Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The noradrenergic subtype of Parkinson disease: from animal models to clinical practice

Abstract

Many advances in understanding the pathophysiology of Parkinson disease (PD) have been based on research addressing its motor symptoms and phenotypes. Various data-driven clinical phenotyping studies supported by neuropathological and in vivo neuroimaging data suggest the existence of distinct non-motor endophenotypes of PD even at diagnosis, a concept further strengthened by the predominantly non-motor spectrum of symptoms in prodromal PD. Preclinical and clinical studies support early dysfunction of noradrenergic transmission in both the CNS and peripheral nervous system circuits in patients with PD that results in a specific cluster of non-motor symptoms, including rapid eye movement sleep behaviour disorder, pain, anxiety and dysautonomia (particularly orthostatic hypotension and urinary dysfunction). Cluster analyses of large independent cohorts of patients with PD and phenotype-focused studies have confirmed the existence of a noradrenergic subtype of PD, which had been previously postulated but not fully characterized. This Review discusses the translational work that unravelled the clinical and neuropathological processes underpinning the noradrenergic PD subtype. Although some overlap with other PD subtypes is inevitable as the disease progresses, recognition of noradrenergic PD as a distinct early disease subtype represents an important advance towards the delivery of personalized medicine for patients with PD.

Key points

  • Parkinson disease (PD) is a phenotypically heterogeneous, multisystem condition that affects the CNS and peripheral nervous system as well as multiple neurotransmitters, rather than a single ‘disease’.

  • PD can present at diagnosis with motor-predominant and non-motor-predominant symptoms.

  • Neuropathological studies, neuroimaging findings and data from animal models suggest that PD with specific non-motor-predominant symptoms is driven by noradrenergic dysfunction in the CNS and peripheral nervous system.

  • Cluster analyses and clinical phenotyping studies confirm the association between PD with specific non-motor-predominant symptoms and noradrenergic dysfunction.

  • The noradrenergic phenotype of PD includes key features of rapid eye movement sleep behaviour disorder and dysautonomia (including orthostatic hypotension and/or urinary dysfunction), pain and anxiety.

  • Formal identification of the noradrenergic phenotype as a clinical subtype of PD would help to define its natural history and promote the development of subtype-specific personalized treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Natural history and subtypes of Parkinson disease.
Fig. 2: Noradrenergic projections in the CNS.
Fig. 3: The noradrenergic synapse.
Fig. 4: Identification of the noradrenergic clinical subtype of PD.

Similar content being viewed by others

References

  1. Dorsey, E. R., Sherer, T., Okun, M. S. & Bloem, B. R. The emerging evidence of the Parkinson pandemic. J. Parkinsons Dis. 8, S3–S8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schapira, A. H. V., Chaudhuri, K. R. & Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 18, 435–450 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Jellinger, K. A. Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov. Disord. 27, 8–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Calne, D. B. Is “Parkinson’s disease” one disease? J. Neurol. Neurosurg. Psychiatry 52, 18–21 (1989).

    Article  PubMed Central  Google Scholar 

  5. Weiner, W. J. There is no Parkinson disease. Arch. Neurol. 65, 705–708 (2008).

    Article  PubMed  Google Scholar 

  6. Titova, N., Padmakumar, C., Lewis, S. J. G. & Chaudhuri, K. R. Parkinson’s: a syndrome rather than a disease? J. Neural Transm. 124, 907–914 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Langston, J. W. The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann. Neurol. 59, 591–596 (2006).

    Article  PubMed  Google Scholar 

  8. Bellucci, A. et al. Review: Parkinson’s disease: from synaptic loss to connectome dysfunction. Neuropathol. Appl. Neurobiol. 42, 77–94 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Berg, D. et al. MDS research criteria for prodromal Parkinson’s disease. Mov. Disord. 30, 1600–1611 (2015).

    Article  PubMed  Google Scholar 

  10. Chaudhuri, K. R., Jenner, P. & Antonini, A. Should there be less emphasis on levodopa-induced dyskinesia in Parkinson’s disease? Mov. Disord. 34, 816–819 (2019).

    Article  PubMed  Google Scholar 

  11. Seppi, K. et al. Update on treatments for nonmotor symptoms of Parkinson’s disease – an evidence-based medicine review. Mov. Disord. 34, 180–198 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601 (2015).

    Article  PubMed  Google Scholar 

  13. Marras, C. & Chaudhuri, K. R. Nonmotor features of Parkinson’s disease subtypes. Mov. Disord. 31, 1095–1102 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Kingsbury, A. E. et al. Brain stem pathology in Parkinson’s disease: an evaluation of the Braak staging model. Mov. Disord. 25, 2508–2515 (2010).

    Article  PubMed  Google Scholar 

  15. Ahmed, S. S., Santosh, W., Kumar, S. & Christlet, H. T. Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection. J. Biomed. Sci. 16, 63 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marras, C. & Lang, A. Parkinson’s disease subtypes: lost in translation. J. Neurol. Neurosurg. Psychiatry 84, 409–415 (2013).

    Article  PubMed  Google Scholar 

  17. Jankovic, J. & Tan, E. K. Parkinson’s disease: etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 91, 795–808 (2020).

    Article  PubMed  Google Scholar 

  18. Goldstein, D. S. & Sharabi, Y. The heart of PD: Lewy body diseases as neurocardiologic disorders. Brain Res. 1702, 74–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Goldstein, D. S. et al. Catechols in post-mortem brain of patients with Parkinson disease. Eur. J. Neurol. 18, 703–710 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Sauerbier, A., Jenner, P., Todorova, A. & Chaudhuri, K. R. Non motor subtypes and Parkinson’s disease. Parkinsonism Relat. Disord. 22, S41–S46 (2016).

    Article  PubMed  Google Scholar 

  21. Tipre, D. N. & Goldstein, D. S. Cardiac and extracardiac sympathetic denervation in Parkinson’s disease with orthostatic hypotension and in pure autonomic failure. J. Nucl. Med. 46, 1775–1781 (2005).

    CAS  PubMed  Google Scholar 

  22. Bohnen, N. I. et al. Cholinergic system changes in Parkinson’s disease: emerging therapeutic approaches. Lancet Neurol. 21, 381–392 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nahimi, A. et al. Noradrenergic deficits in Parkinson disease imaged with 11C-MeNER. J. Nucl. Med. 59, 659–664 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Remy, P., Doder, M., Lees, A., Turjanski, N. & Brooks, D. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 128, 1314–1322 (2005).

    Article  PubMed  Google Scholar 

  25. Pavese, N., Metta, V., Bose, S. K., Chaudhuri, K. R. & Brooks, D. J. Fatigue in Parkinson’s disease is linked to striatal and limbic serotonergic dysfunction. Brain 133, 3434–3443 (2010).

    Article  PubMed  Google Scholar 

  26. Pasquini, J., Brooks, D. J. & Pavese, N. The cholinergic brain in Parkinson’s disease. Mov. Disord. Clin. Pract. 8, 1012–1026 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wilson, H., Giordano, B., Turkheimer, F. E., Chaudhuri, K. R. & Politis, M. Serotonergic dysregulation is linked to sleep problems in Parkinson’s disease. Neuroimage Clin. 18, 630–637 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Erro, R. et al. The heterogeneity of early Parkinson’s disease: a cluster analysis on newly diagnosed untreated patients. PLoS ONE 8, e70244 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mu, J. et al. Parkinson’s disease subtypes identified from cluster analysis of motor and non-motor symptoms. Front. Aging Neurosci. 9, 301 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Espay, A. J., LeWitt, P. A. & Kaufmann, H. Norepinephrine deficiency in Parkinson’s disease: the case for noradrenergic enhancement. Mov. Disord. 29, 1710–1719 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Titova, N. & Chaudhuri, K. R. Personalized medicine in Parkinson’s disease: time to be precise. Mov. Disord. 32, 1147–1154 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Leta, V. et al. Personalised advanced therapies in Parkinson’s disease: the role of non-motor symptoms profile. J. Pers. Med. https://doi.org/10.3390/jpm11080773 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Marras, C., Chaudhuri, K. R., Titova, N. & Mestre, T. A. Therapy of Parkinson’s disease subtypes. Neurotherapeutics 17, 1366–1377 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Greenland, J. C., Williams-Gray, C. H. & Barker, R. A. The clinical heterogeneity of Parkinson’s disease and its therapeutic implications. Eur. J. Neurosci. 49, 328–338 (2019).

    Article  PubMed  Google Scholar 

  35. Ghosh, P. et al. A dual centre study of pain in Parkinson’s disease and its relationship with other non-motor symptoms. J. Parkinsons Dis. 10, 1817–1825 (2020).

    Article  PubMed  Google Scholar 

  36. Matsui, H. et al. Metaiodobenzylguanidine (MIBG) uptake in Parkinson’s disease also decreases at thyroid. Ann. Nucl. Med. 19, 225–229 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Benarroch, E. E. Locus coeruleus. Cell Tissue Res. 373, 221–232 (2018).

    Article  PubMed  Google Scholar 

  38. Blesa, J., Trigo-Damas, I. & Obeso, J. A. Parkinson’s disease and thalamus: facts and fancy. Lancet Neurol. 15, e2 (2016).

    Article  PubMed  Google Scholar 

  39. Pifl, C., Kish, S. J. & Hornykiewicz, O. Thalamic noradrenaline in Parkinson’s disease: deficits suggest role in motor and non-motor symptoms. Mov. Disord. 27, 1618–1624 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zerbi, V. et al. Rapid reconfiguration of the functional connectome after chemogenetic locus coeruleus activation. Neuron 103, 702–718.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Mills, E. P. et al. Brainstem pain-control circuitry connectivity in chronic neuropathic pain. J. Neurosci. 38, 465–473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jacob, S. N. & Nienborg, H. Monoaminergic neuromodulation of sensory processing. Front. Neural Circuits 12, 51 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bylund, D. B. et al. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol. Rev. 46, 121–136 (1994).

    CAS  PubMed  Google Scholar 

  44. Hieble, J. P. et al. International Union of Pharmacology. X. Recommendation for nomenclature of α1-adrenoceptors: consensus update. Pharmacol. Rev. 47, 267–270 (1995).

    CAS  PubMed  Google Scholar 

  45. Zhou, J. Norepinephrine transporter inhibitors and their therapeutic potential. Drugs Future 29, 1235–1244 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abosamak, N. R. & Shahin, M. H. Beta 2 Receptor Agonists/Antagonists (StatPearls, 2023).

  47. German, D. C. et al. Disease-specific patterns of locus coeruleus cell loss. Ann. Neurol. 32, 667–676 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Bertrand, E., Lechowicz, W., Szpak, G. M. & Dymecki, J. Qualitative and quantitative analysis of locus coeruleus neurons in Parkinson’s disease. Folia Neuropathol. 35, 80–86 (1997).

    CAS  PubMed  Google Scholar 

  49. Braak, E. et al. α-Synuclein immunopositive Parkinson’s disease-related inclusion bodies in lower brain stem nuclei. Acta Neuropathol. 101, 195–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Zarow, C., Lyness, S. A., Mortimer, J. A. & Chui, H. C. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch. Neurol. 60, 337–341 (2003).

    Article  PubMed  Google Scholar 

  51. Paulus, W. & Jellinger, K. The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 50, 743–755 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  53. Goldstein, D. S. et al. Differential abnormalities of cerebrospinal fluid dopaminergic versus noradrenergic indices in synucleinopathies. J. Neurochem. 158, 554–568 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huynh, B., Fu, Y., Kirik, D., Shine, J. M. & Halliday, G. M. Comparison of locus coeruleus pathology with nigral and forebrain pathology in Parkinson’s disease. Mov. Disord. 36, 2085–2093 (2021).

    Article  PubMed  Google Scholar 

  55. Antonini, A. et al. The progression of non-motor symptoms in Parkinson’s disease and their contribution to motor disability and quality of life. J. Neurol. 259, 2621–2631 (2012).

    Article  PubMed  Google Scholar 

  56. Fereshtehnejad, S. M. et al. New clinical subtypes of Parkinson disease and their longitudinal progression: a prospective cohort comparison with other phenotypes. JAMA Neurol. 72, 863–873 (2015).

    Article  PubMed  Google Scholar 

  57. Isonaka, R., Sullivan, P. & Goldstein, D. S. Pathophysiological significance of increased α-synuclein deposition in sympathetic nerves in Parkinson’s disease: a post-mortem observational study. Transl. Neurodegener. 11, 15 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Todorova, A., Jenner, P. & Chaudhuri, K. R. Non-motor Parkinson’s: integral to motor Parkinson’s, yet often neglected. Pract. Neurol. 14, 310–322 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Coughlin, D. G., Hurtig, H. I. & Irwin, D. J. Pathological influences on clinical heterogeneity in Lewy body diseases. Mov. Disord. 35, 5–19 (2020).

    Article  PubMed  Google Scholar 

  60. Priovoulos, N. et al. High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T. Neuroimage 168, 427–436 (2018).

    Article  PubMed  Google Scholar 

  61. Betts, M. J. et al. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 142, 2558–2571 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. García-Lorenzo, D. et al. The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson’s disease. Brain 136, 2120–2129 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kinnerup, M. B. et al. Preserved noradrenergic function in Parkinson’s disease patients with rest tremor. Neurobiol. Dis. 152, 105295 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Sommerauer, M. et al. Evaluation of the noradrenergic system in Parkinson’s disease: an 11C-MeNER PET and neuromelanin MRI study. Brain 141, 496–504 (2018).

    Article  PubMed  Google Scholar 

  65. Knudsen, K. et al. In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case–control study. Lancet Neurol. 17, 618–628 (2018).

    Article  PubMed  Google Scholar 

  66. Horsager, J. et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case–control study. Brain 143, 3077–3088 (2020).

    Article  PubMed  Google Scholar 

  67. Doppler, C. E. J. et al. Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson’s disease. Brain 144, 2732–2744 (2021).

    Article  PubMed  Google Scholar 

  68. Doppler, C. E. J. et al. Microsleep disturbances are associated with noradrenergic dysfunction in Parkinson’s disease. Sleep https://doi.org/10.1093/sleep/zsab040 (2021).

    Article  PubMed  Google Scholar 

  69. Ye, R. et al. Locus coeruleus integrity from 7 T MRI relates to apathy and cognition in parkinsonian disorders. Mov. Disord. https://doi.org/10.1002/mds.29072 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Madelung, C. F. et al. Locus coeruleus shows a spatial pattern of structural disintegration in Parkinson’s disease. Mov. Disord. 37, 479–489 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Janzen, A. et al. Rapid eye movement sleep behavior disorder: abnormal cardiac image and progressive abnormal metabolic brain pattern. Mov. Disord. 37, 624–629 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Nagayama, H., Hamamoto, M., Ueda, M., Nagashima, J. & Katayama, Y. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 76, 249–251 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goldstein, D. S., Holmes, C., Cannon, R. O. III, Eisenhofer, G. & Kopin, I. J. Sympathetic cardioneuropathy in dysautonomias. N. Engl. J. Med. 336, 696–702 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Saiki, S. et al. Cardiac 123I-MIBG scintigraphy can assess the disease severity and phenotype of PD. J. Neurol. Sci. 220, 105–111 (2004).

    Article  PubMed  Google Scholar 

  75. Goldstein, D. S. & Cheshire, W. P. Jr Roles of cardiac sympathetic neuroimaging in autonomic medicine. Clin. Auton. Res. 28, 397–410 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Halliday, G. M. & Stevens, C. H. Glia: initiators and progressors of pathology in Parkinson’s disease. Mov. Disord. 26, 6–17 (2011).

    Article  PubMed  Google Scholar 

  77. Mollenhauer, B. et al. Nonmotor and diagnostic findings in subjects with de novo Parkinson disease of the DeNoPa cohort. Neurology 81, 1226–1234 (2013).

    Article  PubMed  Google Scholar 

  78. Zis, P., Erro, R., Walton, C. C., Sauerbier, A. & Chaudhuri, K. R. The range and nature of non-motor symptoms in drug-naive Parkinson’s disease patients: a state-of-the-art systematic review. NPJ Parkinsons Dis. 1, 15013 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pont-Sunyer, C. et al. The onset of nonmotor symptoms in Parkinson’s disease (the ONSET PD study). Mov. Disord. 30, 229–237 (2015).

    Article  PubMed  Google Scholar 

  80. van Rooden, S. M. et al. Clinical subtypes of Parkinson’s disease. Mov. Disord. 26, 51–58 (2011).

    Article  PubMed  Google Scholar 

  81. Rodriguez-Sanchez, F. et al. Identifying Parkinson’s disease subtypes with motor and non-motor symptoms via model-based multi-partition clustering. Sci. Rep. 11, 23645 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. MacQueen, J.B. Some methods for classification and analysis of multivariate observations. In Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability (eds Le Cam, L. M. & Neyman, J.) 281–297 (Univ. California Press, 1967).

  83. Lazarsfeld, P. F. & Henry, N. W. in The American Soldier vol. 4: Measurement and Prediction (Houghton Mifflin, 1968).

  84. Gordon, A. D. A review of hierarchical classification. J. R. Stat. Soc. A 150, 119–137 (1987).

    Article  Google Scholar 

  85. Warren, J. D. et al. Molecular nexopathies: a new paradigm of neurodegenerative disease. Trends Neurosci. 36, 561–569 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. van de Berg, W. D. et al. Patterns of α-synuclein pathology in incidental cases and clinical subtypes of Parkinson’s disease. Parkinsonism Relat. Disord. 18, S28–S30 (2012).

    Article  PubMed  Google Scholar 

  87. Adler, C. H. & Beach, T. G. Neuropathological basis of nonmotor manifestations of Parkinson’s disease. Mov. Disord. 31, 1114–1119 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ahlskog, J. E. Challenging conventional wisdom: the etiologic role of dopamine oxidative stress in Parkinson’s disease. Mov. Disord. 20, 271–282 (2005).

    Article  PubMed  Google Scholar 

  89. van Wamelen, D. J. et al. Cross-sectional analysis of the Parkinson’s Disease Non-motor International Longitudinal Study baseline non-motor characteristics, geographical distribution and impact on quality of life. Sci. Rep. 11, 9611 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Williams-Gray, C. H. et al. The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the Campaign cohort. Brain 132, 2958–2969 (2009).

    Article  PubMed  Google Scholar 

  91. Weintraub, D. et al. Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Mov. Disord. 30, 919–927 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Szeto, J. Y. et al. The relationships between mild cognitive impairment and phenotype in Parkinson’s disease. NPJ Parkinsons Dis. 1, 15015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Aarsland, D. et al. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Prim. 7, 47 (2021).

    Article  PubMed  Google Scholar 

  94. Mizutani, Y. et al. Hyposmia and cardiovascular dysautonomia correlatively appear in early-stage Parkinson’s disease. Parkinsonism Relat. Disord. 20, 520–524 (2014).

    Article  PubMed  Google Scholar 

  95. Kim, J. S. et al. Orthostatic hypotension and cardiac sympathetic denervation in Parkinson disease patients with REM sleep behavioral disorder. J. Neurol. Sci. 362, 59–63 (2016).

    Article  PubMed  Google Scholar 

  96. Rizos, A. et al. Characterizing motor and non-motor aspects of early-morning off periods in Parkinson’s disease: an international multicenter study. Parkinsonism Relat. Disord. 20, 1231–1235 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Goldstein, D. S., Holmes, C., Sharabi, Y. & Wu, T. Survival in synucleinopathies: a prospective cohort study. Neurology 85, 1554–1561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kaufmann, H. et al. Natural history of pure autonomic failure: a United States prospective cohort. Ann. Neurol. 81, 287–297 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Fearon, C., Lang, A. E. & Espay, A. J. The logic and pitfalls of Parkinson’s disease as “brain-first” versus “body-first” subtypes. Mov. Disord. 36, 594–598 (2021).

    Article  PubMed  Google Scholar 

  100. Ross, S. B. & Stenfors, C. DSP4, a selective neurotoxin for the locus coeruleus noradrenergic system. A review of its mode of action. Neurotox. Res. 27, 15–30 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Srinivasan, J. & Schmidt, W. J. Potentiation of parkinsonian symptoms by depletion of locus coeruleus noradrenaline in 6-hydroxydopamine-induced partial degeneration of substantia nigra in rats. Eur. J. Neurosci. 17, 2586–2592 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Li, Y. et al. Investigation of behavioral dysfunctions induced by monoamine depletions in a mouse model of Parkinson’s disease. Front. Cell Neurosci. 12, 241 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Schintu, N., Zhang, X. & Svenningsson, P. Studies of depression-related states in animal models of Parkinsonism. J. Parkinsons Dis. 2, 87–106 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Delaville, C. et al. Emerging dysfunctions consequent to combined monoaminergic depletions in Parkinsonism. Neurobiol. Dis. 45, 763–773 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Hauser, J., Sontag, T. A., Tucha, O. & Lange, K. W. The effects of the neurotoxin DSP4 on spatial learning and memory in Wistar rats. ADHD Atten. Deficit Hyperactivity Disord. 4, 93–99 (2012).

    Article  Google Scholar 

  106. Song, S. et al. Noradrenergic dysfunction accelerates LPS-elicited inflammation-related ascending sequential neurodegeneration and deficits in non-motor/motor functions. Brain Behav. Immun. 81, 374–387 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Paredes-Rodriguez, E., Vegas-Suarez, S., Morera-Herreras, T., De Deurwaerdere, P. & Miguelez, C. The noradrenergic system in Parkinson’s disease. Front. Pharmacol. 11, 435 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Delaville, C., Deurwaerdère, P. D. & Benazzouz, A. Noradrenaline and Parkinson’s disease. Front. Syst. Neurosci. 5, 31 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kucharczyk, M. W., Di Domenico, F. & Bannister, K. Distinct brainstem to spinal cord noradrenergic pathways inversely regulate spinal neuronal activity. Brain 145, 2293–2300 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chesselet, M. F. et al. A progressive mouse model of Parkinson’s disease: the Thy1-aSyn (“Line 61”) mice. Neurotherapeutics 9, 297–314 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McDowell, K. A., Shin, D., Roos, K. P. & Chesselet, M. F. Sleep dysfunction and EEG alterations in mice overexpressing α-synuclein. J. Parkinsons Dis. 4, 531–539 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Hallett, P. J., McLean, J. R., Kartunen, A., Langston, J. W. & Isacson, O. α-Synuclein overexpressing transgenic mice show internal organ pathology and autonomic deficits. Neurobiol. Dis. 47, 258–267 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sotiriou, E., Vassilatis, D. K., Vila, M. & Stefanis, L. Selective noradrenergic vulnerability in α-synuclein transgenic mice. Neurobiol. Aging 31, 2103–2114 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Henrich, M. T. et al. A53T-α-synuclein overexpression in murine locus coeruleus induces Parkinson’s disease-like pathology in neurons and glia. Acta Neuropathol. Commun. 6, 39 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Butkovich, L. M. et al. Transgenic mice expressing human α-synuclein in noradrenergic neurons develop locus ceruleus pathology and nonmotor features of Parkinson’s disease. J. Neurosci. 40, 7559–7576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hunsley, M. S. & Palmiter, R. D. Norepinephrine-deficient mice exhibit normal sleep-wake states but have shorter sleep latency after mild stress and low doses of amphetamine. Sleep 26, 521–526 (2003).

    PubMed  Google Scholar 

  117. Kim, S. et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103, 627–641.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jovanovic, P. et al. Sustained chemogenetic activation of locus coeruleus norepinephrine neurons promotes dopaminergic neuron survival in synucleinopathy. PLoS ONE 17, e0263074 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Giorgi, F. S. et al. Locus coeruleus modulates neuroinflammation in parkinsonism and dementia. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21228630 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Taylor, T. N. et al. Nonmotor symptoms of Parkinson’s disease revealed in an animal model with reduced monoamine storage capacity. J. Neurosci. 29, 8103–8113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cui, K. et al. Restoration of noradrenergic function in Parkinson’s disease model mice. ASN Neuro 13, 17590914211009730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Taylor, N. L. et al. The contribution of noradrenergic activity to anxiety-induced freezing of gait. Mov. Disord. 37, 1432–1443 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chaudhuri, K. R., Titova, N., Qamar, M. A., Murășan, I. & Falup-Pecurariu, C. The dashboard vitals of Parkinson’s: not to be missed yet an unmet need. J. Pers. Med. 12, 1994 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hely, M. A., Reid, W. G., Adena, M. A., Halliday, G. M. & Morris, J. G. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov. Disord. 23, 837–844 (2008).

    Article  PubMed  Google Scholar 

  125. Halliday, G. M., Leverenz, J. B., Schneider, J. S. & Adler, C. H. The neurobiological basis of cognitive impairment in Parkinson’s disease. Mov. Disord. 29, 634–650 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Goodall, M., Kirshner, N. & Rosen, L. Metabolism of noradrenaline in the human. J. Clin. Invest. 38, 707–714 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The views expressed are those of the authors and not necessarily those of the UK National Health Service (NHS), National Institutes of Health Research (NIHR) or the Department of Health. The authors acknowledge the support of the International Parkinson and Movement Disorder Society Non-Motor PD Study Group, the NIHR London South Clinical Research Network and the NIHR Biomedical Research Centre. The authors’ independent collaborative research is part funded by the NIHR Biomedical Research Centre at South London, Maudsley NHS Foundation Trust and King’s College London. P.S. is supported by the John and Lucille Van Geest Foundation. K.R.C. is supported by NIHR Biomedical Research Centre at South London, Maudsley NHS Foundation Trust and King’s College London and the Parkinson Foundation, USA.

Author information

Authors and Affiliations

Authors

Contributions

K.R.C. conceived and designed this work. All authors wrote the first draft of the manuscript, contributed to discussions of the article content and critical review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to K. Ray Chaudhuri.

Ethics declarations

Competing interests

K.R.C. declares that he has received honoraria for advisory board membership from 4D Pharma, AbbVie, Acadia, Britannia, Global kinetics (GKC), Lobsor, Profile Pharma, Roche, Scion, Stada, Synovion, Therevance, UCB and Zambon; speaker’s honoraria for lectures from AbbVie, Bial, Boeringer Ingelheim, Britannia, Kyowa Kirin, Novartis, SK Pharma, UCB, and Zambon; investigator initiated research grants from AbbVie, Bial; Britannia, UCB, Global Kinetics; and academic grant funding from EU Horizon 2020, Parkinson’s UK, Wellcome Trust, Kirby Laing Foundation and the Medical Research Council; royalty payments or license fees from Oxford University Press, and Cambridge University Press, MAPI institute (King’s Parkinson Disease Pain Scale (KPPS) and Parkinson Disease Sleep Scale 2 (PDSS-2)); and payment for expert testimony from the General Medical Council unrelated to the submitted work. V.L. declares that she has received grants and/or honoraria for speaker-related activities from Abbvie, Bial, Britannia Pharmaceuticals, Invisio, Profile and UCB unrelated to the submitted work. P.S. declares that he has received honoraria for advisory board membership from AbbVie, Kyowa Kirin and Takeda; honoraria for lectures from AbbVie and Zambon; and academic grants from, Lexa International/Nordstjernan, Michael J. Fox Foundation, Stockholm City Council and Wallenberg Clinical Scholarship unrelated to the submitted work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Daniela Berg and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray Chaudhuri, K., Leta, V., Bannister, K. et al. The noradrenergic subtype of Parkinson disease: from animal models to clinical practice. Nat Rev Neurol 19, 333–345 (2023). https://doi.org/10.1038/s41582-023-00802-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00802-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing