Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes

Abstract

Understanding rare genetic brain disorders with overlapping neurological and psychiatric phenotypes is of increasing importance given the potential for developing disease models that could help to understand more common, polygenic disorders. However, the traditional clinical boundaries between neurology and psychiatry result in frequent segregation of these disorders into distinct silos, limiting cross-specialty understanding that could facilitate clinical and biological advances. In this Review, we highlight multiple genetic brain disorders in which neurological and psychiatric phenotypes are observed, but for which in-depth, cross-spectrum clinical phenotyping is rarely undertaken. We describe the combined phenotypes observed in association with genetic variants linked to epilepsy, dystonia, autism spectrum disorder and schizophrenia. We also consider common underlying mechanisms that centre on synaptic plasticity, including changes to synaptic and neuronal structure, calcium handling and the balance of excitatory and inhibitory neuronal activity. Further investigation is needed to better define and replicate these phenotypes in larger cohorts, which would help to gain greater understanding of the pathophysiological mechanisms and identify common therapeutic targets.

Key points

  • Rare genetic brain disorders frequently involve both neurological and psychiatric phenotypes, but detailed, cross-spectrum clinical phenotyping is rarely undertaken.

  • Improved clinical phenotypic understanding of these single gene disorders is important, given the potential for developing genetic model systems to aid understanding of the underlying pathophysiological mechanisms.

  • Potential shared pathophysiological mechanisms include disruption to synaptic plasticity, synaptic and neuronal structure, the balance of excitatory and inhibitory neuronal activity and calcium handling.

  • Further mechanistic understanding of the overlap between neurological and psychiatric phenotypes will increase opportunities for discovery of novel therapeutic targets in multiple brain disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genes associated with rare disorders with overlapping clinical phenotypes.
Fig. 2: Common neuronal and cellular mechanisms that might contribute to clinical phenotypes in rare genetic brain disorders.

Similar content being viewed by others

References

  1. Mencacci, N. E. et al. Dystonia genes functionally converge in specific neurons and share neurobiology with psychiatric disorders. Brain 143, 2771–2787 (2020).

    PubMed  PubMed Central  Google Scholar 

  2. Cunningham, A. C. et al. Movement disorder phenotypes in children with 22q11.2 deletion syndrome. Mov. Disord. 35, 1272–1274 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, Y. et al. A selective review of the excitatory-inhibitory imbalance in schizophrenia: underlying biology, genetics, microcircuits, and symptoms. Front. Cell Dev. Biol. 9, 664535 (2021).

    PubMed  PubMed Central  Google Scholar 

  4. Thygesen, J. H. et al. Neurodevelopmental risk copy number variants in adults with intellectual disabilities and comorbid psychiatric disorders. Br. J. Psychiatry 212, 287–294 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Mollon, J., Almasy, L., Jacquemont, S. & Glahn, D. C. The contribution of copy number variants to psychiatric symptoms and cognitive ability. Mol. Psychiatry https://doi.org/10.1038/s41380-023-01978-4 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Moreno-De-Luca, A. et al. Developmental brain dysfunction: revival and expansion of old concepts based on new genetic evidence. Lancet Neurol. 12, 406–414 (2013).

    PubMed  PubMed Central  Google Scholar 

  7. Brainstorm Consortium et al. Analysis of shared heritability in common disorders of the brain. Science 360, https://doi.org/10.1126/science.aap8757 (2018).

  8. Matsuo, M., Maeda, T., Sasaki, K., Ishii, K. & Hamasaki, Y. Frequent association of autism spectrum disorder in patients with childhood onset epilepsy. Brain Dev. 32, 759–763 (2010).

    PubMed  Google Scholar 

  9. Fiest, K. M. et al. Depression in epilepsy: a systematic review and meta-analysis. Neurology 80, 590–599 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. Scott, A. J., Sharpe, L., Hunt, C. & Gandy, M. Anxiety and depressive disorders in people with epilepsy: a meta-analysis. Epilepsia 58, 973–982 (2017).

    PubMed  Google Scholar 

  11. Aaberg, K. M. et al. Comorbidity and childhood epilepsy: a nationwide registry study. Pediatrics 138, e20160921 (2016).

    PubMed  Google Scholar 

  12. Josephson, C. B. et al. Association of depression and treated depression with epilepsy and seizure outcomes: a multicohort analysis. JAMA Neurol. 74, 533–539 (2017).

    PubMed  Google Scholar 

  13. Hesdorffer, D. C. et al. Occurrence and recurrence of attempted suicide among people with epilepsy. JAMA Psychiatry 73, 80–86 (2016).

    PubMed  Google Scholar 

  14. Berkvens, J. J. et al. Autism and behavior in adult patients with Dravet syndrome (DS). Epilepsy Behav. 47, 11–16 (2015).

    CAS  PubMed  Google Scholar 

  15. Scheffer, I. E. & Nabbout, R. SCN1A-related phenotypes: epilepsy and beyond. Epilepsia 60, S17–S24 (2019).

    PubMed  Google Scholar 

  16. Claes, L. et al. De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum. Mutat. 21, 615–621 (2003).

    CAS  PubMed  Google Scholar 

  17. Skluzacek, J. V., Watts, K. P., Parsy, O., Wical, B. & Camfield, P. Dravet syndrome and parent associations: the IDEA League experience with comorbid conditions, mortality, management, adaptation, and grief. Epilepsia 52, 95–101 (2011).

    PubMed  Google Scholar 

  18. Ragona, F. Cognitive development in children with Dravet syndrome. Epilepsia 52, 39–43 (2011).

    PubMed  Google Scholar 

  19. Wolff, M., Casse-Perrot, C. & Dravet, C. Severe myoclonic epilepsy of infants (Dravet syndrome): natural history and neuropsychological findings. Epilepsia 47, 45–48 (2006).

    PubMed  Google Scholar 

  20. Li, B. M. et al. Autism in Dravet syndrome: prevalence, features, and relationship to the clinical characteristics of epilepsy and mental retardation. Epilepsy Behav. 21, 291–295 (2011).

    PubMed  Google Scholar 

  21. Villeneuve, N. et al. Cognitive and adaptive evaluation of 21 consecutive patients with Dravet syndrome. Epilepsy Behav. 31, 143–148 (2014).

    PubMed  Google Scholar 

  22. Ouss, L. et al. Autism spectrum disorder and cognitive profile in children with Dravet syndrome: delineation of a specific phenotype. Epilepsia Open. 4, 40–53 (2019).

    PubMed  Google Scholar 

  23. Weiss, L. A. et al. Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol. Psychiatry 8, 186–194 (2003).

    CAS  PubMed  Google Scholar 

  24. Djemie, T. et al. Pitfalls in genetic testing: the story of missed SCN1A mutations. Mol. Genet. Genom. Med. 4, 457–464 (2016).

    CAS  Google Scholar 

  25. Dibbens, L. M. et al. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat. Genet. 40, 776–781 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. van Harssel, J. J. et al. Clinical and genetic aspects of PCDH19-related epilepsy syndromes and the possible role of PCDH19 mutations in males with autism spectrum disorders. Neurogenetics 14, 23–34 (2013).

    CAS  PubMed  Google Scholar 

  27. Kolc, K. L. et al. A standardized patient-centered characterization of the phenotypic spectrum of PCDH19 girls clustering epilepsy. Transl. Psychiatry 10, 127 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Trivisano, M. et al. Defining the electroclinical phenotype and outcome of PCDH19-related epilepsy: a multicenter study. Epilepsia 59, 2260–2271 (2018).

    CAS  PubMed  Google Scholar 

  29. Vlaskamp, D. R. M. et al. Schizophrenia is a later-onset feature of PCDH19 girls clustering epilepsy. Epilepsia 60, 429–440 (2019).

    CAS  PubMed  Google Scholar 

  30. Weckhuysen, S. et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann. Neurol. 71, 15–25 (2012).

    CAS  PubMed  Google Scholar 

  31. Malerba, F. et al. Genotype-phenotype correlations in patients with de novo KCNQ2 pathogenic variants. Neurol. Genet. 6, e528 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang, Y. H. et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am. J. Hum. Genet. 93, 249–263 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Milh, M. et al. Similar early characteristics but variable neurological outcome of patients with a de novo mutation of KCNQ2. Orphanet J. Rare Dis. 8, 80 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. Millichap, J. J. et al. KCNQ2 encephalopathy: features, mutational hot spots, and ezogabine treatment of 11 patients. Neurol. Genet. 2, e96 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Siracusano, M., Marcovecchio, C., Riccioni, A., Dante, C. & Mazzone, L. Autism spectrum disorder and a de novo Kcnq2 gene mutation: a case report. Pediatr. Rep. 14, 200–206 (2022).

    PubMed  PubMed Central  Google Scholar 

  36. Kim, E. C. et al. Heterozygous loss of epilepsy gene KCNQ2 alters social, repetitive and exploratory behaviors. Genes. Brain Behav. 19, e12599 (2020).

    CAS  PubMed  Google Scholar 

  37. Miceli, F. et al. KCNQ2 R144 variants cause neurodevelopmental disability with language impairment and autistic features without neonatal seizures through a gain-of-function mechanism. EBioMedicine 81, 104130 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Carvill, G. L. et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat. Genet. 45, 1073–1076 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mangano, G. D. et al. De novo GRIN2A variants associated with epilepsy and autism and literature review. Epilepsy Behav. 129, 108604 (2022).

    PubMed  Google Scholar 

  40. Lemke, J. R. et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat. Genet. 45, 1067–1072 (2013).

    CAS  PubMed  Google Scholar 

  41. Strehlow, V. et al. GRIN2A-related disorders: genotype and functional consequence predict phenotype. Brain 142, 80–92 (2019).

    PubMed  Google Scholar 

  42. Li, J. et al. De novo GRIN variants in NMDA receptor M2 channel pore-forming loop are associated with neurological diseases. Hum. Mutat. 40, 2393–2413 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Allen, N. C. et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat. Genet. 40, 827–834 (2008).

    CAS  PubMed  Google Scholar 

  45. Amitai, N. & Markou, A. Disruption of performance in the five-choice serial reaction time task induced by administration of N-methyl-D-aspartate receptor antagonists: relevance to cognitive dysfunction in schizophrenia. Biol. Psychiatry 68, 5–16 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tarabeux, J. et al. Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl. Psychiatry 1, e55 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. O’Roak, B. J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43, 585–589 (2011).

    PubMed  PubMed Central  Google Scholar 

  48. Gai, X. et al. Rare structural variation of synapse and neurotransmission genes in autism. Mol. Psychiatry 17, 402–411 (2012).

    CAS  PubMed  Google Scholar 

  49. Maksemous, N., Roy, B., Smith, R. A. & Griffiths, L. R. Next-generation sequencing identifies novel CACNA1A gene mutations in episodic ataxia type 2. Mol. Genet. Genom. Med. 4, 211–222 (2016).

    CAS  Google Scholar 

  50. Terwindt, G. et al. Mutation analysis of the CACNA1A calcium channel subunit gene in 27 patients with sporadic hemiplegic migraine. Arch. Neurol. 59, 1016–1018 (2002).

    PubMed  Google Scholar 

  51. Rajakulendran, S. et al. Genetic and functional characterisation of the P/Q calcium channel in episodic ataxia with epilepsy. J. Physiol. 588, 1905–1913 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Indelicato, E. & Boesch, S. From genotype to phenotype: expanding the clinical spectrum of CACNA1A variants in the era of next generation sequencing. Front. Neurol. 12, 639994 (2021).

    PubMed  PubMed Central  Google Scholar 

  53. Damaj, L. et al. CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur. J. Hum. Genet. 23, 1505–1512 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. van Wamelen, D. J. et al. Cross-sectional analysis of the Parkinson’s disease non-motor international longitudinal study baseline non-motor characteristics, geographical distribution and impact on quality of life. Sci. Rep. 11, 9611 (2021).

    PubMed  PubMed Central  Google Scholar 

  55. Ozelius, L. J. et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat. Genet. 17, 40–48 (1997).

    CAS  PubMed  Google Scholar 

  56. Bailey, G. A., Rawlings, A., Torabi, F., Pickrell, W. O. & Peall, K. J. Longitudinal analysis of the relationship between motor and psychiatric symptoms in idiopathic dystonia. Eur. J. Neurol. 29, 3513–3527 (2022).

    PubMed  PubMed Central  Google Scholar 

  57. Wadon, M. E. et al. Clinical and genotypic analysis in determining dystonia non-motor phenotypic heterogeneity: a UK Biobank study. J. Neurol. 269, 6436–6451 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Doheny, D. O. et al. Phenotypic features of myoclonus-dystonia in three kindreds. Neurology 59, 1187–1196 (2002).

    CAS  PubMed  Google Scholar 

  59. Hess, C. W. et al. Myoclonus-dystonia, obsessive-compulsive disorder, and alcohol dependence in SGCE mutation carriers. Neurology 68, 522–524 (2007).

    CAS  PubMed  Google Scholar 

  60. Peall, K. J., Waite, A. J., Blake, D. J., Owen, M. J. & Morris, H. R. Psychiatric disorders, myoclonus dystonia, and the epsilon-sarcoglycan gene: a systematic review. Mov. Disord. 26, 1939–1942 (2011).

    PubMed  Google Scholar 

  61. Peall, K. J. et al. SGCE mutations cause psychiatric disorders: clinical and genetic characterization. Brain 136, 294–303 (2013).

    PubMed  Google Scholar 

  62. Peall, K. J. et al. Psychiatric disorders, myoclonus dystonia and SGCE: an international study. Ann. Clin. Transl. Neurol. 3, 4–11 (2016).

    CAS  PubMed  Google Scholar 

  63. van Tricht, M. J. et al. Cognition and psychopathology in myoclonus-dystonia. J. Neurol. Neurosurg. Psychiatry 83, 814–820 (2012).

    PubMed  Google Scholar 

  64. Heiman, G. A. et al. Increased risk for recurrent major depression in DYT1 dystonia mutation carriers. Neurology 63, 631–637 (2004).

    CAS  PubMed  Google Scholar 

  65. Heiman, G. A. et al. Obsessive-compulsive disorder is not a clinical manifestation of the DYT1 dystonia gene. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B, 361–364 (2007).

    PubMed  Google Scholar 

  66. Liu, D., Cao, H., Kural, K. C., Fang, Q. & Zhang, F. Integrative analysis of shared genetic pathogenesis by autism spectrum disorder and obsessive-compulsive disorder. Biosci. Rep. 39, BSR20191942 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hahn, H. et al. Neurologic and psychiatric manifestations in a family with a mutation in exon 2 of the guanosine triphosphate-cyclohydrolase gene. Arch. Neurol. 58, 749–755 (2001).

    CAS  PubMed  Google Scholar 

  68. Van Hove, J. L. et al. Expanded motor and psychiatric phenotype in autosomal dominant Segawa syndrome due to GTP cyclohydrolase deficiency. J. Neurol. Neurosurg. Psychiatry 77, 18–23 (2006).

    PubMed  PubMed Central  Google Scholar 

  69. Tadic, V. et al. Dopa-responsive dystonia revisited: diagnostic delay, residual signs, and nonmotor signs. Arch. Neurol. 69, 1558–1562 (2012).

    PubMed  Google Scholar 

  70. Fuchs, T. et al. Mutations in GNAL cause primary torsion dystonia. Nat. Genet. 45, 88–92 (2013).

    CAS  PubMed  Google Scholar 

  71. Vuoristo, J. T. et al. Sequence and genomic organization of the human G-protein Golfɑ gene (GNAL) on chromosome 18p11, a susceptibility region for bipolar disorder and schizophrenia. Mol. Psychiatry 5, 495–501 (2000).

    CAS  PubMed  Google Scholar 

  72. Zarrei, M. et al. A large data resource of genomic copy number variation across neurodevelopmental disorders. NPJ Genom. Med. 4, 26 (2019).

    PubMed  PubMed Central  Google Scholar 

  73. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Tuchman, R. & Rapin, I. Epilepsy in autism. Lancet Neurol. 1, 352–358 (2002).

    PubMed  Google Scholar 

  75. Damasio, A. R. & Maurer, R. G. A neurological model for childhood autism. Arch. Neurol. 35, 777–786 (1978).

    CAS  PubMed  Google Scholar 

  76. Jeste, S. S. The neurology of autism spectrum disorders. Curr. Opin. Neurol. 24, 132–139 (2011).

    PubMed  PubMed Central  Google Scholar 

  77. Van Waelvelde, H., Oostra, A., Dewitte, G., Van Den Broeck, C. & Jongmans, M. J. Stability of motor problems in young children with or at risk of autism spectrum disorders, ADHD, and or developmental coordination disorder. Dev. Med. Child. Neurol. 52, e174–e178 (2010).

    PubMed  Google Scholar 

  78. Kanner, L. Autistic disturbances of affective contact. Acta Paedopsychiatr. 35, 100–136 (1968).

    CAS  PubMed  Google Scholar 

  79. Mouridsen, S. E., Rich, B. & Isager, T. A longitudinal study of epilepsy and other central nervous system diseases in individuals with and without a history of infantile autism. Brain Dev. 33, 361–366 (2011).

    PubMed  Google Scholar 

  80. Clarke, D. F. et al. The prevalence of autistic spectrum disorder in children surveyed in a tertiary care epilepsy clinic. Epilepsia 46, 1970–1977 (2005).

    PubMed  Google Scholar 

  81. Hara, H. Autism and epilepsy: a retrospective follow-up study. Brain Dev. 29, 486–490 (2007).

    PubMed  Google Scholar 

  82. Hallmayer, J. et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry 68, 1095–1102 (2011).

    PubMed  PubMed Central  Google Scholar 

  83. Cross-Disorder Group of the Psychiatric Genomics, C. et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984–994 (2013).

    Google Scholar 

  84. Maenner, M. J. et al. Prevalence of autism spectrum disorder among children aged 8 years – Aautism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2016. MMWR Surveill. Summ. 69, 1–12 (2020).

    PubMed  PubMed Central  Google Scholar 

  85. Ranjan, R. et al. Neurological, psychiatric, and multisystemic involvement of fragile X syndrome along with its pathophysiology, methods of screening, and current treatment modalities. Cureus 15, e35505 (2023).

    PubMed  PubMed Central  Google Scholar 

  86. Kaufmann, W. E. et al. Autism spectrum disorder in fragile X syndrome: cooccurring conditions and current treatment. Pediatrics 139, S194–S206 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Albizua, I. et al. Descriptive analysis of seizures and comorbidities associated with fragile X syndrome. Mol. Genet. Genom. Med. 10, e2001 (2022).

    CAS  Google Scholar 

  88. Farzin, F. et al. Autism spectrum disorders and attention-deficit/hyperactivity disorder in boys with the fragile X premutation. J. Dev. Behav. Pediatr. 27, S137–S144 (2006).

    PubMed  Google Scholar 

  89. Clifford, S. et al. Autism spectrum phenotype in males and females with fragile X full mutation and premutation. J. Autism Dev. Disord. 37, 738–747 (2007).

    PubMed  Google Scholar 

  90. Hessl, D. et al. Abnormal elevation of FMR1 mRNA is associated with psychological symptoms in individuals with the fragile X premutation. Am. J. Med. Genet. B Neuropsychiatr. Genet. 139B, 115–121 (2005).

    CAS  PubMed  Google Scholar 

  91. Bourgeois, J. A. et al. Lifetime prevalence of mood and anxiety disorders in fragile X premutation carriers. J. Clin. Psychiatry 72, 175–182 (2011).

    PubMed  Google Scholar 

  92. Hunter, A. G., Ray, M., Wang, H. S. & Thompson, D. R. Phenotypic correlations in patients with ring chromosome 22. Clin. Genet. 12, 239–249 (1977).

    CAS  PubMed  Google Scholar 

  93. Wilson, H. L. et al. Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J. Med. Genet. 40, 575–584 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Bonaglia, M. C. et al. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am. J. Hum. Genet. 69, 261–268 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Durand, C. M. et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet. 39, 25–27 (2007).

    CAS  PubMed  Google Scholar 

  96. Leblond, C. S. et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. 10, e1004580 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. De Rubeis, S. et al. Delineation of the genetic and clinical spectrum of Phelan–McDermid syndrome caused by SHANK3 point mutations. Mol. Autism 9, 31 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Gauthier, J. et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc. Natl Acad. Sci. USA 107, 7863–7868 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kohlenberg, T. M. et al. Psychiatric illness and regression in individuals with Phelan–McDermid syndrome. J. Neurodev. Disord. 12, 7 (2020).

    PubMed  PubMed Central  Google Scholar 

  100. Douzgou, S. et al. The clinical presentation caused by truncating CHD8 variants. Clin. Genet. 96, 72–84 (2019).

    CAS  PubMed  Google Scholar 

  101. Kim, C. et al. A Korean boy with a CHD8 mutation who presented with overgrowth, intellectual disability, and autism. Ann. Pediatr. Endocrinol. Metab. https://doi.org/10.6065/apem.2244130.065 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Dingemans, A. J. M. et al. The phenotypic spectrum and genotype-phenotype correlations in 106 patients with variants in major autism gene CHD8. Transl. Psychiatry 12, 421 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Doummar, D. et al. Childhood-onset progressive dystonia associated with pathogenic truncating variants in CHD8. Ann. Clin. Transl. Neurol. 8, 1986–1990 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Splawski, I. et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 19–31 (2004).

    CAS  PubMed  Google Scholar 

  105. Green, E. K. et al. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol. Psychiatry 15, 1016–1022 (2010).

    CAS  PubMed  Google Scholar 

  106. Heyes, S. et al. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Prog. Neurobiol. 134, 36–54 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, J., Sun, Y., Liu, X. & Li, J. Identification of a novel mutation in the CACNA1C gene in a Chinese family with autosomal dominant cerebellar ataxia. BMC Neurol. 19, 157 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Rodan, L. H. et al. Phenotypic expansion of CACNA1C-associated disorders to include isolated neurological manifestations. Genet. Med. 23, 1922–1932 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Levy, R. J. et al. A cross-sectional study of the neuropsychiatric phenotype of CACNA1C-related disorder. Pediatr. Neurol. 138, 101–106 (2023).

    PubMed  Google Scholar 

  110. Cheadle, J. P. et al. Long-read sequence analysis of the MECP2 gene in Rett syndrome patients: correlation of disease severity with mutation type and location. Hum. Mol. Genet. 9, 1119–1129 (2000).

    CAS  PubMed  Google Scholar 

  111. Neul, J. L. et al. The array of clinical phenotypes of males with mutations in methyl-CpG binding protein 2. Am. J. Med. Genet. B Neuropsychiatr. Genet. 180, 55–67 (2019).

    CAS  PubMed  Google Scholar 

  112. Banerjee, A., Miller, M. T., Li, K., Sur, M. & Kaufmann, W. E. Towards a better diagnosis and treatment of Rett syndrome: a model synaptic disorder. Brain 142, 239–248 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Neul, J. L. et al. Developmental delay in Rett syndrome: data from the natural history study. J. Neurodev. Disord. 6, 20 (2014).

    PubMed  PubMed Central  Google Scholar 

  114. Leonard, H., Cobb, S. & Downs, J. Clinical and biological progress over 50 years in Rett syndrome. Nat. Rev. Neurol. 13, 37–51 (2017).

    CAS  PubMed  Google Scholar 

  115. Neul, J. L. et al. Rett syndrome: revised diagnostic criteria and nomenclature. Ann. Neurol. 68, 944–950 (2010).

    PubMed  PubMed Central  Google Scholar 

  116. Peters, S. U. et al. Phenotypic features in MECP2 duplication syndrome: effects of age. Am. J. Med. Genet. A 185, 362–369 (2021).

    CAS  PubMed  Google Scholar 

  117. Pardinas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Palmer, D. S. et al. Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nat. Genet. 54, 541–547 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Singh, T. et al. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat. Neurosci. 19, 571–577 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Katrancha, S. M. et al. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity. Hum. Mol. Genet. 26, 4728–4740 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bachmann, S., Degen, C., Geider, F. J. & Schroder, J. Neurological soft signs in the clinical course of schizophrenia: results of a meta-analysis. Front. Psychiatry 5, 185 (2014).

    PubMed  PubMed Central  Google Scholar 

  122. Schroder, J. et al. Neurological soft signs in schizophrenia. Schizophr. Res. 6, 25–30 (1991).

    CAS  PubMed  Google Scholar 

  123. Bachmann, S. & Schroder, J. Neurological soft signs in schizophrenia: an update on the state- versus trait-perspective. Front. Psychiatry 8, 272 (2017).

    PubMed  Google Scholar 

  124. Chan, R. C. K. et al. Neurological soft signs precede the onset of schizophrenia: a study of individuals with schizotypy, ultra-high-risk individuals, and first-onset schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 268, 49–56 (2018).

    PubMed  Google Scholar 

  125. Takata, A. et al. Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron 82, 773–780 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kummeling, J. et al. Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Mol. Psychiatry 26, 2013–2024 (2021).

    CAS  PubMed  Google Scholar 

  127. Owen, M. J., Sawa, A. & Mortensen, P. B. Schizophrenia. Lancet 388, 86–97 (2016).

    PubMed  PubMed Central  Google Scholar 

  128. Gecz, J. et al. Characterization of the human glutamate receptor subunit 3 gene (GRIA3), a candidate for bipolar disorder and nonspecific X-linked mental retardation. Genomics 62, 356–368 (1999).

    CAS  PubMed  Google Scholar 

  129. Guilmatre, A. et al. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch. Gen. Psychiatry 66, 947–956 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wu, Y. et al. Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans. Proc. Natl Acad. Sci. USA 104, 18163–18168 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Davies, B. et al. A point mutation in the ion conduction pore of AMPA receptor GRIA3 causes dramatically perturbed sleep patterns as well as intellectual disability. Hum. Mol. Genet. 26, 3869–3882 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Trivisano, M. et al. GRIA3 missense mutation is cause of an x-linked developmental and epileptic encephalopathy. Seizure 82, 1–6 (2020).

    PubMed  Google Scholar 

  133. Piard, J. et al. The GRIA3 c.2477G > A variant causes an exaggerated startle reflex, chorea, and multifocal myoclonus. Mov. Disord. 35, 1224–1232 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kosmicki, J. A. et al. Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat. Genet. 49, 504–510 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017).

    Google Scholar 

  136. Ba, W. et al. TRIO loss of function is associated with mild intellectual disability and affects dendritic branching and synapse function. Hum. Mol. Genet. 25, 892–902 (2016).

    CAS  PubMed  Google Scholar 

  137. Barbosa, S. et al. Opposite modulation of RAC1 by mutations in TRIO is associated with distinct, domain-specific neurodevelopmental disorders. Am. J. Hum. Genet. 106, 338–355 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Pengelly, R. J. et al. Mutations specific to the Rac-GEF domain of TRIO cause intellectual disability and microcephaly. J. Med. Genet. 53, 735–742 (2016).

    CAS  PubMed  Google Scholar 

  139. Sadybekov, A., Tian, C., Arnesano, C., Katritch, V. & Herring, B. E. An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio. Nat. Commun. 8, 601 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    PubMed  PubMed Central  Google Scholar 

  141. Bourgeron, T. A synaptic trek to autism. Curr. Opin. Neurobiol. 19, 231–234 (2009).

    CAS  PubMed  Google Scholar 

  142. Sperandeo, A. et al. Cortical neuronal hyperexcitability and synaptic changes in SGCE mutation-positive myoclonus dystonia. Brain https://doi.org/10.1093/brain/awac365 (2022).

    Article  PubMed Central  Google Scholar 

  143. Patzke, C. et al. Analysis of conditional heterozygous STXBP1 mutations in human neurons. J. Clin. Invest. 125, 3560–3571 (2015).

    PubMed  PubMed Central  Google Scholar 

  144. Saifee, O., Wei, L. & Nonet, M. L. The Caenorhabditis elegans unc-64 locus encodes a syntaxin that interacts genetically with synaptobrevin. Mol. Biol. Cell 9, 1235–1252 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Vardar, G. et al. Distinct functions of syntaxin-1 in neuronal maintenance, synaptic vesicle docking, and fusion in mouse neurons. J. Neurosci. 36, 7911–7924 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Mishima, T. et al. Syntaxin 1B regulates synaptic GABA release and extracellular GABA concentration, and is associated with temperature-dependent seizures. J. Neurochem. 156, 604–613 (2021).

    CAS  PubMed  Google Scholar 

  147. Zhang, C. et al. A neuroligin-4 missense mutation associated with autism impairs neuroligin-4 folding and endoplasmic reticulum export. J. Neurosci. 29, 10843–10854 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Tian, C., Paskus, J. D., Fingleton, E., Roche, K. W. & Herring, B. E. Autism spectrum disorder/intellectual disability-associated mutations in trio disrupt neuroligin 1-mediated synaptogenesis. J. Neurosci. 41, 7768–7778 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Arons, M. H. et al. Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin–neuroligin-mediated transsynaptic signaling. J. Neurosci. 32, 14966–14978 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Lisman, J. & Raghavachari, S. A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci. STKE 2006, re11 (2006).

    PubMed  Google Scholar 

  151. Amador, A. et al. Modelling and treating GRIN2A developmental and epileptic encephalopathy in mice. Brain 143, 2039–2057 (2020).

    PubMed  PubMed Central  Google Scholar 

  152. Mota Vieira, M. et al. An epilepsy-associated GRIN2A rare variant disrupts CaMKIIɑ phosphorylation of GluN2A and NMDA receptor trafficking. Cell Rep. 32, 108104 (2020).

    CAS  PubMed  Google Scholar 

  153. Moutin, E. et al. Restoring glutamate receptosome dynamics at synapses rescues autism-like deficits in Shank3-deficient mice. Mol. Psychiatry 26, 7596–7609 (2021).

    CAS  PubMed  Google Scholar 

  154. Jan, Y. N. & Jan, L. Y. Branching out: mechanisms of dendritic arborization. Nat. Rev. Neurosci. 11, 316–328 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Wong, R. O. & Ghosh, A. Activity-dependent regulation of dendritic growth and patterning. Nat. Rev. Neurosci. 3, 803–812 (2002).

    CAS  PubMed  Google Scholar 

  156. Llamosas, N. et al. SYNGAP1 controls the maturation of dendrites, synaptic function, and network activity in developing human neurons. J. Neurosci. 40, 7980–7994 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Wang, S. et al. Loss-of-function variants in the schizophrenia risk gene SETD1A alter neuronal network activity in human neurons through the cAMP/PKA pathway. Cell Rep. 39, 110790 (2022).

    CAS  PubMed  Google Scholar 

  158. Keil, K. P. et al. Genetic mutations in Ca2+ signaling alter dendrite morphology and social approach in juvenile mice. Genes. Brain Behav. 18, e12526 (2019).

    PubMed  Google Scholar 

  159. Hodges, J. L. et al. Astrocytic contributions to synaptic and learning abnormalities in a mouse model of fragile X syndrome. Biol. Psychiatry 82, 139–149 (2017).

    CAS  PubMed  Google Scholar 

  160. Yan, Q. J., Rammal, M., Tranfaglia, M. & Bauchwitz, R. P. Suppression of two major fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 49, 1053–1066 (2005).

    CAS  PubMed  Google Scholar 

  161. Comery, T. A. et al. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc. Natl Acad. Sci. USA 94, 5401–5404 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Irwin, S. A., Galvez, R. & Greenough, W. T. Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb. Cortex 10, 1038–1044 (2000).

    CAS  PubMed  Google Scholar 

  163. Li, X. et al. An autism-related, nonsense Foxp1 mutant induces autophagy and delays radial migration of the cortical neurons. Cereb. Cortex 29, 3193–3208 (2019).

    PubMed  Google Scholar 

  164. Xu, Q. et al. Autism-associated CHD8 deficiency impairs axon development and migration of cortical neurons. Mol. Autism 9, 65 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Huang, G. et al. Uncovering the functional link between SHANK3 deletions and deficiency in neurodevelopment using iPSC-derived human neurons. Front. Neuroanat. 13, 23 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Durand, C. M. et al. SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Mol. Psychiatry 17, 71–84 (2012).

    CAS  PubMed  Google Scholar 

  167. Zhang, L. et al. Altered dendritic morphology of Purkinje cells in Dyt1 ΔGAG knock-in and purkinje cell-specific Dyt1 conditional knockout mice. PLoS ONE 6, e18357 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Ophoff, R. A. et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87, 543–552 (1996).

    CAS  PubMed  Google Scholar 

  169. Le Roux, M. et al. CACNA1A-associated epilepsy: electroclinical findings and treatment response on seizures in 18 patients. Eur. J. Paediatr. Neurol. 33, 75–85 (2021).

    PubMed  Google Scholar 

  170. Khosravani, H. & Zamponi, G. W. Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol. Rev. 86, 941–966 (2006).

    CAS  PubMed  Google Scholar 

  171. Miao, Q. L., Herlitze, S., Mark, M. D. & Noebels, J. L. Adult loss of Cacna1a in mice recapitulates childhood absence epilepsy by distinct thalamic bursting mechanisms. Brain 143, 161–174 (2020).

    PubMed  Google Scholar 

  172. Ernst, W. L., Zhang, Y., Yoo, J. W., Ernst, S. J. & Noebels, J. L. Genetic enhancement of thalamocortical network activity by elevating ɑ1G-mediated low-voltage-activated calcium current induces pure absence epilepsy. J. Neurosci. 29, 1615–1625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Bhat, S. et al. CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Prog. Neurobiol. 99, 1–14 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Wheeler, D. G. et al. CaV1 and CaV2 channels engage distinct modes of Ca2+ signaling to control CREB-dependent gene expression. Cell 149, 1112–1124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Freir, D. B. & Herron, C. E. Inhibition of L-type voltage dependent calcium channels causes impairment of long-term potentiation in the hippocampal CA1 region in vivo. Brain Res. 967, 27–36 (2003).

    CAS  PubMed  Google Scholar 

  176. Moosmang, S. et al. Role of hippocampal CaV1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J. Neurosci. 25, 9883–9892 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Ali, F. et al. Inhibitory regulation of calcium transients in prefrontal dendritic spines is compromised by a nonsense Shank3 mutation. Mol. Psychiatry 26, 1945–1966 (2021).

    CAS  PubMed  Google Scholar 

  178. Kutschenko, A. et al. Functional and molecular properties of DYT-SGCE myoclonus-dystonia patient-derived striatal medium spiny neurons. Int. J. Mol. Sci. 22, 3565 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Pederick, D. T. et al. Abnormal cell sorting underlies the unique X-linked inheritance of PCDH19 epilepsy. Neuron 97, 59–66.e5 (2018).

    CAS  PubMed  Google Scholar 

  180. Borghi, R. et al. Dissecting the role of PCDH19 in clustering epilepsy by exploiting patient-specific models of neurogenesis. J Clin Med 10, 2754 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Nomura, T. et al. Interneuron dysfunction and inhibitory deficits in autism and fragile X syndrome.Cells 10, 2610 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Yang, W. P. et al. Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy. J. Biol. Chem. 273, 19419–19423 (1998).

    CAS  PubMed  Google Scholar 

  183. Simkin, D. et al. Dyshomeostatic modulation of Ca2+ activated K+ channels in a human neuronal model of KCNQ2 encephalopathy. Elife 10, e64434 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Niday, Z., Hawkins, V. E., Soh, H., Mulkey, D. K. & Tzingounis, A. V. Epilepsy-associated KCNQ2 channels regulate multiple intrinsic properties of layer 2/3 pyramidal neurons. J. Neurosci. 37, 576–586 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Kramvis, I. et al. Dysregulated prefrontal cortex inhibition in prepubescent and adolescent fragile X mouse model. Front. Mol. Neurosci. 13, 88 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Maltese, M. et al. Abnormal striatal plasticity in a DYT11/SGCE myoclonus dystonia mouse model is reversed by adenosine A2A receptor inhibition. Neurobiol. Dis. 108, 128–139 (2017).

    CAS  PubMed  Google Scholar 

  187. Scarduzio, M. et al. Strength of cholinergic tone dictates the polarity of dopamine D2 receptor modulation of striatal cholinergic interneuron excitability in DYT1 dystonia. Exp. Neurol. 295, 162–175 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Maltese, M. et al. Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum. Elife 7, e33331 (2018).

    PubMed  PubMed Central  Google Scholar 

  189. Yu, F. H. et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 9, 1142–1149 (2006).

    CAS  PubMed  Google Scholar 

  190. Ogiwara, I. et al. NaV1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J. Neurosci. 27, 5903–5914 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Hedrich, U. B. et al. Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human NaV1.1 mutation. J. Neurosci. 34, 14874–14889 (2014).

    PubMed  PubMed Central  Google Scholar 

  192. Uchino, K. et al. Inhibitory synaptic transmission is impaired at higher extracellular Ca2+ concentrations in Scn1a+/− mouse model of Dravet syndrome. Sci. Rep. 11, 10634 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Han, S. et al. Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489, 385–390 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Catterall, W. A. Dravet syndrome: a sodium channel interneuronopathy. Curr. Opin. Physiol. 2, 42–50 (2018).

    PubMed  Google Scholar 

  195. Sun, X. et al. Dysfunction of Trio GEF1 involves in excitatory/inhibitory imbalance and autism-like behaviors through regulation of interneuron migration. Mol. Psychiatry 26, 7621–7640 (2021).

    CAS  PubMed  Google Scholar 

  196. Lozovaya, N. et al. Early alterations in a mouse model of Rett syndrome: the GABA developmental shift is abolished at birth. Sci. Rep. 9, 9276 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.J.P. researched data for the article. All authors contributed substantially to discussion of the content and writing of the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Kathryn J. Peall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks J. Schröder, P. Striano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peall, K.J., Owen, M.J. & Hall, J. Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes. Nat Rev Neurol 20, 7–21 (2024). https://doi.org/10.1038/s41582-023-00896-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00896-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing