Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Redefining cerebral palsies as a diverse group of neurodevelopmental disorders with genetic aetiology

Abstract

Cerebral palsy is a clinical descriptor covering a diverse group of permanent, non-degenerative disorders of motor function. Around one-third of cases have now been shown to have an underlying genetic aetiology, with the genetic landscape overlapping with those of neurodevelopmental disorders including intellectual disability, epilepsy, speech and language disorders and autism. Here we review the current state of genomic testing in cerebral palsy, highlighting the benefits for personalized medicine and the imperative to consider aetiology during clinical diagnosis. With earlier clinical diagnosis now possible, we emphasize the opportunity for comprehensive and early genomic testing as a crucial component of the routine diagnostic work-up in people with cerebral palsy.

Key points

  • Currently, a clinical diagnosis of cerebral palsy (CP) is made on observation of signs and symptoms and does not consider aetiology or pathology.

  • CP encompasses a clinically heterogeneous group of disorders — together referred to as cerebral palsies — with at least one-third of cases having a genetic aetiology.

  • CP has a high degree of genetic overlap with neurodevelopmental disorders, such as intellectual disability, epilepsy and autism, and should itself be considered, at least partly, a genetic neurodevelopmental disorder.

  • The presence of known cerebral palsy risk factors, such as prematurity and growth restriction, and the absence of other comorbid neurodevelopmental phenotypes, including intellectual disability and epilepsy, do not rule out a genetic aetiology.

  • Diagnostic practice has not evolved with the fast-accumulating evidence for a genetic contribution to CP aetiology; the nomenclature for genetic cases and the circumstances under which a genetic diagnosis should negate the CP clinical diagnosis lack consensus.

  • An aetiology-driven diagnosis of CP involving a ‘genotype-first’ approach will bring tangible benefits to individuals with CP through precision medicine and improved clinical management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of activities by the International Cerebral Palsy Genomics Consortium.
Fig. 2: Genetic investigations in cerebral palsy cohorts.
Fig. 3: Genetic and clinical overlap among cerebral palsy and other disorders.
Fig. 4: Reactome pathway diagrams for three key processes showing significant enrichment for proteins encoded by recurrent cerebral palsy genes.

Similar content being viewed by others

References

  1. Delacy, M. J. & Reid, S. M. Profile of associated impairments at age 5 years in Australia by cerebral palsy subtype and gross motor function classification system level for birth years 1996 to 2005. Dev. Med. Child Neurol. 58 (Suppl. 2), 50–56 (2016).

    Article  PubMed  Google Scholar 

  2. Mutch, L., Alberman, E., Hagberg, B., Kodama, K. & Perat, M. V. Cerebral palsy epidemiology: where are we now and where are we going? Dev. Med. Child. Neurol. 34, 547–551 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Novak, I. et al. Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr. 171, 897–907 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shevell, M. Cerebral palsy to cerebral palsy spectrum disorder: time for a name change? Neurology 92, 233–235 (2018).

    Article  Google Scholar 

  5. Moreno-De-Luca, A., Ledbetter, D. H. & Martin, C. L. Genetic insights into the causes and classification of the cerebral palsies. Lancet Neurol. 11, 283–292 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scheffer, I. E. et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58, 512–521 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Smithers-Sheedy, H. et al. What constitutes cerebral palsy in the twenty-first century? Dev. Med. Child Neurol. 56, 323–328 (2014).

    Article  PubMed  Google Scholar 

  8. Aravamuthan, B. R. et al. Variability in cerebral palsy diagnosis. Pediatrics 147, e2020010066 (2021).

    Article  PubMed  Google Scholar 

  9. Pham, R. et al. Definition and diagnosis of cerebral palsy in genetic studies: a systematic review. Dev. Med. Child Neurol. 62, 1024–1030 (2020).

    Article  PubMed  Google Scholar 

  10. Wilson, Y. A. et al. Common data elements to standardize genomics studies in cerebral palsy. Dev. Med. Child Neurol. 64, 1470–1476 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kayumi, S. et al. Genomic and phenotypic characterization of 404 individuals with neurodevelopmental disorders caused by CTNNB1 variants. Genet. Med. 24, 2351–2366 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, R. W. et al. A diagnostic approach for cerebral palsy in the genomic era. Neuromol. Med. 16, 821–844 (2014).

    Article  CAS  Google Scholar 

  13. Pearson, T. S., Pons, R., Ghaoui, R. & Sue, C. M. Genetic mimics of cerebral palsy. Mov. Disord. 34, 625–636 (2019).

    Article  PubMed  Google Scholar 

  14. Leach, E. L., Shevell, M., Bowden, K., Stockler-Ipsiroglu, S. & van Karnebeek, C. D. M. Treatable inborn errors of metabolism presenting as cerebral palsy mimics: systematic literature review. Orphanet J. Rare Dis. 9, 197 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zouvelou, V. et al. The genetic etiology in cerebral palsy mimics: the results from a Greek tertiary care center. Eur. J. Paediatr. Neurol. 23, 427–437 (2019).

    Article  PubMed  Google Scholar 

  16. Takezawa, Y. et al. Genomic analysis identifies masqueraders of full-term cerebral palsy. Ann. Clin. Transl. Neurol. 5, 538–551 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Srivastava, S., Lewis, S. A., Kruer, M. C. & Poduri, A. Underrepresentation of the term cerebral palsy in clinical genetics databases. Am. J. Med. Genet. A 188, 3555–3557 (2022).

    Article  PubMed  Google Scholar 

  18. te Velde, A. et al. Age of diagnosis, fidelity and acceptability of an early diagnosis clinic for cerebral palsy: a single site implementation study. Brain Sci. 11, 1074 (2021).

    Article  Google Scholar 

  19. Morgan, C. et al. The pooled diagnostic accuracy of neuroimaging, general movements, and neurological examination for diagnosing cerebral palsy early in high-risk infants: a case control study. J. Clin. Med. 8, 1879 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bamshad, M. J., Nickerson, D. A. & Chong, J. X. Mendelian gene discovery: fast and furious with no end in sight. Am. J. Hum. Genet. 105, 448–455 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. MacLennan, A. H. et al. Genetic or other causation should not change the clinical diagnosis of cerebral palsy. J. Child. Neurol. 34, 472–476 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Holborn, M. A. et al. The NESHIE and CP Genetics Resource (NCGR): a database of genes and variants reported in neonatal encephalopathy with suspected hypoxic ischemic encephalopathy (NESHIE) and consequential cerebral palsy (CP). Genomics 114, 110508 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Oskoui, M. et al. Clinically relevant copy number variations detected in cerebral palsy. Nat. Commun. 6, 7949 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Parolin Schnekenberg, R. et al. De novo point mutations in patients diagnosed with ataxic cerebral palsy. Brain 138, 1817–1832 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. McMichael, G. et al. Rare copy number variation in cerebral palsy. Eur. J. Hum. Genet. 22, 40–45 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. McMichael, G. et al. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol. Psychiatry 20, 176–182 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Srivastava, S. et al. Clinical whole exome sequencing in child neurology practice. Ann. Neurol. 76, 473–483 (2014).

    Article  PubMed  Google Scholar 

  28. Moreno-De-Luca, A. et al. Molecular diagnostic yield of exome sequencing in patients with cerebral palsy. J. Am. Med. Assoc. 325, 467–475 (2021).

    Article  CAS  Google Scholar 

  29. Srivastava, S. et al. Molecular diagnostic yield of exome sequencing and chromosomal microarray in cerebral palsy: a systematic review and meta-analysis. JAMA Neurol. 79, 1287–1295 (2022).

    Article  PubMed  Google Scholar 

  30. Gonzalez-Mantilla, P. J. et al. Diagnostic yield of exome sequencing in cerebral palsy and implications for genetic testing guidelines: a systematic review and meta-analysis. JAMA Pediatr. 177, 472–478 (2023).

    Article  PubMed  Google Scholar 

  31. Jahan, I. et al. Epidemiology of cerebral palsy in low- and middle-income countries: preliminary findings from an international multi-centre cerebral palsy register. Dev. Med. Child. Neurol. 63, 1327–1336 (2021).

    Article  PubMed  Google Scholar 

  32. Yechieli, M. et al. Diagnostic yield of chromosomal microarray and trio whole exome sequencing in cryptogenic cerebral palsy. J. Med. Genet. 59, 759–767 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. May, H. J. et al. Genetic testing in individuals with cerebral palsy. Dev. Med. Child Neurol. 63, 1448–1455 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. van Eyk, C. L. et al. Yield of clinically reportable genetic variants in unselected cerebral palsy by whole genome sequencing. NPJ Genom. Med. 6, 74 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chopra, M. et al. Mendelian etiologies identified with whole exome sequencing in cerebral palsy. Ann. Clin. Transl. Neurol. 9, 193–205 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mei, H. et al. Genetic spectrum identified by exome sequencing in a Chinese pediatric cerebral palsy cohort. J. Pediatr. 242, 206–212.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Solé-Navais, P. et al. Genetic effects on the timing of parturition and links to fetal birth weight. Nat. Genet. 55, 559–567 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang, G. et al. Genetic associations with gestational duration and spontaneous preterm birth. N. Engl. J. Med. 377, 1156–1167 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meler, E., Sisterna, S. & Borrell, A. Genetic syndromes associated with isolated fetal growth restriction. Prenat. Diagn. 40, 432–446 (2020).

    Article  PubMed  Google Scholar 

  40. Nowakowska, B. A. et al. Genetic background of fetal growth restriction. Int. J. Mol. Sci. 23, 36 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Martin, A. R. et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat. Genet. 51, 1560–1565 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Friedman, J. M., van Essen, P. & van Karnebeek, C. D. M. Cerebral palsy and related neuromotor disorders: overview of genetic and genomic studies. Mol. Genet. Metab. 137, 399–419 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Li, N. et al. In-depth analysis reveals complex molecular aetiology in a cohort of idiopathic cerebral palsy. Brain 145, 119–141 (2022).

    Article  PubMed  Google Scholar 

  44. Elliott, A. M. & Guimond, C. Genetic counseling considerations in cerebral palsy. Mol. Genet. Metab. 137, 428–435 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Jin, S. C. et al. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat. Genet. 52, 1046–1056 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. van Eyk, C. L. et al. Targeted resequencing identifies genes with recurrent variation in cerebral palsy. NPJ Genom. Med. 4, 27 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. de Vries, L. S. et al. COL4A1 mutation in two preterm siblings with antenatal onset of parenchymal hemorrhage. Ann. Neurol. 65, 12–18 (2009).

    Article  PubMed  Google Scholar 

  48. Yaramis, A. et al. COL4A1-related autosomal recessive encephalopathy in 2 Turkish children. Neurol. Genet. 6, e392 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Meuwissen, M. E. C. et al. The expanding phenotype of COL4A1 and COL4A2 mutations: clinical data on 13 newly identified families and a review of the literature. Genet. Med. 17, 843–853 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Guey, S. & Hervé, D. Main features of COL4A1-COL4A2 related cerebral microangiopathies. Cereb. Circ. Cogn. Behav. 3, 100140 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zagaglia, S. et al. Neurologic phenotypes associated with COL4A1/2 mutations: expanding the spectrum of disease. Neurology 91, e2078–e2088 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mancuso, M. et al. Monogenic cerebral small-vessel diseases: diagnosis and therapy. consensus recommendations of the European Academy of Neurology. Eur. J. Neurol. 27, 909–927 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Miyake, K. et al. Comparison of genomic and epigenomic expression in monozygotic twins discordant for Rett syndrome. PLoS ONE 8, e66729 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Trivisano, M. et al. Defining the electroclinical phenotype and outcome of PCDH19-related epilepsy: a multicenter study. Epilepsia 59, 2260–2271 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Radley, J. A. et al. Deep phenotyping of 14 new patients with IQSEC2 variants, including monozygotic twins of discordant phenotype. Clin. Genet. 95, 496–506 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Rodgers, J., Calvert, S., Shoubridge, C. & McGaughran, J. A novel ARX loss of function variant in female monozygotic twins is associated with chorea. Eur. J. Med. Genet. 64, 104315 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Fang, H., Deng, X. & Disteche, C. M. X-factors in human disease: impact of gene content and dosage regulation. Hum. Mol. Genet. 30, R285–R295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Migeon, B. R. X-linked diseases: susceptible females. Genet. Med. 22, 1156–1174 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gecz, J. & Thomas, P. Q. Disentangling the paradox of the PCDH19 clustering epilepsy, a disorder of cellular mosaics. Curr. Opin. Genet. Dev. 65, 169–175 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Hu, L. et al. A child with a novel DDX3X variant mimicking cerebral palsy: a case report. J. Pediatr. 46, 88 (2020).

    CAS  Google Scholar 

  61. Ding, Y. X. & Cui, H. Integrated analysis of genome-wide DNA methylation and gene expression data provide a regulatory network in intrauterine growth restriction. Life Sci. 179, 60–65 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Tan, Q. et al. Epigenetic signature of preterm birth in adult twins. Clin. Epigenetics 10, 87 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sparrow, S. et al. Epigenomic profiling of preterm infants reveals DNA methylation differences at sites associated with neural function. Transl. Psychiatry 6, e716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. van Dongen, J. et al. Identical twins carry a persistent epigenetic signature of early genome programming. Nat. Commun. 12, 5618 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Batie, M. et al. Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science 363, 1222–1226 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Chakraborty, A. A. et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science 363, 1217–1222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aref-Eshghi, E. et al. Genomic DNA methylation signatures enable concurrent diagnosis and clinical genetic variant classification in neurodevelopmental syndromes. Am. J. Hum. Genet. 102, 156–174 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sadikovic, B., Aref-Eshghi, E., Levy, M. A. & Rodenhiser, D. DNA methylation signatures in mendelian developmental disorders as a diagnostic bridge between genotype and phenotype. Epigenomics 11, 563–575 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Levy, M. A. et al. Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. HGG Adv. 3, 100075 (2022).

    CAS  PubMed  Google Scholar 

  70. Garg, P. & Sharp, A. J. Screening for rare epigenetic variations in autism and schizophrenia. Hum. Mutat. 40, 952–961 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Garg, P. et al. A survey of rare epigenetic variation in 23,116 human genomes identifies disease-relevant epivariations and CGG expansions. Am. J. Hum. Genet. 107, 654–669 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Al Zahrani, H. et al. Genomics in cerebral palsy phenotype across the lifespan: comparison of diagnostic yield between children and adult population. Mol. Genet. Metab. 137, 420–427 (2021).

    Article  PubMed  Google Scholar 

  73. Segel, R. et al. Copy number variations in cryptogenic cerebral palsy. Neurology 84, 1660–1668 (2015).

    Article  PubMed  Google Scholar 

  74. Matthews, A. M. et al. Atypical cerebral palsy: genomics analysis enables precision medicine. Genet. Med. 21, 1621–1628 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Zech, M. et al. Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurol. 19, 908–918 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rosello, M. et al. Hidden etiology of cerebral palsy: genetic and clinical heterogeneity and efficient diagnosis by next-generation sequencing. Pediatr. Res. 90, 284–288 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Suchowersky, O. et al. Hereditary spastic paraplegia initially diagnosed as cerebral palsy. Clin. Park. Relat. Disord. 5, 100114 (2021).

    PubMed  PubMed Central  Google Scholar 

  78. Dalpozzo, F. et al. Infancy onset hereditary spastic paraplegia associated with a novel atlastin mutation. Neurology 61, 580–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Andersen, E. W., Leventer, R. J., Reddihough, D. S., Davis, M. R. & Ryan, M. M. Cerebral palsy is not a diagnosis: a case report of a novel atlastin-1 mutation. J. Paediatr. Child. Health 52, 669–671 (2016).

    Article  PubMed  Google Scholar 

  80. Rainier, S., Sher, C., Reish, O., Thomas, D. & Fink, J. K. De novo occurrence of novel SPG3A/atlastin mutation presenting as cerebral palsy. Arch. Neurol. 63, 445–447 (2006).

    Article  PubMed  Google Scholar 

  81. Yonekawa, T. et al. Extremely severe complicated spastic paraplegia 3A with neonatal onset. Pediatr. Neurol. 51, 726–729 (2014).

    Article  PubMed  Google Scholar 

  82. Le Roux, M. et al. CACNA1A-associated epilepsy: electroclinical findings and treatment response on seizures in 18 patients. Eur. J. Paediatr. Neurol. 33, 75–85 (2021).

    Article  PubMed  Google Scholar 

  83. Lazo, P. A. et al. Novel dominant KCNQ2 exon 7 partial in-frame duplication in a complex epileptic and neurodevelopmental delay syndrome. Int. J. Mol. Sci. 21, 444721 (2020).

    Article  Google Scholar 

  84. Weckhuysen, S. et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann. Neurol. 71, 15–25 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Navratil, M. et al. Ataxia-telangiectasia presenting as cerebral palsy and recurrent wheezing: a case report. Am. J. Case Rep. 16, 631–636 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Petley, E., Yule, A., Alexander, S., Ojha, S. & Whitehouse, W. P. The natural history of ataxia-telangiectasia (A-T): a systematic review. PLoS ONE 17, e0264177 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ou, Y. et al. A de novo loss-of-function mutation in PAFAH1B1 identified in a single case with agyria–pachygyria complex. J. Pediatr. Neurol. 18, 33–38 (2020).

    Article  CAS  Google Scholar 

  88. Saillour, Y. et al. LIS1-related isolated lissencephaly: spectrum of mutations and relationships with malformation severity. Arch. Neurol. 66, 1007–1015 (2009).

    Article  PubMed  Google Scholar 

  89. Shah, S. et al. Childhood presentation of COL4A1 mutations. Dev. Med. Child Neurol. 54, 569–574 (2012).

    Article  PubMed  Google Scholar 

  90. Kinoshita, K. et al. De novo p.G696S mutation in COL4A1 causes intracranial calcification and late-onset cerebral hemorrhage: a case report and review of the literature. Eur. J. Med. Genet. 63, 103825 (2020).

    Article  PubMed  Google Scholar 

  91. Boyce, D., McGee, S., Shank, L., Pathak, S. & Gould, D. Epilepsy and related challenges in children with COL4A1 and COL4A2 mutations: a Gould syndrome patient registry. Epilepsy Behav. 125, 108365 (2021).

    Article  PubMed  Google Scholar 

  92. Nejabat, M. et al. Genetic testing in various neurodevelopmental disorders which manifest as cerebral palsy: a case study from Iran. Front. Pediatr. 9, 734946 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Friedman, J. et al. Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Ann. Neurol. 71, 520–530 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Waak, M. et al. GNAO1-related movement disorder with life-threatening exacerbations: movement phenomenology and response to DBS. J. Neurol. Neurosurg. Psychiatry 89, 221–222 (2018).

    Article  PubMed  Google Scholar 

  95. Malaquias, M. J. et al. GNAO1 mutation presenting as dyskinetic cerebral palsy. Neurol. Sci. 40, 2213–2216 (2019).

    Article  PubMed  Google Scholar 

  96. Mountford, H. S., Braden, R., Newbury, D. F. & Morgan, A. T. The genetic and molecular basis of developmental language disorder: a review. Children 9, 586 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tan, Y., Liu, D., Gong, J., Liu, J. & Huo, J. The role of F-box only protein 31 in cancer. Oncol. Lett. 15, 4047–4052 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Dzinovic, I. et al. Variant recurrence confirms the existence of a FBXO31-related spastic-dystonic cerebral palsy syndrome. Ann. Clin. Transl. Neurol. 8, 951–955 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mir, A. et al. Truncation of the E3 ubiquitin ligase component FBXO31 causes non-syndromic autosomal recessive intellectual disability in a Pakistani family. Hum. Genet. 133, 975–984 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Stephenson, S. E. M. et al. Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome. Am. J. Hum. Genet. 109, 601–617 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Piard, J. et al. The phenotypic spectrum of WWOX-related disorders: 20 additional cases of WOREE syndrome and review of the literature. Genet. Med. 21, 1308–1318 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Cummings, K., Watkins, A., Jones, C., Dias, R. & Welham, A. Behavioural and psychological features of PTEN mutations: a systematic review of the literature and meta-analysis of the prevalence of autism spectrum disorder characteristics. J. Neurodev. Disord. 14, 1 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Reijnders, M. R. F. et al. De novo loss-of-function mutations in USP9X cause a female-specific recognizable syndrome with developmental delay and congenital malformations. Am. J. Hum. Genet. 98, 373–381 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Johnson, B. V. et al. Partial loss of USP9X function leads to a male neurodevelopmental and behavioral disorder converging on transforming growth factor β signaling. Biol. Psychiatry 87, 100–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Johnson-Kerner, B. et al. DDX3X-Related Neurodevelopmental Disorder https://www.ncbi.nlm.nih.gov/books/NBK561282/ (GeneReviews, 2020).

  106. Jaglin, X. H. & Chelly, J. Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends Genet. 25, 555–566 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Fourel, G. & Boscheron, C. Tubulin mutations in neurodevelopmental disorders as a tool to decipher microtubule function. FEBS Lett. 594, 3409–3438 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Fallah, M. S., Szarics, D., Robson, C. M. & Eubanks, J. H. Impaired regulation of histone methylation and acetylation underlies specific neurodevelopmental disorders. Front. Genet. 11, 613098 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Park, J., Lee, K., Kim, K. & Yi, S. J. The role of histone modifications: from neurodevelopment to neurodiseases. Signal. Transduct. Target. Ther. 7, 217 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ronan, J. L., Wu, W. & Crabtree, G. R. From neural development to cognition: unexpected roles for chromatin. Nat. Rev. Genet. 14, 347–359 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Parenti, I., Rabaneda, L. G., Schoen, H. & Novarino, G. Neurodevelopmental disorders: from genetics to functional pathways. Trends Neurosci. 43, 608–621 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Fancy, S. P. J. et al. Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Nat. Neurosci. 17, 506–512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Richard, E. M. et al. Bi-allelic variants in SPATA5L1 lead to intellectual disability, spastic-dystonic cerebral palsy, epilepsy, and hearing loss. Am. J. Hum. Genet. 108, 2006–2016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Saida, K. et al. Brain monoamine vesicular transport disease caused by homozygous SLC18A2 variants: a study in 42 affected individuals. Genet. Med. 25, 90–102 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Calame, D. G. et al. Biallelic loss-of-function variants in the splicing regulator NSRP1 cause a severe neurodevelopmental disorder with spastic cerebral palsy and epilepsy. Genet. Med. 23, 2455–2460 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kurolap, A. et al. Bi-allelic variants in neuronal cell adhesion molecule cause a neurodevelopmental disorder characterized by developmental delay, hypotonia, neuropathy/spasticity. Am. J. Hum. Genet. 109, 518–532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. MacLennan, A. H. et al. Cerebral palsy and genomics: an international consortium. Dev. Med. Child. Neurol. 60, 209–210 (2018).

    Article  PubMed  Google Scholar 

  118. van Eyk, C. L. et al. Analysis of 182 cerebral palsy transcriptomes points to dysregulation of trophic signalling pathways and overlap with autism. Transl. Psychiatry 8, 88 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. International League Against Epilepsy Consortium on Complex Epilepsies. Berkovic S. F., Cavalleri G. L., Koeleman B. P. Genome-wide meta-analysis of over 29,000 people with epilepsy reveals 26 loci and subtype-specific genetic architecture. Preprint at medRxiv https://doi.org/10.1101/2022.06.08.22276120 (2022).

  120. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Novak, I. et al. State of the Evidence Traffic Lights 2019: systematic review of interventions for preventing and treating children with cerebral palsy. Curr. Neurol. Neurosci. Rep. 20, 3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Heijtz, R. D., Almeida, R., Eliasson, A. C. & Forssberg, H. Genetic variation in the dopamine system influences intervention outcome in children with cerebral palsy. EBioMedicine 28, 162–167 (2018).

    Article  Google Scholar 

  123. Bagrowski, B. et al. Assessment of the relationship between Val66Met BDNF polymorphism and the effectiveness of gait rehabilitation in children and adolescents with cerebral palsy. Acta Neurobiol. Exp. 82, 1–11 (2022).

    Google Scholar 

  124. Horvath, G. A. et al. Gain-of-function KCNJ6 mutation in a severe hyperkinetic movement disorder phenotype. Neurosci 384, 152–164 (2018).

    Article  CAS  Google Scholar 

  125. Sun, J. M. & Kurtzberg, J. Stem cell therapies in cerebral palsy and autism spectrum disorder. Dev. Med. Child. Neurol. 63, 503–510 (2021).

    Article  PubMed  Google Scholar 

  126. Tai, C. H. et al. Long-term efficacy and safety of eladocagene exuparvovec in patients with AADC deficiency. Mol. Ther. 30, 509–518 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Himmelreich, N. et al. Spectrum of DDC variants causing aromatic l-amino acid decarboxylase (AADC) deficiency and pathogenicity interpretation using ACMG-AMP/ACGS recommendations. Mol. Genet. Metab. 137, 359–381 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50, D687–D692 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Wilson, Y. A. et al. People with cerebral palsy and their family’s preferences about genomics research. Public. Health Genom. 25, 22–31 (2022).

    Article  Google Scholar 

  130. Vissers, L. E. L. M., Gilissen, C. & Veltman, J. A. Genetic studies in intellectual disability and related disorders. Nat. Rev. Genet. 17, 9–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Kochinke, K. et al. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am. J. Hum. Genet. 98, 149–164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629 (2019).

    Article  PubMed Central  Google Scholar 

  133. Oliver, K. L. et al. Genes4Epilepsy: an epilepsy gene resource. Epilepsia 64, 1368–1375 (2023).

    Article  PubMed  Google Scholar 

  134. Robinson, P. N. et al. The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. Am. J. Hum. Genet. 83, 610–615 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Köhler, S. et al. The human phenotype ontology in 2021. Nucleic Acids Res. 49, D1207–D1217 (2021).

    Article  PubMed  Google Scholar 

  136. Lewis-Smith, D. et al. Computational analysis of neurodevelopmental phenotypes: harmonization empowers clinical discovery. Hum. Mutat. 43, 1642–1658 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank T. Kroes and D. Fornarino for their assistance with the initial curation of cerebral palsy gene lists. J.G. is supported by NHMRC Senior Research Fellowship ID1155224 and C.L.v.E. is supported by The Hospital Research Foundation Fellowship C-MCF-48-2019.

Author information

Authors and Affiliations

Authors

Contributions

C.L.v.E. and J.G. contributed equally to discussions of the article content. C.L.v.E. researched and drafted the article. All authors reviewed, edited and approved the manuscript.

Corresponding author

Correspondence to Jozef Gecz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Human Phenotype Ontology: https://hpo.jax.org/app/

International Cerebral Palsy Genomics Consortium CP Commons data portal: https://icpgc.org/accessing-the-data/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Eyk, C.L., Fahey, M.C. & Gecz, J. Redefining cerebral palsies as a diverse group of neurodevelopmental disorders with genetic aetiology. Nat Rev Neurol 19, 542–555 (2023). https://doi.org/10.1038/s41582-023-00847-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00847-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing