Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Peripheral nervous system immune-related adverse events due to checkpoint inhibition

Abstract

Immune checkpoint inhibitors have revolutionized cancer therapy and are increasingly used to treat a wide range of oncological conditions, with dramatic benefits for many patients. Unfortunately, the resulting increase in T cell effector function often results in immune-related adverse events (irAEs), which can involve any organ system, including the central nervous system (CNS) and peripheral nervous system (PNS). Neurological irAEs involve the PNS in two-thirds of affected patients. Muscle involvement (immune-related myopathy) is the most common PNS irAE and can be associated with neuromuscular junction involvement. Immune-related peripheral neuropathy most commonly takes the form of polyradiculoneuropathy or cranial neuropathies. Immune-related myopathy (with or without neuromuscular junction involvement) often occurs along with immune-related myocarditis, and this overlap syndrome is associated with substantially increased mortality. This Review focuses on PNS adverse events associated with immune checkpoint inhibition. Underlying pathophysiological mechanisms are discussed, including antigen homology between self and tumour, epitope spreading and activation of pre-existing autoreactive T cells. An overview of current approaches to clinical management is provided, including cytokine-directed therapies that aim to decouple anticancer immunity from autoimmunity and emerging treatments for patients with severe (life-threatening) presentations.

Key points

  • Checkpoint inhibitors have improved cancer outcomes but the resultant increase in T cell effector function can result in immune-related adverse events (irAEs).

  • Neurological irAEs occur in 1–2% of all patients treated with checkpoint inhibitors and most frequently (in about two-thirds of individuals) involve the peripheral nervous system (PNS).

  • The most common presentation of PNS irAEs is immune-related myopathy, which can be associated with immune-related neuromuscular junction involvement; immune-related neuropathy most commonly presents as polyradiculoneuropathy or cranial neuropathies.

  • irAEs are largely driven by excessive T cell activity and autoimmunity resulting from factors including antigen homology between self and tumour, epitope spreading and activation of pre-existing autoreactive T cells.

  • Clinical management of PNS irAEs is guided by syndrome subtype, severity and comorbidities, most notably myocarditis; research focuses on prevention, identification of new targeted treatments and strategies for severe, life-threatening PNS irAEs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simplified depiction of immune checkpoint inhibitor signalling pathways.
Fig. 2: Classification of neurological immune-related adverse events due to checkpoint inhibition.
Fig. 3: Proposed approach to the clinical management of immune-related adverse events due to checkpoint inhibition.
Fig. 4: Pathophysiology of immune-related adverse events.

Similar content being viewed by others

References

  1. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Dougan, M., Luoma, A. M., Dougan, S. K. & Wucherpfennig, K. W. Understanding and treating the inflammatory adverse events of cancer immunotherapy. Cell 184, 1575–1588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    Article  PubMed  Google Scholar 

  4. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Boussiotis, V. A. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N. Engl. J. Med. 375, 1767–1778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 185, 576 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Maruhashi, T., Sugiura, D., Okazaki, I. & Okazaki, T. LAG-3: from molecular functions to clinical applications. J. Immunother. Cancer 8, e001014 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Martins, F. et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Buchbinder, E. I. & Desai, A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39, 98–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson, D. B. et al. Neurologic toxicity associated with immune checkpoint inhibitors: a pharmacovigilance study. J. Immunother. Cancer 7, 134 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ramos-Casals, M. et al. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Prim. 6, 38 (2020).

    Article  PubMed  Google Scholar 

  13. Molina, G. E. et al. Temporal trends and outcomes among patients admitted for immune‐related adverse events: a single‐center retrospective cohort study from 2011 to 2018. Oncologist 26, 514–522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arnaud‐Coffin, P. et al. A systematic review of adverse events in randomized trials assessing immune checkpoint inhibitors. Int. J. Cancer 145, 639–648 (2019).

    Article  PubMed  Google Scholar 

  15. Abu-Shawer, O. et al. Novel platform leveraging electronic medical record (EMR) to triage patients admitted with high-grade immune-related adverse events (irAEs) to the immune-toxicity (ITOX) service. J. Immunother. Cancer 8, e000992 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Plaçais, L. et al. Neurological complications induced by immune checkpoint inhibitors: a comprehensive descriptive case-series unravelling high risk of long-term sequelae. Brain Commun. 3, fcab220 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dubey, D. et al. Severe neurological toxicity of immune checkpoint inhibitors: growing spectrum. Ann. Neurol. 87, 659–669 (2020).

    Article  PubMed  Google Scholar 

  18. Rossi, S. et al. Peripheral nervous system adverse events associated with immune checkpoint inhibitors. J. Neurol. 270, 2975–2986 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cuzzubbo, S. et al. Neurological adverse events associated with immune checkpoint inhibitors: review of the literature. Eur. J. Cancer 73, 1–8 (2016).

    Article  Google Scholar 

  20. Hyun, J.-W., Kim, K. H., Kim, S.-H. & Kim, H. J. Severe neuromuscular immune-related adverse events of immune checkpoint inhibitors at National Cancer Center in Korea. J. Cancer Res. Clin. Oncol. 149, 5583–5589 (2023).

    Article  PubMed  Google Scholar 

  21. Wang, D. Y. et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 4, 1721–1728 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Farina, A. et al. Neurological outcomes in immune checkpoint inhibitor-related neurotoxicity. Brain Commun. 5, fcad169 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kao, J. C. et al. Neurological complications associated with anti–programmed death 1 (PD-1) antibodies. JAMA Neurol. 74, 1216–1222 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Farina, A., Villagrán-García, M., Vogrig, A. & Joubert, B. Central nervous system adverse events of immune checkpoint inhibitors. Curr. Opin. Neurol. 37, 345–352 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Guidon, A. C. et al. Consensus disease definitions for neurologic immune-related adverse events of immune checkpoint inhibitors. J. Immunother. Cancer 9, e002890 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dubey, D. et al. Varied phenotypes and management of immune checkpoint inhibitor—a neuropathies. Neurology 93, e1093–e1103 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Marini, A. et al. Neurologic adverse events of immune checkpoint inhibitors: a systematic review. Neurology 96, 754–766 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Sechi, E. et al. Neurologic autoimmunity and immune checkpoint inhibitors: autoantibody profiles and outcomes. Neurology 95, e2442–e2452 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruggiero, R. et al. Do peripheral neuropathies differ among immune checkpoint inhibitors? Reports from the European post-marketing surveillance database in the past 10 years. Front. Immunol. 14, 1134436 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Amato, A. A. & Ropper, A. H. Sensory ganglionopathy. N. Engl. J. Med. 383, 1657–1662 (2020).

    Article  PubMed  Google Scholar 

  31. Chompoopong, P. et al. Comparison of immune checkpoint inhibitor-related neuropathies among patients with neuroendocrine and non-neuroendocrine tumours. J. Neurol. Neurosurg. Psychiatry 93, 112 (2022).

    Article  PubMed  Google Scholar 

  32. Löffel, N. B., Rossi, L. N., Mumenthaler, M., Lütschg, J. & Ludin, H.-P. The Landry–Guillain–Barré syndrome: complications, prognosis and natural history in 123 cases. J. Neurol. Sci. 33, 71–79 (1977).

    Article  PubMed  Google Scholar 

  33. Touat, M. et al. Immune checkpoint inhibitor-related myositis and myocarditis in patients with cancer. Neurology 91, e985–e994 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Seki, M. et al. Inflammatory myopathy associated with PD-1 inhibitors. J. Autoimmun. 100, 105–113 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Shelly, S. et al. Immune checkpoint inhibitor-associated myopathy: a clinicoseropathologically distinct myopathy. Brain Commun. 2, fcaa181 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Suzuki, S. et al. Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology 89, 1127–1134 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Aldrich, J. et al. Inflammatory myositis in cancer patients receiving immune checkpoint inhibitors. Arthritis Rheumatol. 73, 866–874 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Pinal-Fernandez, I. et al. Transcriptomic profiling reveals distinct subsets of immune checkpoint inhibitor induced myositis. Ann. Rheum. Dis. 82, 829–836 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Johansen, A., Christensen, S. J., Scheie, D., Højgaard, J. L. S. & Kondziella, D. Neuromuscular adverse events associated with anti-PD-1 monoclonal antibodies: systematic review. Neurology 92, 663–674 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Huang, Y.-T., Chen, Y.-P., Lin, W.-C., Su, W.-C. & Sun, Y.-T. Immune checkpoint inhibitor-induced myasthenia gravis. Front. Neurol. 11, 634 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rhee, J. Y., Torun, N., Neilan, T. G. & Guidon, A. C. Consider myocarditis when patients treated with immune checkpoint inhibitors present with ocular symptoms. Oncologist 27, e402–e405 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Reynolds, K. L. & Guidon, A. C. Diagnosis and management of immune checkpoint inhibitor‐associated neurologic toxicity: illustrative case and review of the literature. Oncologist 24, 435–443 (2019).

    Article  PubMed  Google Scholar 

  43. Lilleker, J. B. et al. Using serum troponins to screen for cardiac involvement and assess disease activity in the idiopathic inflammatory myopathies. Rheumatology 57, 1041–1046 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lehmann, L. H. et al. Clinical strategy for the diagnosis and treatment of immune checkpoint inhibitor-associated myocarditis: a narrative review. JAMA Cardiol. 6, 1329–1337 (2021).

    Article  PubMed  Google Scholar 

  45. Marco, C. et al. Myasthenia gravis induced by immune checkpoint inhibitors: an emerging neurotoxicity in neuro-oncology practice: case series. J. Clin. Med. 12, 130 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Habib, A. A. et al. Hospitalizations and mortality from myasthenia gravis: trends from 2 US national datasets. Neurology 102, e207863 (2024).

    Article  PubMed  Google Scholar 

  47. Masi, G. et al. Clinicoserological insights into patients with immune checkpoint inhibitor‐induced myasthenia gravis. Ann. Clin. Transl. Neurol. 10, 825–831 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mammen, A. L. et al. Pre-existing antiacetylcholine receptor autoantibodies and B cell lymphopaenia are associated with the development of myositis in patients with thymoma treated with avelumab, an immune checkpoint inhibitor targeting programmed death-ligand 1. Ann. Rheum. Dis. 78, 150–152 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Hehir Michael, K. II & Li, Y. Diagnosis and management of myasthenia gravis. Continuum 28, 1615–1642 (2022).

    PubMed  Google Scholar 

  50. Safa, H. et al. Immune checkpoint inhibitor related myasthenia gravis: single center experience and systematic review of the literature. J. Immunother. Cancer 7, 319 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mitsune, A. et al. Relapsed myasthenia gravis after nivolumab treatment. Intern. Med. 57, 1893–1897 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shames, Y., Errante, M. & Keteku, N. P. Myasthenia gravis: a rare neurologic complication of immune checkpoint inhibitor therapy. J. Adv. Pract. Oncol. 13, 151–157 (2022).

    PubMed  PubMed Central  Google Scholar 

  53. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Subudhi, S. K. et al. Clonal expansion of CD8 T cells in the systemic circulation precedes development of ipilimumab-induced toxicities. Proc. Natl Acad. Sci. USA 113, 11919–11924 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Salem, J.-E. et al. Abatacept/ruxolitinib and screening for concomitant respiratory muscle failure to mitigate fatality of immune-checkpoint inhibitor myocarditis. Cancer Discov. 13, 1100–1115 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Luoma, A. M. et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell 182, 655–671.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sasson, S. C. et al. Interferon-γ-producing CD8+ tissue resident memory T cells are a targetable hallmark of immune checkpoint inhibitor colitis. Gastroenterology 161, 1229.e9–1244.e9 (2021).

    Article  Google Scholar 

  59. Berner, F. et al. Association of checkpoint inhibitor-induced toxic effects with shared cancer and tissue antigens in non-small cell lung cancer. JAMA Oncol. 5, 1043–1047 (2019).

    Article  PubMed  Google Scholar 

  60. Hua, C. et al. Association of vitiligo with tumor response in patients with metastatic melanoma treated with pembrolizumab. JAMA Dermatol. 152, 1–7 (2016).

    Article  Google Scholar 

  61. Graus, F. & Dalmau, J. Paraneoplastic neurological syndromes in the era of immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 16, 535–548 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Farina, A. et al. Anti-Hu antibodies in patients with neurologic side effects of immune checkpoint inhibitors. Neurol. Neuroimmunol. Neuroinflamm 10, e200058 (2023).

    Article  PubMed  Google Scholar 

  63. Farina, A. et al. Neurological adverse events of immune checkpoint inhibitors and the development of paraneoplastic neurological syndromes. Lancet Neurol. 23, 81–94 (2024).

    Article  CAS  PubMed  Google Scholar 

  64. Gill, A. J., Gandhy, S. & Lancaster, E. Nivolumab‐associated Lambert–Eaton myasthenic syndrome and cerebellar dysfunction in a patient with a neuroendocrine tumor. Muscle Nerve 63, E18–E21 (2021).

    Article  PubMed  Google Scholar 

  65. Anderson, C. J. et al. Case report of Lambert–Eaton myasthenic syndrome in a patient with small cell lung cancer on immune checkpoint inhibitor therapy. OBM Neurobiol. 5, 086 (2021).

    Article  Google Scholar 

  66. Nakatani, Y. et al. Lambert–Eaton myasthenic syndrome caused by nivolumab in a patient with squamous cell lung cancer. Case Rep. Neurol. 10, 346–352 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Manson, G. et al. Worsening and newly diagnosed paraneoplastic syndromes following anti-PD-1 or anti-PD-L1 immunotherapies, a descriptive study. J. Immunother. Cancer 7, 337 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Raibagkar, P., Ho, D., Gunturu, K. S. & Srinivasan, J. Worsening of anti-Hu paraneoplastic neurological syndrome related to anti-PD-1 treatment: case report and review of literature. J. Neuroimmunol. 341, 577184 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Kvistborg, P. et al. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci. Transl. Med. 6, 254ra128 (2014).

    Article  PubMed  Google Scholar 

  70. Oh, D. Y. et al. Immune toxicities elicted by CTLA-4 blockade in cancer patients are associated with early diversification of the T-cell repertoire. Cancer Res. 77, 1322–1330 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Miller, S. D. & Vanderlugt, C. L. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat. Rev. Immunol. 2, 85–95 (2002).

    Article  PubMed  Google Scholar 

  72. June, C. H., Warshauer, J. T. & Bluestone, J. A. Is autoimmunity the Achilles’ heel of cancer immunotherapy? Nat. Med. 23, 540–547 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Axelrod, M. L. et al. T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature 611, 818–826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Suzuki, S. et al. Autoreactive T cells to the P3A+ isoform of AChR α subunit in myasthenia gravis. J. Neuroimmunol. 137, 177–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Dougan, M. Weighing antitumor immunity against life-threatening myocarditis from immune-checkpoint inhibitors. Cancer Discov. 13, 1040–1042 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Blum, T. G., Misch, D., Kollmeier, J., Thiel, S. & Bauer, T. T. Autoimmune disorders and paraneoplastic syndromes in thymoma. J. Thorac. Dis. 12, 7571–7590 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Konstantina, T. et al. Fatal adverse events in two thymoma patients treated with anti-PD-1 immune check point inhibitor and literature review. Lung Cancer 135, 29–32 (2019).

    Article  PubMed  Google Scholar 

  78. Saleh, R. & Elkord, E. Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Lett. 457, 168–179 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Kim, S. T. et al. Successful treatment of arthritis induced by checkpoint inhibitors with tocilizumab: a case series. Ann. Rheum. Dis. 76, 2061–2064 (2017).

    Article  PubMed  Google Scholar 

  80. Grigoriou, M. et al. Regulatory T-cell transcriptomic reprogramming characterizes adverse events by checkpoint inhibitors in solid tumors. Cancer Immunol. Res. 9, 726–734 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nishimura, H., Minato, N., Nakano, T. & Honjo, T. Immunological studies on PD-1-deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int. Immunol. 10, 1563–1572 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Das, R. et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J. Clin. Invest. 128, 715–720 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. de Moel, E. C. et al. Autoantibody development under treatment with immune-checkpoint inhibitors. Cancer Immunol. Res. 7, 6–11 (2019).

    Article  PubMed  Google Scholar 

  86. Duarte, J. D. G. et al. Autoantibodies may predict immune-related toxicity: results from a phase I study of intralesional Bacillus Calmette–Guerin followed by ipilimumab in patients with advanced metastatic melanoma. Front. Immunol. 9, 411 (2018).

    Article  Google Scholar 

  87. Patel, A. J. et al. Regulatory B cell repertoire defects predispose lung cancer patients to immune-related toxicity following checkpoint blockade. Nat. Commun. 13, 3148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Danlos, F.-X. et al. Safety and efficacy of anti-programmed death 1 antibodies in patients with cancer and pre-existing autoimmune or inflammatory disease. Eur. J. Cancer 91, 21–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Menzies, A. M. et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann. Oncol. 28, 368–376 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Gutzmer, R. et al. Programmed cell death protein-1 (PD-1) inhibitor therapy in patients with advanced melanoma and preexisting autoimmunity or ipilimumab-triggered autoimmunity. Eur. J. Cancer 75, 24–32 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Johnson, D. B. et al. Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol. 2, 234–240 (2016).

    Article  PubMed  Google Scholar 

  92. Schneider, B. J. et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J. Clin. Oncol. 39, 4073–4126 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Narayanaswami, P. et al. International consensus guidance for management of myasthenia gravis: 2020 update. Neurology 96, 114–122 (2020).

    Article  PubMed  Google Scholar 

  94. Boland, P., Pavlick, A. C., Weber, J. & Sandigursky, S. Immunotherapy to treat malignancy in patients with pre-existing autoimmunity. J. Immunother. Cancer 8, e000356 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Brahmer, J. R. et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J. Immunother. Cancer 9, e002435 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Thompson, J. A. et al. Management of immunotherapy-related toxicities, version 1.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl Compr. Cancer Netw. 20, 387–405 (2022).

    Article  CAS  Google Scholar 

  97. Haanen, J. et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 33, 1217–1238 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Coutinho, A. E. & Chapman, K. E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell Endocrinol. 335, 2–13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kruh, J. & Foster, C. S. Corticosteroid-sparing agents: conventional systemic immunosuppressants. Devel. Ophthalmol. 51, 29–46 (2012).

  100. Zhang, L. et al. Major adverse cardiovascular events and the timing and dose of corticosteroids in immune checkpoint inhibitor-associated myocarditis. Circulation 141, 2031–2034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Luenemann, J. D., Nimmerjahn, F. & Dalakas, M. C. Intravenous immunoglobulin in neurology—mode of action and clinical efficacy. Nat. Rev. Neurol. 11, 80–89 (2015).

    Article  Google Scholar 

  102. Deftereos, S. N. & Georgonikou, D. Effectiveness of rituximab in treating immune-checkpoint-inhibitor-induced immune-related adverse events: results of a systematic review. Ann. Oncol. 32, 282–283 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Hughes, R. A. C., Swan, A. V. & van Doorn, P. Intravenous immunoglobulin for Guillain–Barré syndrome. Cochrane Datab. Syst. Rev. 2019, CD002063 (2014).

    Google Scholar 

  104. Sanders, D. B. et al. International consensus guidance for management of myasthenia gravis: executive summary. Neurology 87, 419–425 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Arbour, K. C. et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J. Clin. Oncol. 36, 2872–2878 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Scott, S. C. & Pennell, N. A. Early use of systemic corticosteroids in patients with advanced NSCLC treated with nivolumab. J. Thorac. Oncol. 13, 1771–1775 (2018).

    Article  PubMed  Google Scholar 

  107. Fucà, G. et al. Modulation of peripheral blood immune cells by early use of steroids and its association with clinical outcomes in patients with metastatic non-small cell lung cancer treated with immune checkpoint inhibitors. ESMO Open. 4, e000457 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Horvat, T. Z. et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. J. Clin. Oncol. 33, 3193–3198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Weber, J. S. et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 35, 785–792 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Faje, A. T. et al. High‐dose glucocorticoids for the treatment of ipilimumab‐induced hypophysitis is associated with reduced survival in patients with melanoma. Cancer 124, 3706–3714 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Tsukamoto, H. et al. Immune‐suppressive effects of interleukin‐6 on T‐cell‐mediated anti‐tumor immunity. Cancer Sci. 109, 523–530 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Hailemichael, Y. et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell 40, 509.e6–523.e6 (2022).

    Article  Google Scholar 

  113. Doms, J., Prior, J. O., Peters, S. & Obeid, M. Tocilizumab for refractory severe immune checkpoint inhibitor-associated myocarditis. Ann. Oncol. 31, 1273–1275 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Wang, H., Tian, R., Gao, P., Wang, Q. & Zhang, L. Tocilizumab for fulminant programmed death 1 inhibitor-associated myocarditis. J. Thorac. Oncol. 15, e31–e32 (2020).

    Article  PubMed  Google Scholar 

  115. Husain, B. et al. Inflammatory markers in autoimmunity induced by checkpoint inhibitors. J. Cancer Res. Clin. Oncol. 147, 1623–1630 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen, A. Y., Wolchok, J. D. & Bass, A. R. TNF in the era of immune checkpoint inhibitors: friend or foe? Nat. Rev. Rheumatol. 17, 213–223 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lesage, C. et al. Incidence and clinical impact of anti-TNFα treatment of severe immune checkpoint inhibitor-induced colitis in advanced melanoma: the Mecolit survey. J. Immunother. 42, 175–179 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Wang, Y. et al. Immune-checkpoint inhibitor-induced diarrhea and colitis in patients with advanced malignancies: retrospective review at MD Anderson. J. Immunother. Cancer 6, 37 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Abu-Sbeih, H. et al. Early introduction of selective immunosuppressive therapy associated with favorable clinical outcomes in patients with immune checkpoint inhibitor-induced colitis. J. Immunother. Cancer 7, 93 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Montfort, A. et al. Combining nivolumab and ipilimumab with infliximab or certolizumab in patients with advanced melanoma: first results of a phase Ib clinical trial. Clin. Cancer Res. 27, 1037–1047 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Oddis, C. V. & Aggarwal, R. Treatment of myositis. Nat. Rev. Rheumatol. 14, 279–289 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Esfahani, K. et al. Moving towards personalized treatments of immune-related adverse events. Nat. Rev. Clin. Oncol. 17, 504–515 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Mantovani, A., Barajon, I. & Garlanda, C. IL‐1 and IL‐1 regulatory pathways in cancer progression and therapy. Immunol. Rev. 281, 57–61 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Johnson, D. et al. IL17A blockade successfully treated psoriasiform dermatologic toxicity from immunotherapy. Cancer Immunol. Res. 7, 860–865 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Esfahani, K. & Miller, W. H. Reversal of autoimmune toxicity and loss of tumor response by interleukin-17 blockade. N. Engl. J. Med. 376, 1989–1991 (2017).

    Article  PubMed  Google Scholar 

  126. Salem, J.-E. et al. Abatacept for severe immune checkpoint inhibitor-associated myocarditis. N. Engl. J. Med. 380, 2377–2379 (2019).

    Article  PubMed  Google Scholar 

  127. Wei, S. C. et al. A genetic mouse model recapitulates immune checkpoint inhibitor-associated myocarditis and supports a mechanism-based therapeutic intervention. Cancer Discov. 11, 614–625 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Ghoreschi, K., Laurence, A. & O’Shea, J. J. Janus kinases in immune cell signaling. Immunol. Rev. 228, 273–287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ytterberg, S. R., Bhatt, D. L. & Connell, C. A. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N. Engl. J. Med. 386, 1768 (2022).

    Article  PubMed  Google Scholar 

  130. Zak, J. et al. Myeloid reprogramming by JAK inhibition enhances checkpoint blockade therapy. J. Immunother. Cancer 11, 0846 (2023).

    Google Scholar 

  131. Moslehi, J. J., Salem, J.-E., Sosman, J. A., Lebrun-Vignes, B. & Johnson, D. B. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 391, 933 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gilmore, W. et al. Repopulation of T, B, and NK cells following alemtuzumab treatment in relapsing-remitting multiple sclerosis. J. Neuroinflammation 17, 189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bowen, J. D. Highly aggressive multiple sclerosis. Continuum 25, 689–714 (2019).

    PubMed  Google Scholar 

  134. Esfahani, K. et al. Alemtuzumab for immune-related myocarditis due to PD-1 therapy. N. Engl. J. Med. 380, 2375–2376 (2019).

    Article  PubMed  Google Scholar 

  135. Popow, I. et al. A comprehensive and quantitative analysis of the major specificities in rabbit antithymocyte globulin preparations. Am. J. Transpl. 13, 3103–3113 (2013).

    Article  CAS  Google Scholar 

  136. Tay, R. Y. et al. Successful use of equine anti-thymocyte globulin (ATGAM) for fulminant myocarditis secondary to nivolumab therapy. Br. J. Cancer 117, 921–924 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Oddis, C. V. et al. Rituximab in the treatment of refractory adult and juvenile dermatomyositis and adult polymyositis: a randomized, placebo‐phase trial. Arthritis Rheum. 65, 314–324 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nair, S. S. & Jacob, S. Novel immunotherapies for myasthenia gravis. Immunotargets Ther. 12, 25–45 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Usman, U. et al. The use of eculizumab in ventilator‐dependent myasthenia gravis patients. Muscle Nerve 64, 212–215 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Nelke, C. et al. Immune checkpoint inhibition-related myasthenia–myositis–myocarditis responsive to complement blockade. Neurol. Neuroimmunol. Neuroinflamm 11, e200177 (2024).

    Article  PubMed  Google Scholar 

  141. Zadeh, S. et al. Novel uses of complement inhibitors in myasthenia gravis—two case reports. Muscle Nerve 69, 368–372 (2024).

    Article  PubMed  Google Scholar 

  142. Gable, K. L. & Guptill, J. T. Antagonism of the neonatal Fc receptor as an emerging treatment for myasthenia gravis. Front. Immunol. 10, 3052 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Howard James F, J. et al. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 20, 526 (2021).

    Article  PubMed  Google Scholar 

  144. Grosskreutz, J. et al. Safety and efficacy of rozanolixizumab in patients with generalised myasthenia gravis (MycarinG): a randomised, double-blind, placebo-controlled, adaptive phase 3 study. Lancet Neurol. 22, 383–394 (2023).

    Article  PubMed  Google Scholar 

  145. Campbell, M. et al. Efgartigimod for pembrolizumab-induced myasthenia gravis refractory to standard therapy. Neurology 100, P1-8.006 (2023).

    Article  Google Scholar 

  146. Santini, F. C. et al. Safety of retreatment with immunotherapy after immune-related toxicity in patients with lung cancers treated with anti-PD(L)-1 therapy. J. Clin. Oncol. 35, 9012 (2017).

    Article  Google Scholar 

  147. Pollack, M. H. et al. Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann. Oncol. 29, 250–255 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Brunot, A. et al. Association of anti–programmed cell death 1 antibody treatment with risk of recurrence of toxic effects after immune-related adverse events of ipilimumab in patients with metastatic melanoma. Arch. Dermatol. 156, 982–986 (2020).

    Google Scholar 

  149. Simonaggio, A. et al. Evaluation of readministration of immune checkpoint inhibitors after immune-related adverse events in patients with cancer. JAMA Oncol. 5, 1310–1317 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Badran, Y. R. et al. Concurrent therapy with immune checkpoint inhibitors and TNFα blockade in patients with gastrointestinal immune-related adverse events. J. Immunother. Cancer 7, 226 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Guo, X.-Z. J. & Elledge, S. J. V-CARMA: a tool for the detection and modification of antigen-specific T cells. Proc. Natl Acad. Sci. USA 119, e2116277119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching data for the article, and made substantial contributions to discussions of the content and to writing, review and/or editing the manuscript before submission.

Corresponding author

Correspondence to Meabh O’Hare.

Ethics declarations

Competing interests

A.C.G. declares that she has acted as a consultant and/or medical advisory board member for Argenx, Alexion and UCB (Ra Pharma); receives publishing royalties from Oakstone Publications; and has received research funding from the MGNet Rare Disease Network, MGNet Scholar Award, National Institutes of Health (NIH) Rare Disease Clinical and Research Training Program, Project Data Sphere, Dysimmune Disease Foundation and National Institute of Neurological Disorders and Stroke (NINDS) with Biosensics (grant 1R44NS122672-01A1). M.O’H. declares no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Bastien Joubert, who co-reviewed with Farina Antonio; Shigeaki Suzuki; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Hare, M., Guidon, A.C. Peripheral nervous system immune-related adverse events due to checkpoint inhibition. Nat Rev Neurol 20, 509–525 (2024). https://doi.org/10.1038/s41582-024-01001-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-024-01001-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing