Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration

Abstract

Despite advances in uncovering the mechanisms that underlie neuroinflammation and neurodegenerative disease, therapies that prevent neuronal loss remain elusive. Targeting of disease-defining markers in conditions such as Alzheimer disease (amyloid-β and tau) or Parkinson disease (α-synuclein) has been met with limited success, suggesting that these proteins do not act in isolation but form part of a pathological network. This network could involve phenotypic alteration of multiple cell types in the CNS, including astrocytes, which have a major neurosupportive, homeostatic role in the healthy CNS but adopt reactive states under acute or chronic adverse conditions. Transcriptomic studies in human patients and disease models have revealed the co-existence of many putative reactive sub-states of astrocytes. Inter-disease and even intra-disease heterogeneity of reactive astrocytic sub-states are well established, but the extent to which specific sub-states are shared across different diseases is unclear. In this Review, we highlight how single-cell and single-nuclei RNA sequencing and other ‘omics’ technologies can enable the functional characterization of defined reactive astrocyte states in various pathological scenarios. We provide an integrated perspective, advocating cross-modal validation of key findings to define functionally important sub-states of astrocytes and their triggers as tractable therapeutic targets with cross-disease relevance.

Key points

  • Neurodegenerative diseases are a group of serious and incurable conditions in which astrocytes both cause and respond to neuroinflammation.

  • A better understanding of how neuroinflammation and astrocyte function are linked in neurodegeneration is likely to lead to new therapeutic strategies.

  • To gain this understanding, researchers are using a range of techniques and data sets, including transcriptomic studies at the single-cell and single-nuclei levels, and the findings are being validated using both human and animal models across different stages of neurodegenerative diseases.

  • Transcriptomic studies of reactive astrocytes in human and animal models of disease have revealed the co-existence of many pathology-related reactive sub-states of astrocytes.

  • Future priorities for this research field include the determination of functional changes in transcriptomically defined reactive astrocyte sub-states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physiological and reactive functions of astrocytes.
Fig. 2: Position of astrocytes within the inflammatory cascade.
Fig. 3: Methods for studying astrocyte reactivity.
Fig. 4: Disease-associated mutations that alter human astrocyte inflammatory responses and homeostatic functions.

Similar content being viewed by others

References

  1. Virchow, R. & Chance, F. Cellular Pathology as Based Upon Physiological and Pathological Histology: Twenty Lectures Delivered in the Pathological Institute of Berlin During the Months of February, March and April, 1858 (John Churchill, 1860).

  2. Han, R. T., Kim, R. D., Molofsky, A. V. & Liddelow, S. A. Astrocyte-immune cell interactions in physiology and pathology. Immunity 54, 211–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Ransohoff, R. M., Schafer, D., Vincent, A., Blachere, N. E. & Bar-Or, A. Neuroinflammation: ways in which the immune system affects the brain. Neurotherapeutics 12, 896–909 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goverman, J. Autoimmune T cell responses in the central nervous system. Nat. Rev. Immunol. 9, 393–407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guttenplan, K. A. & Liddelow, S. A. Astrocytes and microglia: models and tools. J. Exp. Med. 216, 71–83 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liddelow, S. A. & Barres, B. A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46, 957–967 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Linnerbauer, M., Wheeler, M. A. & Quintana, F. J. Astrocyte crosstalk in CNS inflammation. Neuron 108, 608–622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017). The first transcriptomic and functional characterization of a reactive astrocyte sub-state in a cell-based in vitro assay. Validation in human cells was reported by Barbar et al. in 2020 (ref. 36).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guttenplan, K. A. et al. Neurotoxic reactive astrocytes drive neuronal death after retinal injury. Cell Rep. 31, 107776 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yun, S. P. et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat. Med. 24, 931–938 (2018). The first description of the therapeutic benefits of targeting a specific sub-state of reactive astrocytes. This study used the glucagon-like 1 peptide receptor agonist NYL01 in a mouse model of PD. Clinical trials in humans are ongoing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Di Giorgio, F. P., Carrasco, M. A., Siao, M. C., Maniatis, T. & Eggan, K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci. 10, 608–614 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nagai, M. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 10, 615–622 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, S. et al. Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. Proc. Natl Acad. Sci. USA 112, E6993–E7002 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matyash, V. & Kettenmann, H. Heterogeneity in astrocyte morphology and physiology. Brain Res. Rev. 63, 2–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Kohler, S., Winkler, U. & Hirrlinger, J. Heterogeneity of astrocytes in grey and white matter. Neurochem. Res. 46, 3–14 (2021).

    Article  PubMed  Google Scholar 

  17. Uyeda, C. T., Eng, L. F. & Bignami, A. Immunological study of the glial fibrillary acidic protein. Brain Res. 37, 81–89 (1972).

    Article  CAS  PubMed  Google Scholar 

  18. Bignami, A., Eng, L. F., Dahl, D. & Uyeda, C. T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 43, 429–435 (1972).

    Article  CAS  PubMed  Google Scholar 

  19. Jessen, K. R., Thorpe, R. & Mirsky, R. Molecular identity, distribution and heterogeneity of glial fibrillary acidic protein: an immunoblotting and immunohistochemical study of Schwann cells, satellite cells, enteric glia and astrocytes. J. Neurocytol. 13, 187–200 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. McDermott, K. W. & Lantos, P. L. The distribution of glial fibrillary acidic protein and vimentin in postnatal marmoset (Callithrix jacchus) brain. Brain Res. Dev. Brain Res. 45, 169–177 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Rasia-Filho, A. A., Xavier, L. L., dos Santos, P., Gehlen, G. & Achaval, M. Glial fibrillary acidic protein immunodetection and immunoreactivity in the anterior and posterior medial amygdala of male and female rats. Brain Res. Bull. 58, 67–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Torres-Platas, S. G., Nagy, C., Wakid, M., Turecki, G. & Mechawar, N. Glial fibrillary acidic protein is differentially expressed across cortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides. Mol. Psychiatry 21, 509–515 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Bayraktar, O. A. et al. Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat. Neurosci. 23, 500–509 (2020). The researchers screened 46 astrocyte candidate genes in situ to provide the first description of cortical layer-specific astrocyte subtypes in the mouse brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pang, Y., Cai, Z. & Rhodes, P. G. Analysis of genes differentially expressed in astrocytes stimulated with lipopolysaccharide using cDNA arrays. Brain Res. 914, 15–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Bouton, C. M., Hossain, M. A., Frelin, L. P., Laterra, J. & Pevsner, J. Microarray analysis of differential gene expression in lead-exposed astrocytes. Toxicol. Appl. Pharmacol. 176, 34–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008). The first unbiased cell type-specific expression profiling in the brain. The findings were validated using RNA-seq by Zhang et al. in 2014 (ref. 28) and 2016 (ref. 29) and subsequently in numerous scRNA-seq and snRNA-seq studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410 (2012). The first sub-state-specific sequencing of reactive astrocytes. Formed the basis of ongoing gene expression profiling of reactive sub-states and functional characterization of reactive astrocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Guttenplan, K. A. et al. Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat. Commun. 11, 3753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chai, H. et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95, 531–549.e9 (2017). Combined RNA-seq, proteomic and functional (calcium transient) characterization of astrocytes in different brain regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heintz, N. Gene expression nervous system atlas (GENSAT). Nat. Neurosci. 7, 483 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Foo, L. C. et al. Development of a method for the purification and culture of rodent astrocytes. Neuron 71, 799–811 (2011). The first report of serum-free astrocyte culture to study specific reactive astrocyte functions in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barbar, L. et al. CD49f is a novel marker of functional and reactive human iPSC-derived astrocytes. Neuron 107, 436–453 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jungblut, M. et al. Isolation and characterization of living primary astroglial cells using the new GLAST-specific monoclonal antibody ACSA-1. Glia 60, 894–907 (2012).

    Article  PubMed  Google Scholar 

  38. Batiuk, M. Y. et al. Identification of region-specific astrocyte subtypes at single cell resolution. Nat. Commun. 11, 1220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kantzer, C. G. et al. Anti-ACSA-2 defines a novel monoclonal antibody for prospective isolation of living neonatal and adult astrocytes. Glia 65, 990–1004 (2017).

    Article  PubMed  Google Scholar 

  40. Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 26, 131–142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, T. et al. Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy. Cell Rep. 28, 2111–2123.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Ruffinatti, F. et al. Transcriptional remodeling in primary hippocampal astrocytes from an Alzheimer’s disease mouse model. Curr. Alzheimer Res. 15, 986–1004 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Ziff, O. J. et al. Meta-analysis of human and mouse ALS astrocytes reveals multi-omic signatures of inflammatory reactive states. Genome Res. 32, 71–84 (2022). This study shows that ALS-associated mutations alter inflammatory responses in astrocytes, highlighting genetics as well as secondary insults as drivers of astrocyte reactivity.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Peng, A. Y. T. et al. Loss of TDP-43 in astrocytes leads to motor deficits by triggering A1-like reactive phenotype and triglial dysfunction. Proc. Natl Acad. Sci. USA 117, 29101–29112 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jiang, L. L. et al. Membralin deficiency dysregulates astrocytic glutamate homeostasis leading to ALS-like impairment. J. Clin. Invest. 129, 3103–3120 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Diaz-Castro, B., Gangwani, M. R., Yu, X., Coppola, G. & Khakh, B. S. Astrocyte molecular signatures in Huntington’s disease. Sci. Transl Med. 11, eaaw8546 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Song, S. et al. Activation of endothelial Wnt/β-catenin signaling by protective astrocytes repairs BBB damage in ischemic stroke. Prog. Neurobiol. 199, 101963 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Boghdadi, A. G. et al. NogoA-expressing astrocytes limit peripheral macrophage infiltration after ischemic brain injury in primates. Nat. Commun. 12, 6906 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hasel, P., Rose, I. V. L., Sadick, J. S., Kim, R. D. & Liddelow, S. A. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 24, 1475–1487 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boisvert, M. M., Erikson, G. A., Shokhirev, M. N. & Allen, N. J. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22, 269–285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Clarke, L. E. et al. Normal aging induces A1-like astrocyte reactivity. Proc. Natl Acad. Sci. USA 115, E1896–E1905 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sadick, J. S. et al. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease. Neuron 110, 1788–1805 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Diaz-Castro, B., Bernstein, A. M., Coppola, G., Sofroniew, M. V. & Khakh, B. S. Molecular and functional properties of cortical astrocytes during peripherally induced neuroinflammation. Cell Rep. 36, 109508 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wheeler, M. A. et al. Environmental control of astrocyte pathogenic activities in CNS inflammation. Cell 176, 581–596.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sanmarco, L. M. et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature 590, 473–479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grubman, A. et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22, 2087–2097 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Absinta, M. et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Khrameeva, E. et al. Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains. Genome Res. 30, 776–789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sheng, L. et al. Social reprogramming in ants induces longevity-associated glia remodeling. Sci. Adv. 6, eaba9869 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vicidomini, R., Nguyen, T. H., Choudhury, S. D., Brody, T. & Serpe, M. Assembly and exploration of a single cell atlas of the Drosophila larval ventral cord. identification of rare cell types. Curr. Protoc. 1, e37 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, J., Poskanzer, K. E., Freeman, M. R. & Monk, K. R. Live-imaging of astrocyte morphogenesis and function in zebrafish neural circuits. Nat. Neurosci. 23, 1297–1306 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. FAIR. FAIR principles. GO FAIR https://www.go-fair.org/fair-principles/ (2016).

  71. Liddelow, S. A., Marsh, S. E. & Stevens, B. Microglia and astrocytes in disease: dynamic duo or partners in crime? Trends Immunol. 41, 820–835 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Burda, J. E. et al. Divergent transcriptional regulation of astrocyte reactivity across disorders. Nature 606, 557–564 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. de Paiva Lopes, K. et al. Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies. Nat. Genet. 54, 4–17 (2022).

    Article  PubMed Central  Google Scholar 

  74. Kenigsbuch, M. et al. A shared disease-associated oligodendrocyte signature among multiple CNS pathologies. Nat. Neurosci. 25, 876–886 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991.e19 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Castranio, E. et al. INPP5D limits plaque formation and glial reactivity in the APP/PS1 mouse model of Alzheimer’s disease. Alzheimers Dement. https://doi.org/10.1002/alz.12821 (2022).

    Article  PubMed  Google Scholar 

  77. Oberheim, N. A. et al. Uniquely hominid features of adult human astrocytes. J. Neurosci. 29, 3276–3287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Han, X. et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12, 342–353 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Frazel, P. et al. Early stage differentiation of glia in human and mouse. Preprint at bioRxiv https://doi.org/10.1101/2021.12.07.471509 (2021).

    Article  Google Scholar 

  80. Li, J. et al. Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes. Nat. Commun. 12, 3958 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hertz, L., Lovatt, D., Goldman, S. A. & Nedergaard, M. Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca2+]i. Neurochem. Int. 57, 411–420 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nolle, A. et al. Enrichment of glial cells from human post-mortem tissue for transcriptome and proteome analysis using immunopanning. Front. Cell Neurosci. 15, 772011 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Patani, R. et al. Investigating the utility of human embryonic stem cell-derived neurons to model ageing and neurodegenerative disease using whole-genome gene expression and splicing analysis. J. Neurochem. 122, 738–751 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Miller, J. D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gatto, N. et al. Directly converted astrocytes retain the ageing features of the donor fibroblasts and elucidate the astrocytic contribution to human CNS health and disease. Aging Cell 20, e13281 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Sloan, S. A. et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 95, 779–790.e776 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. McCarthy, K. D. & de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902 (1980). The first purification and culture methods for astrocytes. Most physiological astrocyte functions were discovered using these methods.

    Article  CAS  PubMed  Google Scholar 

  88. Stogsdill, J. A. et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 551, 192–197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Allen, N. J. & Eroglu, C. Cell biology of astrocyte-synapse interactions. Neuron 96, 697–708 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Qiu, J. et al. Mixed-species RNA-seq for elucidation of non-cell-autonomous control of gene transcription. Nat. Protoc. 13, 2176–2199 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Hasel, P. et al. Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat. Commun. 8, 15132 (2017). Mixed-species culture and neuron–astrocyte interactions demonstrated in a dish. Among the first studies to show that cell–cell contact, in addition to secreted molecules, is important for astrocyte morphology, gene expression and function.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hansson, E. Co-cultivation of astroglial and neuronal primary cultures from rat brain. Brain Res. 366, 159–168 (1986).

    Article  CAS  PubMed  Google Scholar 

  93. Swanson, R. A. et al. Neuronal regulation of glutamate transporter subtype expression in astrocytes. J. Neurosci. 17, 932–940 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baxter, P. S. et al. Microglial identity and inflammatory responses are controlled by the combined effects of neurons and astrocytes. Cell Rep. 34, 108882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guttenplan, K. A. et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature 599, 102–107 (2021). Definition of a neurotoxic lipid secreted by the inflammation-induced reactive astrocyte sub-state defined by this group in 2017. This study brought together in vitro, in vivo and multiple omics approaches to define a specific toxic molecule released by astrocytes.

    Article  CAS  PubMed  Google Scholar 

  96. Leng, K. et al. Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease. Nat. Neurosci. 24, 276–287 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Leng, K. et al. CRISPRi screens in human iPSC-derived astrocytes elucidate regulators of distinct inflammatory reactive states. Nat. Neurosci. 25, 1528–1542 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rothstein, J. D. et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Shi, Y. et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549, 523–527 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Park, J. et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat. Neurosci. 21, 941–951 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liang, Y. et al. Upregulation of Alzheimer’s disease amyloid-β protein precursor in astrocytes both in vitro and in vivo. J. Alzheimers Dis. 76, 1071–1082 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, X. et al. Stat3 inhibition attenuates mechanical allodynia through transcriptional regulation of chemokine expression in spinal astrocytes. PLoS ONE 8, e75804 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kucukdereli, H. et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc. Natl Acad. Sci. USA 108, E440–E449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Christopherson, K. S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Allen, N. J. et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486, 410–414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chung, W. S. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394–400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Maragakis, N. J. & Rothstein, J. D. Glutamate transporters: animal models to neurologic disease. Neurobiol. Dis. 15, 461–473 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Sasaki, S., Komori, T. & Iwata, M. Excitatory amino acid transporter 1 and 2 immunoreactivity in the spinal cord in amyotrophic lateral sclerosis. Acta Neuropathol. 100, 138–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. D’Erchia, A. M. et al. Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS. Sci. Rep. 7, 10046 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lee, D. H. et al. Fingolimod effects in neuroinflammation: regulation of astroglial glutamate transporters? PLoS ONE 12, e0171552 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Volterra, A., Liaudet, N. & Savtchouk, I. Astrocyte Ca2+ signalling: an unexpected complexity. Nat. Rev. Neurosci. 15, 327–335 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Nagai, J. et al. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 109, 576–596 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Yu, X., Nagai, J. & Khakh, B. S. Improved tools to study astrocytes. Nat. Rev. Neurosci. 21, 121–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Panattoni, G. et al. Diverse inflammatory threats modulate astrocytes Ca2+ signaling via connexin43 hemichannels in organotypic spinal slices. Mol. Brain 14, 159 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dong, Q. et al. Mechanism and consequence of abnormal calcium homeostasis in Rett syndrome astrocytes. eLife 7, e33417 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Heuser, K. et al. Ca2+ signals in astrocytes facilitate spread of epileptiform activity. Cereb. Cortex 28, 4036–4048 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Jiang, R., Diaz-Castro, B., Looger, L. L. & Khakh, B. S. Dysfunctional calcium and glutamate signaling in striatal astrocytes from Huntington’s disease model mice. J. Neurosci. 36, 3453–3470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shah, D. et al. Astrocyte calcium dysfunction causes early network hyperactivity in Alzheimer’s disease. Cell Rep. 40, 111280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shigetomi, E., Patel, S. & Khakh, B. S. Probing the complexities of astrocyte calcium signaling. Trends Cell Biol. 26, 300–312 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dong, Q. P., He, J. Q. & Chai, Z. Astrocytic Ca2+ waves mediate activation of extrasynaptic NMDA receptors in hippocampal neurons to aggravate brain damage during ischemia. Neurobiol. Dis. 58, 68–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Duffy, S. & MacVicar, B. A. In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. J. Neurosci. 16, 71–81 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xu, Q. et al. Astrocytes contribute to pain gating in the spinal cord. Sci. Adv. 7, eabi6287 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Reichenbach, N. et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer’s disease model. J. Exp. Med. 215, 1649–1663 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Stackhouse, T. L. & Mishra, A. Neurovascular coupling in development and disease: focus on astrocytes. Front. Cell Dev. Biol. 9, 702832 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Cvetkovic, C. et al. Assessing Gq-GPCR-induced human astrocyte reactivity using bioengineered neural organoids. J. Cell Biol. 221, e202107135 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhou, Z., Ikegaya, Y. & Koyama, R. The astrocytic cAMP pathway in health and disease. Int. J. Mol. Sci. 20, 779 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hertz, L. et al. Astrocytic glycogenolysis: mechanisms and functions. Metab. Brain Dis. 30, 317–333 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Gavrilyuk, V. et al. Norepinephrine increases IκBα expression in astrocytes. J. Biol. Chem. 277, 29662–29668 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Ceyzeriat, K., Abjean, L., Carrillo-de Sauvage, M. A., Ben Haim, L. & Escartin, C. The complex STATes of astrocyte reactivity: how are they controlled by the JAK-STAT3 pathway? Neuroscience 330, 205–218 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. LeComte, M. D., Shimada, I. S., Sherwin, C. & Spees, J. L. Notch1-STAT3-ETBR signaling axis controls reactive astrocyte proliferation after brain injury. Proc. Natl Acad. Sci. USA 112, 8726–8731 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hung, C. C. et al. Soluble epoxide hydrolase modulates immune responses in activated astrocytes involving regulation of STAT3 activity. J. Neuroinflammation 16, 123 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Zheng, J. Y. et al. Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer’s disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling. Neurobiol. Aging 54, 112–132 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Wang, J. et al. Astrocyte-derived estrogen regulates reactive astrogliosis and is neuroprotective following ischemic brain injury. J. Neurosci. 40, 9751–9771 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lee, S. H. et al. TREM2-independent oligodendrocyte, astrocyte, and T cell responses to tau and amyloid pathology in mouse models of Alzheimer disease. Cell Rep. 37, 110158 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Kim, H. et al. Reactive astrocytes transduce inflammation in a blood-brain barrier model through a TNFα-STAT3 signaling axis and secretion of alpha 1-antichymotrypsin. Nat. Commun. 3, 6581 (2022).

    Article  Google Scholar 

  137. Lu, T. Y. et al. Axon degeneration induces glial responses through Draper-TRAF4-JNK signalling. Nat. Commun. 8, 14355 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ceyzeriat, K. et al. Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer’s disease. Acta Neuropathol. Commun. 6, 104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Guillemaud, O. et al. Complex roles for reactive astrocytes in the triple transgenic mouse model of Alzheimer disease. Neurobiol. Aging 90, 135–146 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Abjean, L. et al. Reactive astrocytes promote proteostasis in Huntington’s disease through the JAK2-STAT3 pathway. Brain 146, 149–166 (2023).

    Article  PubMed  Google Scholar 

  141. Zamboni, M., Llorens-Bobadilla, E., Magnusson, J. P. & Frisen, J. A widespread neurogenic potential of neocortical astrocytes is induced by injury. Cell Stem Cell 27, 605–617.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Iyer, A. et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS ONE 7, e44789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, C. Y., Yang, S. H. & Tzeng, S. F. MicroRNA-145 as one negative regulator of astrogliosis. Glia 63, 194–205 (2015).

    Article  PubMed  Google Scholar 

  144. Pogue, A. I. et al. Micro RNA-125b (miRNA-125b) function in astrogliosis and glial cell proliferation. Neurosci. Lett. 476, 18–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Jiwaji, Z. et al. Reactive astrocytes acquire neuroprotective as well as deleterious signatures in response to Tau and Ass pathology. Nat. Commun. 13, 135 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Koffie, R. M. et al. Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl Acad. Sci. USA 106, 4012–4017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dong, H., Martin, M. V., Chambers, S. & Csernansky, J. G. Spatial relationship between synapse loss and β-amyloid deposition in Tg2576 mice. J. Comp. Neurol. 500, 311–321 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Xia, M. Q., Bacskai, B. J., Knowles, R. B., Qin, S. X. & Hyman, B. T. Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer’s disease. J. Neuroimmunol. 108, 227–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Sorensen, T. L. et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J. Clin. Invest. 103, 807–815 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Bergen, V., Soldatov, R. A., Kharchenko, P. V. & Theis, F. J. RNA velocity-current challenges and future perspectives. Mol. Syst. Biol. 17, e10282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Brenner, M. et al. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat. Genet. 27, 117–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Serio, A. et al. Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc. Natl Acad. Sci. USA 110, 4697–4702 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hall, C. E. et al. Progressive motor neuron pathology and the role of astrocytes in a human stem cell model of VCP-related ALS. Cell Rep. 19, 1739–1749 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ziff, O. J. et al. Reactive astrocytes in ALS display diminished intron retention. Nucleic Acids Res. 49, 3168–3184 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Taha, D. M. et al. Astrocytes display cell autonomous and diverse early reactive states in familial amyotrophic lateral sclerosis. Brain 145, 481–489 (2022). The first study to show that ALS-associated mutations are sufficient to induce cell-autonomous reactive phenotypes in astrocytes (defined transcriptionally, at the protein level and functionally by an aberrant secretome).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zhao, C. et al. Mutant C9orf72 human iPSC-derived astrocytes cause non-cell autonomous motor neuron pathophysiology. Glia 68, 1046–1064 (2020).

    Article  PubMed  Google Scholar 

  160. Selvaraj, B. T. et al. C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca2+-permeable AMPA receptor-mediated excitotoxicity. Nat. Commun. 9, 347 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Mehta, A. R. et al. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. Acta Neuropathol. 141, 257–279 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Smethurst, P. et al. Distinct responses of neurons and astrocytes to TDP-43 proteinopathy in amyotrophic lateral sclerosis. Brain 143, 430–440 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Smethurst, P., Franklin, H., Clarke, B. E., Sidle, K. & Patani, R. The role of astrocytes in prion-like mechanisms of neurodegeneration. Brain 145, 17–26 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Tcw, J. et al. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell 185, 2213–2233.e25 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Jones, V. C., Atkinson-Dell, R., Verkhratsky, A. & Mohamet, L. Aberrant iPSC-derived human astrocytes in Alzheimer’s disease. Cell Death Dis. 8, e2696 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Oksanen, M. et al. PSEN1 Mutant iPSC-derived model reveals severe astrocyte pathology in Alzheimer’s disease. Stem Cell Rep. 9, 1885–1897 (2017).

    Article  CAS  Google Scholar 

  167. Kondo, T. et al. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12, 487–496 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Lin, Y. T. et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98, 1141–1154.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Booth, H. D. E. et al. RNA sequencing reveals MMP2 and TGFB1 downregulation in LRRK2 G2019S Parkinson’s iPSC-derived astrocytes. Neurobiol. Dis. 129, 56–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. di Domenico, A. et al. Patient-specific iPSC-derived astrocytes contribute to non-cell-autonomous neurodegeneration in Parkinson’s disease. Stem Cell Rep. 12, 213–229 (2019).

    Article  Google Scholar 

  171. Garcia, V. J. et al. Huntington’s disease patient-derived astrocytes display electrophysiological impairments and reduced neuronal support. Front. Neurosci. 13, 669 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Juopperi, T. A. et al. Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol. Brain 5, 17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Franklin, H., Clarke, B. E. & Patani, R. Astrocytes and microglia in neurodegenerative diseases: lessons from human in vitro models. Prog. Neurobiol. 200, 101973 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Brosh, R. et al. A versatile platform for locus-scale genome rewriting and verification. Proc. Natl Acad. Sci. USA 118, e2023952118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhang, W. et al. Mouse genomic rewriting and tailoring: synthetic Trp53 and humanized ACE2. Preprint at bioRxiv https://doi.org/10.1101/2022.06.22.495814 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Agnew-Svoboda, W. et al. A genetic tool for the longitudinal study of a subset of post-inflammatory reactive astrocytes. Cell Rep. Methods 2, 100276 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Yang, Z. et al. Ultrasensitive single extracellular vesicle detection using high throughput droplet digital enzyme-linked immunosorbent assay. Nano Lett. 22, 4315–4324 (2022). Technical advances in labelling and collection enable RNA sequencing of individual cellular components such as single vesicles or mitochondria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Murdock, M. H. & Tsai, L. H. Insights into Alzheimer’s disease from single-cell genomic approaches. Nat. Neurosci. 26, 181–195 (2023).

    Article  CAS  PubMed  Google Scholar 

  179. Gibson, E. M. et al. Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell 176, 43–55.e13 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Hartmann, K. et al. Complement 3+-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta Neuropathol. Commun. 7, 83 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Sterling, J. K. et al. GLP-1 receptor agonist NLY01 reduces retinal inflammation and neuron death secondary to ocular hypertension. Cell Rep. 33, 108271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kim, J. H. et al. Gamma subunit of complement component 8 is a neuroinflammation inhibitor. Brain 144, 528–552 (2021).

    Article  PubMed  Google Scholar 

  183. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  184. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    Article  CAS  PubMed  Google Scholar 

  185. Foster, C. A. et al. Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J. Pharmacol. Exp. Ther. 323, 469–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. Bigaud, M. et al. Siponimod (BAF312) penetrates, distributes, and acts in the central nervous system: preclinical insights. Mult. Scler. J. Exp. Transl. Clin. 7, 20552173211049168 (2021).

    PubMed  Google Scholar 

  187. Bhusal, A. et al. Cathelicidin-related antimicrobial peptide promotes neuroinflammation through astrocyte-microglia communication in experimental autoimmune encephalomyelitis. Glia 70, 1902–1926 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Kim, J. H. et al. Soluble ANPEP released from human astrocytes as a positive regulator of microglial activation and neuroinflammation: brain renin-angiotensin system in astrocyte-microglia crosstalk. Mol. Cell Proteom. 21, 100424 (2022).

    Article  CAS  Google Scholar 

  189. Sun, W. et al. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339, 197–200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhu, Y. et al. Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury. Neurobiol. Dis. 74, 114–125 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Zhu, Y., Soderblom, C., Trojanowsky, M., Lee, D. H. & Lee, J. K. Fibronectin matrix assembly after spinal cord injury. J. Neurotrauma 32, 1158–1167 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Wu, W. et al. Axonal and glial responses to a mid-thoracic spinal cord hemisection in the Macaca fascicularis monkey. J. Neurotrauma 30, 826–839 (2013).

    Article  PubMed  Google Scholar 

  193. Ma, Z. et al. A controlled spinal cord contusion for the rhesus macaque monkey. Exp. Neurol. 279, 261–273 (2016).

    Article  PubMed  Google Scholar 

  194. Ghosh, S. & Hui, S. P. Axonal regeneration in zebrafish spinal cord. Regeneration 5, 43–60 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Labib, D. et al. Proteomic alterations and novel markers of neurotoxic reactive astrocytes in human induced pluripotent stem cell models. Front. Mol. Neurosci. 15, 870085 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Shane A. Liddelow.

Ethics declarations

Competing interests

R.P., G.E.H. and S.A.L. maintain a financial interest in AstronauTx.

Peer review

Peer review information

Nature Reviews Neurology thanks K. Suk, who co-reviewed with A. Bhusal, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patani, R., Hardingham, G.E. & Liddelow, S.A. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat Rev Neurol 19, 395–409 (2023). https://doi.org/10.1038/s41582-023-00822-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00822-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing