol. Neuroimmunol. Neuroinflamm. https://doi.org/10.1212/NXI.0000000000200187 (2024).

  109. Carreno, M. et al. Epilepsy surgery in drug resistant temporal lobe epilepsy associated with neuronal antibodies. Epilepsy Res. 129, 101–105 (2017).

    Article  PubMed  Google Scholar 

  110. Tröscher, A. R. et al. Temporal lobe epilepsy with GAD antibodies: neurons killed by T cells not by complement membrane attack complex. Brain 146, 1436–1452 (2023).

    Article  PubMed  Google Scholar 

  111. Burton, A. R. et al. Central nervous system destruction mediated by glutamic acid decarboxylase-specific CD4+ T cells. J. Immunol. 184, 4863–4870 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Lohmann, T. et al. Immune re-activity to glutamic acid decarboxylase 65 in stiffman syndrome and type 1 diabetes mellitus. Lancet 356, 31–35 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Schloot, N. C. et al. GAD65-reactive T cells in a non-diabetic stiff-man syndrome patient. J. Autoimmun. 12, 289–296 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Hänninen, A. et al. Characterization of CD4+ T cells specific for glutamic acid decarboxylase (GAD65) and proinsulin in a patient with stiff-person syndrome but without type 1 diabetes. Diabetes Metab. Res. Rev. 26, 271–279 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Skorstad, G., Hestvik, A., Vartdal, F. & Holmoy, T. Cerebrospinal fluid T cell responses against glutamic acid decarboxylase 65 in patients with stiff person syndrome. J. Autoimmun. 32, 1 (2009).

    Article  Google Scholar 

  116. Dalakas, M. C. & Yi, J. Late-onset stiff person syndrome (SPS): challenges in diagnosis and management. Ther. Adv. Neurol. Disord. 16, 1–6 (2023).

    Article  Google Scholar 

  117. Silbert, P. L. et al. Intrathecal baclofen therapy in stiff-man syndrome: a double-blind, placebo-controlled trial. Neurology 45, 1893–1897 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. Bardutzky, J., Tronnier, V., Schwab, S. & Meinck, H. M. Intrathecal baclofen for stiff-person syndrome: life-threatening intermittent catheter leakage. Neurology 60, 1976–1978 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Meinck, H. M. et al. Intrathecal baclofen treatment for stiff-man syndrome: pump failure may be fatal. Neurology 44, 2209–2210 (1994).

    Article  CAS  PubMed  Google Scholar 

  120. Vasconcellos, O. M. & Dalakas, M. C. Stiff-person syndrome. Curr. Treat. Options Neurol. 5, 79–90 (2003).

    Article  Google Scholar 

  121. Davis, D. & Jabbari, B. Significant improvement of stiff-person syndrome after paraspinal injection of botulinum toxin A. Mov. Disord. 8, 371–373 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Balint, B. & Meinck, H. M. Pragmatic treatment of stiff person spectrum disorders. Mov. Disord. Clin. Pract. 5, 394–401 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Aljarallah, S. & Newsome, S. D. Use of subcutaneous immunoglobulin in stiff person syndrome: case series. Medicine 100, e25260 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yi, J. & Dalakas, M. C. Long-term effectiveness of IVIg maintenance therapy in 36 patients with GAD antibody positive stiff-person syndrome. Neurol. Neuroimmunol. Neuroinflamm. 9, e200011. (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Thaler, F. S. et al. Rituximab treatment and long-term outcome of patients with autoimmune encephalitis real-world evidence from the GENERATE registry. Neurol. Neuroimmunol. Neuroinflamm. 8, e1088 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Jones, A. L. et al. Responses to and outcomes of treatment of autoimmune cerebellar ataxia in adults. JAMA Neurol. 72, 1304–1312 (2015).

    Article  PubMed  Google Scholar 

  127. Arino, H. et al. Cerebellar ataxia and glutamic acid decarboxylase antibodies: immunologic profile and long-term effect of immuno-therapy. JAMA Neurol. 71, 1009–1016 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Mercure-Corriveau, N. et al. Therapeutic plasma exchange in the management of stiff person syndrome spectrum disorders: a case series and review of the literature. Ther. Adv. Neurol. Disord. 16, 1–13 (2023).

    Article  Google Scholar 

  129. Albahra, S. et al. Role of plasma exchange in stiff person syndrome. Transfus. Apher. Sci. 58, 310–312 (2019).

    Article  PubMed  Google Scholar 

  130. Kass-Iliyya, L. et al. Autologous haematopoietic stem cell transplantation for refractory stiff-person syndrome: the UK experience. J. Neurol. 268, 265–275 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Burt, R. K. et al. Autologous hematopoietic stem cell transplantation for stiff person spectrum disorder: a clinical trial. Neurology 96, e817–e830 (2020).

    PubMed  Google Scholar 

  132. Dalakas, M. C. A hsct trial in stiff person syndrome: limited benefits halt enrollment but should be more to come? Neurology https://doi.org/10.1212/WNL.0000000000011349 (2020).

  133. Celli, S. I. et al. Successful autologous hematopoietic stem cell transplant in glycine receptor antibody-positive stiff person syndrome. A case report. Neurol. Neuroimmunol. Neuroinflamm. 11, e200197 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Clardy, S. L. et al. Childhood onset of stiff-man syndrome. JAMA Neurol. 70, 1531–1536 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Burns, T., Phillips, L. & Jones, H. R. Stiff person syndrome does not always occur with maternal passive transfer of GAD65 antibodies. Neurology 64, 399–400 (2005).

    Article  PubMed  Google Scholar 

  136. Esch, M. E. & Newsome, S. D. Improvement of stiff-person syndrome symptoms in pregnancy. Neurol. Neuroimmunol. Neuroinflamm. 7, e684 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Di Stefano, V. et al. Efgartigimod beyond myasthenia gravis: the role of FcRn‐targeting therapies in stiff‐person syndrome. J. Neurol. 271, 254–262 (2024).

    Article  PubMed  Google Scholar 

  138. Basnyat, P. et al. Elevated IL-6 plasma levels are associated with GAD antibodies-associated epilepsy. Front. Cell. Neurosci. 17, 1129907 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Faissner, S. et al. Successful use of anti-CD19 CAR T-cells in severe treatment-refractory stiff-person-syndrome. Proc. Natl Acad. Sci. USA 121, e2403227121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Howard, F. M. Jr A new and effective drug in the treatment of stiff-man syndrome: preliminary report. Proc. Staff Meet. Mayo Clin. 38, 203–212 (1963).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinos C. Dalakas.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks C. Geis, J. Honnorat and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

GENERATE network: https://en.generate-net.de/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalakas, M.C. Stiff-person syndrome and related disorders — diagnosis, mechanisms and therapies. Nat Rev Neurol 20, 587–601 (2024). https://doi.org/10.1038/s41582-024-01012-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-024-01012-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing