Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pain-resolving immune mechanisms in neuropathic pain

Abstract

Interactions between the immune and nervous systems are of central importance in neuropathic pain, a common and debilitating form of chronic pain caused by a lesion or disease affecting the somatosensory system. Our understanding of neuroimmune interactions in pain research has advanced considerably. Initially considered as passive bystanders, then as culprits in the pathogenesis of neuropathic pain, immune responses in the nervous system are now established to underpin not only the initiation and progression of pain but also its resolution. Indeed, immune cells and their mediators are well-established promoters of neuroinflammation at each level of the neural pain pathway that contributes to pain hypersensitivity. However, emerging evidence indicates that specific subtypes of immune cells (including antinociceptive macrophages, pain-resolving microglia and T regulatory cells) as well as immunoresolvent molecules and modulators of the gut microbiota–immune system axis can reduce the pain experience and contribute to the resolution of neuropathic pain. This Review provides an overview of the immune mechanisms responsible for the resolution of neuropathic pain, including those involved in innate, adaptive and meningeal immunity as well as interactions with the gut microbiome. Specialized pro-resolving mediators and therapeutic approaches that target these neuroimmune mechanisms are also discussed.

Key points

  • Accumulating evidence indicates that subpopulations of immune cells and mediators help to suppress nociception and promote the resolution of neuropathic pain.

  • Pain-resolving immune cells infiltrate the peripheral nervous system following nerve damage, inhibit pronociceptive immune or glial cells, and dampen primary afferent excitability via the release of anti-inflammatory cytokines and opioids.

  • Pain-resolving meningeal immune cells and resident spinal cord microglia suppress central sensitization by inhibiting pronociceptive reactive glial cells and neuronal hyperexcitability.

  • Gut microbiota production of bile acids and butyrate, and restoration of a dysbiotic gut microbiome with probiotics, antibiotics or faecal microbiota transplantation, promote pain resolution by modulating neuroimmune signalling pathways.

  • Specialized pro-resolving mediators regulate glial reactivity and inflammatory signalling and modulate primary nociceptive neuronal activity by acting on transient receptor potential channels and G protein-coupled receptors.

  • Current treatments for neuropathic pain have limited efficacy; novel therapeutic approaches that target pain-resolving neuroimmune mechanisms provide exciting new avenues to treat neuropathic pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interactions between nociceptive neurons and pain-resolving immune cells in peripheral nerves and DRG.
Fig. 2: Interactions between nociceptive neurons and pain-resolving immune cells in the spinal cord and meninges.
Fig. 3: Gut microbiota and pain resolution.
Fig. 4: Biosynthesis of SPMs and receptor signalling pathways.

Similar content being viewed by others

References

  1. Austin, P. J. & Moalem-Taylor, G. The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J. Neuroimmunol. 229, 26–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Grace, P. M., Hutchinson, M. R., Maier, S. F. & Watkins, L. R. Pathological pain and the neuroimmune interface. Nat. Rev. Immunol. 14, 217–231 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moalem, G. & Tracey, D. J. Immune and inflammatory mechanisms in neuropathic pain. Brain Res. Rev. 51, 240–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Watkins, L. R. & Maier, S. F. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol. Rev. 82, 981–1011 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Kuner, R. Central mechanisms of pathological pain. Nat. Med. 16, 1258–1266 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Mogil, J. S. Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat. Rev. Neurosci. 21, 353–365 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Cohen, S. P., Vase, L. & Hooten, W. M. Chronic pain: an update on burden, best practices, and new advances. Lancet 397, 2082–2097 (2021).

    Article  PubMed  Google Scholar 

  8. Raja, S. N. et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain 161, 1976–1982 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Attal, N. et al. Neuropathic pain: are there distinct subtypes depending on the aetiology or anatomical lesion? Pain 138, 343–353 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Finnerup, N. B., Kuner, R. & Jensen, T. S. Neuropathic pain: from mechanisms to treatment. Physiol. Rev. 101, 259–301 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. van Hecke, O., Austin, S. K., Khan, R. A., Smith, B. H. & Torrance, N. Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain 155, 654–662 (2014).

    Article  PubMed  Google Scholar 

  12. Colloca, L. et al. Neuropathic pain. Nat. Rev. Dis. Prim. 3, 17002 (2017).

    Article  PubMed  Google Scholar 

  13. Nicholson, B. & Verma, S. Comorbidities in chronic neuropathic pain. Pain Med. 5 (Suppl. 1), S9–S27 (2004).

    Article  PubMed  Google Scholar 

  14. Doth, A. H., Hansson, P. T., Jensen, M. P. & Taylor, R. S. The burden of neuropathic pain: a systematic review and meta-analysis of health utilities. Pain 149, 338–344 (2010).

    Article  PubMed  Google Scholar 

  15. Dyer, O. US opioid epidemic: FDA demands studies of whether opioids do control chronic pain. BMJ 364, l959 (2019).

    Article  PubMed  Google Scholar 

  16. Martel, M. O. et al. Self-reports of medication side effects and pain-related activity interference in patients with chronic pain: a longitudinal cohort study. Pain 156, 1092–1100 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Louveau, A., Harris, T. H. & Kipnis, J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 36, 569–577 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Croese, T., Castellani, G. & Schwartz, M. Immune cell compartmentalization for brain surveillance and protection. Nat. Immunol. 22, 1083–1092 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Ellis, A. & Bennett, D. L. Neuroinflammation and the generation of neuropathic pain. Br. J. Anaesth. 111, 26–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Austin, P. J., Kim, C. F., Perera, C. J. & Moalem-Taylor, G. Regulatory T cells attenuate neuropathic pain following peripheral nerve injury and experimental autoimmune neuritis. Pain 153, 1916–1931 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Bonomo, R. R. et al. Fecal transplantation and butyrate improve neuropathic pain, modify immune cell profile, and gene expression in the PNS of obese mice. Proc. Natl Acad. Sci. USA 117, 26482–26493 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davoli-Ferreira, M. et al. Regulatory T cells counteract neuropathic pain through inhibition of the Th1 response at the site of peripheral nerve injury. Pain 161, 1730–1743 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Duffy, S. S. et al. Regulatory T cells and their derived cytokine, interleukin-35, reduce pain in experimental autoimmune encephalomyelitis. J. Neurosci. 39, 2326–2346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fischer, R. et al. TNFR2 promotes Treg-mediated recovery from neuropathic pain across sexes. Proc. Natl Acad. Sci. USA 116, 17045–17050 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuhn, J. A. et al. Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female mice. eLife 10, 69056 (2021).

    Article  Google Scholar 

  26. Niehaus, J. K., Taylor-Blake, B., Loo, L., Simon, J. M. & Zylka, M. J. Spinal macrophages resolve nociceptive hypersensitivity after peripheral injury. Neuron 109, 1274–1282.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh, S. K. et al. CD8+ T cell-derived IL-13 increases macrophage IL-10 to resolve neuropathic pain. JCI Insight 7, 154194 (2022).

    Article  Google Scholar 

  28. Kohno, K. et al. A spinal microglia population involved in remitting and relapsing neuropathic pain. Science 376, 86–90 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Moore, R. A., Chi, C. C., Wiffen, P. J., Derry, S. & Rice, A. S. Oral nonsteroidal anti-inflammatory drugs for neuropathic pain. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD010902.pub2 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Parisien, M. et al. Acute inflammatory response via neutrophil activation protects against the development of chronic pain. Sci. Transl. Med. 14, eabj9954 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Brack, A. et al. Control of inflammatory pain by chemokine-mediated recruitment of opioid-containing polymorphonuclear cells. Pain 112, 229–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Rittner, H. L. et al. Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils. PLoS Pathog. 5, e1000362 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Davies, A. J. et al. Natural killer cells degenerate intact sensory afferents following nerve injury. Cell 176, 716–728.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xie, W., Strong, J. A. & Zhang, J. M. Active nerve regeneration with failed target reinnervation drives persistent neuropathic pain. eNeuro https://doi.org/10.1523/ENEURO.0008-17.2017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gao, Y. H. et al. NK cells mediate the cumulative analgesic effect of electroacupuncture in a rat model of neuropathic pain. BMC Complement. Altern. Med. 14, 316 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lassen, J. et al. Protective role of natural killer cells in neuropathic pain conditions. Pain 162, 2366–2375 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Davidson, S. et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21, 704–717 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, S. et al. Fibroblastic SMOC2 suppresses mechanical nociception by inhibiting coupled activation of primary sensory neurons. J. Neurosci. 42, 4069–4086 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soderblom, C. et al. Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J. Neurosci. 33, 13882–13887 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kobayashi, D., Kiguchi, N., Saika, F., Kishioka, S. & Matsuzaki, S. Insufficient efferocytosis by M2-like macrophages as a possible mechanism of neuropathic pain induced by nerve injury. Biochem. Biophys. Res. Commun. 525, 216–223 (2020).

    Article  CAS  Google Scholar 

  41. Takahashi, Y., Hasegawa-Moriyama, M., Sakurai, T. & Inada, E. The macrophage-mediated effects of the peroxisome proliferator-activated receptor-γ agonist rosiglitazone attenuate tactile allodynia in the early phase of neuropathic pain development. Anesth. Analg. 113, 398–404 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Celik, M. O., Labuz, D., Keye, J., Glauben, R. & Machelska, H. IL-4 induces M2 macrophages to produce sustained analgesia via opioids. JCI Insight 5, 133093 (2020).

    Article  PubMed  Google Scholar 

  43. Kiguchi, N. et al. Peripheral interleukin-4 ameliorates inflammatory macrophage-dependent neuropathic pain. Pain 156, 684–693 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Labuz, D., Celik, M. O., Seitz, V. & Machelska, H. Interleukin-4 induces the release of opioid peptides from M1 macrophages in pathological pain. J. Neurosci. 41, 2870–2882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pannell, M. et al. Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides. J. Neuroinflammation 13, 262 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Iwai, H. et al. Tissue-resident M2 macrophages directly contact primary sensory neurons in the sensory ganglia after nerve injury. J. Neuroinflammation 18, 227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tonello, R. et al. Local sympathectomy promotes anti-inflammatory responses and relief of paclitaxel-induced mechanical and cold allodynia in mice. Anesthesiology 132, 1540–1553 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Kong, F. et al. PD-L1 improves motor function and alleviates neuropathic pain in male mice after spinal cord injury by inhibiting MAPK pathway. Front. Immunol. 12, 670646 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van der Vlist, M. et al. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron 110, 613–626.e9 (2022).

    Article  PubMed  Google Scholar 

  50. Lim, T. K., Rone, M. B., Lee, S., Antel, J. P. & Zhang, J. Mitochondrial and bioenergetic dysfunction in trauma-induced painful peripheral neuropathy. Mol. Pain 11, 58 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Luo, X. et al. Macrophage Toll-like receptor 9 contributes to chemotherapy-induced neuropathic pain in male mice. J. Neurosci. 39, 6848–6864 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Luo, X. et al. IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron 109, 2691–2706.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saika, F. et al. Chemogenetic regulation of CX3CR1-expressing microglia using Gi-DREADD exerts sex-dependent anti-allodynic effects in mouse models of neuropathic pain. Front. Pharmacol. 11, 925 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sorge, R. E. et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 18, 1081–1083 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun, J. S. et al. Minocycline attenuates pain by inhibiting spinal microglia activation in diabetic rats. Mol. Med. Rep. 12, 2677–2682 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Fiore, N. T. et al. Sex-specific transcriptome of spinal microglia in neuropathic pain due to peripheral nerve injury. Glia 70, 675–696 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Tansley, S. et al. Single-cell RNA sequencing reveals time- and sex-specific responses of spinal cord microglia to peripheral nerve injury and links ApoE to neuropathic pain. Nat. Commun. 13, 843 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vacca, V. et al. Higher pain perception and lack of recovery from neuropathic pain in females: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Pain 155, 388–402 (2014).

    Article  PubMed  Google Scholar 

  59. Romero-Sandoval, A., Nutile-McMenemy, N. & DeLeo, J. A. Spinal microglial and perivascular cell cannabinoid receptor type 2 activation reduces behavioral hypersensitivity without tolerance after peripheral nerve injury. Anesthesiology 108, 722–734 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Huo, W. et al. Dehydrocorydaline attenuates bone cancer pain by shifting microglial M1/M2 polarization toward the M2 phenotype. Mol. Pain 14, 1744806918781733 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Burke, N. N., Kerr, D. M., Moriarty, O., Finn, D. P. & Roche, M. Minocycline modulates neuropathic pain behaviour and cortical M1-M2 microglial gene expression in a rat model of depression. Brain Behav. Immun. 42, 147–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Jin, J. et al. M2-Like microglia polarization attenuates neuropathic pain associated with Alzheimer’s disease. J. Alzheimers Dis. 76, 1255–1265 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Duffy, S. S., Hayes, J. P., Fiore, N. T. & Moalem-Taylor, G. The cannabinoid system and microglia in health and disease. Neuropharmacology 190, 108555 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Wu, J., Hocevar, M., Bie, B., Foss, J. F. & Naguib, M. Cannabinoid type 2 receptor system modulates paclitaxel-induced microglial dysregulation and central sensitization in rats. J. Pain 20, 501–514 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Dos Santos, R. S. et al. Involvement of spinal cannabinoid CB2 receptors in exercise-induced antinociception. Neuroscience 418, 177–188 (2019).

    Article  PubMed  Google Scholar 

  66. Wu, H. Y., Mao, X. F., Fan, H. & Wang, Y. X. p38β mitogen-activated protein kinase signaling mediates exenatide-stimulated microglial β-endorphin expression. Mol. Pharmacol. 91, 451–463 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Li, T. F., Wu, H. Y., Wang, Y. R., Li, X. Y. & Wang, Y. X. Molecular signaling underlying bulleyaconitine A (BAA)-induced microglial expression of prodynorphin. Sci. Rep. 7, 45056 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu, H. Y. et al. Spinal interleukin-10 produces antinociception in neuropathy through microglial β-endorphin expression, separated from antineuroinflammation. Brain Behav. Immun. 73, 504–519 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Wu, H. Y., Tang, X. Q., Mao, X. F. & Wang, Y. X. Autocrine interleukin-10 mediates glucagon-like peptide-1 receptor-induced spinal microglial β-endorphin expression. J. Neurosci. 37, 11701–11714 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tang, X., Wu, H., Mao, X., Li, X. & Wang, Y. The GLP-1 receptor herbal agonist morroniside attenuates neuropathic pain via spinal microglial expression of IL-10 and β-endorphin. Biochem. Biophys. Res. Commun. 530, 494–499 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Apryani, E. et al. The spinal microglial IL-10/β-endorphin pathway accounts for cinobufagin-induced mechanical antiallodynia in bone cancer pain following activation of α7-nicotinic acetylcholine receptors. J. Neuroinflammation 17, 75 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ali, U. et al. Low frequency electroacupuncture alleviates neuropathic pain by activation of spinal microglial IL-10/β-endorphin pathway. Biomed. Pharmacother. 125, 109898 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Mao, X. F. et al. Activation of GPR40 produces mechanical antiallodynia via the spinal glial interleukin-10/β-endorphin pathway. J. Neuroinflammation 16, 84 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ma, L. et al. Spinal microglial β-endorphin signaling mediates IL-10 and exenatide-induced inhibition of synaptic plasticity in neuropathic pain. CNS Neurosci. Ther. 27, 1157–1172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shoaib, R. M., Ahmad, K. A. & Wang, Y. X. Protopanaxadiol alleviates neuropathic pain by spinal microglial dynorphin A expression following glucocorticoid receptor activation. Br. J. Pharmacol. 178, 2976–2997 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Okutani, H., Yamanaka, H., Kobayashi, K., Okubo, M. & Noguchi, K. Recombinant interleukin-4 alleviates mechanical allodynia via injury-induced interleukin-4 receptor α in spinal microglia in a rat model of neuropathic pain. Glia 66, 1775–1787 (2018).

    Article  PubMed  Google Scholar 

  77. Ji, R. R., Chamessian, A. & Zhang, Y. Q. Pain regulation by non-neuronal cells and inflammation. Science 354, 572–577 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fiore, N. T. & Austin, P. J. Are the emergence of affective disturbances in neuropathic pain states contingent on supraspinal neuroinflammation? Brain Behav. Immun. 56, 397–411 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Moalem, G., Xu, K. & Yu, L. T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience 129, 767–777 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Leger, T., Grist, J., D’Acquisto, F., Clark, A. K. & Malcangio, M. Glatiramer acetate attenuates neuropathic allodynia through modulation of adaptive immune cells. J. Neuroimmunol. 234, 19–26 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Labuz, D., Schreiter, A., Schmidt, Y., Brack, A. & Machelska, H. T lymphocytes containing β-endorphin ameliorate mechanical hypersensitivity following nerve injury. Brain Behav. Immun. 24, 1045–1053 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Xu, Z. et al. Pain relief dependent on IL-17-CD4+ T cell-β-endorphin axis in rat model of brachial plexus root avulsion after electroacupuncture therapy. Front. Neurosci. 14, 596780 (2020).

    Article  PubMed  Google Scholar 

  83. Lees, J. G., Duffy, S. S., Perera, C. J. & Moalem-Taylor, G. Depletion of Foxp3+ regulatory T cells increases severity of mechanical allodynia and significantly alters systemic cytokine levels following peripheral nerve injury. Cytokine 71, 207–214 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Chen, H. et al. Exploring the correlation between the regulation of macrophages by regulatory t cells and peripheral neuropathic pain. Front. Neurosci. 16, 813751 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Liu, X. J. et al. Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through MyD88 adapter. Cell Res. 24, 1374–1377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hu, R., Zhang, J., Liu, X., Huang, D. & Cao, Y. Q. Low-dose interleukin-2 and regulatory T cell treatments attenuate punctate and dynamic mechanical allodynia in a mouse model of sciatic nerve injury. J. Pain Res. 14, 893–906 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Heyn, J. et al. miR-124a and miR-155 enhance differentiation of regulatory T cells in patients with neuropathic pain. J. Neuroinflammation 13, 248 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Luchting, B. et al. Anti-inflammatory T-cell shift in neuropathic pain. J. Neuroinflammation 12, 12 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Xing, Q., Hu, D., Shi, F. & Chen, F. Role of regulatory T cells in patients with acute herpes zoster and relationship to postherpetic neuralgia. Arch. Dermatol. Res. 305, 715–722 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Moalem-Taylor, G. et al. Immune dysregulation in patients with carpal tunnel syndrome. Sci. Rep. 7, 8218 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Saligrama, N. et al. Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature 572, 481–487 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Krukowski, K. et al. CD8+ T cells and endogenous IL-10 are required for resolution of chemotherapy-induced neuropathic pain. J. Neurosci. 36, 11074–11083 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Laumet, G., Edralin, J. D., Dantzer, R., Heijnen, C. J. & Kavelaars, A. Cisplatin educates CD8+ T cells to prevent and resolve chemotherapy-induced peripheral neuropathy in mice. Pain 160, 1459–1468 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kaufmann, I. et al. Lymphocyte subsets and the role of TH1/TH2 balance in stressed chronic pain patients. Neuroimmunomodulation 14, 272–280 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Lopes, D. M. et al. Sex differences in peripheral not central immune responses to pain-inducing injury. Sci. Rep. 7, 16460 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rosen, S. F. et al. T-cell mediation of pregnancy analgesia affecting chronic pain in mice. J. Neurosci. 37, 9819–9827 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cao, L. & DeLeo, J. A. CNS-infiltrating CD4+ T lymphocytes contribute to murine spinal nerve transection-induced neuropathic pain. Eur. J. Immunol. 38, 448–458 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Costigan, M. et al. T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J. Neurosci. 29, 14415–14422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liang, Z. et al. A transcriptional toolbox for exploring peripheral neuroimmune interactions. Pain 161, 2089–2106 (2020).

    Article  PubMed  Google Scholar 

  100. Chernov, A. V. et al. A myelin basic protein fragment induces sexually dimorphic transcriptome signatures of neuropathic pain in mice. J. Biol. Chem. 295, 10807–10821 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee, H. J. et al. Sex-specific B cell and anti-myelin autoantibody response after peripheral nerve injury. Front. Cell Neurosci. 16, 835800 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Guo, T. Z. et al. Pronociceptive autoantibodies in the spinal cord mediate nociceptive sensitization, loss of function, and spontaneous pain in the lumbar disc puncture model of chronic back pain. Pain 164, 421–434 (2022).

    Article  PubMed  Google Scholar 

  103. Li, W. W. et al. Autoimmunity contributes to nociceptive sensitization in a mouse model of complex regional pain syndrome. Pain 155, 2377–2389 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Helyes, Z. et al. Transfer of complex regional pain syndrome to mice via human autoantibodies is mediated by interleukin-1-induced mechanisms. Proc. Natl Acad. Sci. USA 116, 13067–13076 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guo, T. Z. et al. Passive transfer autoimmunity in a mouse model of complex regional pain syndrome. Pain 158, 2410–2421 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cuhadar, U. et al. Autoantibodies produce pain in complex regional pain syndrome by sensitizing nociceptors. Pain 160, 2855–2865 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. de Mos, M. et al. The incidence of complex regional pain syndrome: a population-based study. Pain 129, 12–20 (2007).

    Article  PubMed  Google Scholar 

  108. Schneider, S., Randoll, D. & Buchner, M. Why do women have back pain more than men? A representative prevalence study in the federal republic of Germany. Clin. J. Pain 22, 738–747 (2006).

    Article  PubMed  Google Scholar 

  109. Dalakas, M. C. et al. Placebo-controlled trial of rituximab in IgM anti-myelin-associated glycoprotein antibody demyelinating neuropathy. Ann. Neurol. 65, 286–293 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Rosser, E. C. & Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 42, 607–612 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Hua, D. et al. Gut microbiome and plasma metabolome signatures in middle-aged mice with cognitive dysfunction induced by chronic neuropathic pain. Front. Mol. Neurosci. 14, 806700 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Mollgard, K. et al. A mesothelium divides the subarachnoid space into functional compartments. Science 379, 84–88 (2023).

    Article  PubMed  Google Scholar 

  113. Alves de Lima, K., Rustenhoven, J. & Kipnis, J. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu. Rev. Immunol. 38, 597–620 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science https://doi.org/10.1126/science.abf7844 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Du, B. et al. CD4+ αβ T cell infiltration into the leptomeninges of lumbar dorsal roots contributes to the transition from acute to chronic mechanical allodynia after adult rat tibial nerve injuries. J. Neuroinflammation 15, 81 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Maganin, A. G. et al. Meningeal dendritic cells drive neuropathic pain through elevation of the kynurenine metabolic pathway in mice. J. Clin. Invest. 132, e153805 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Echeverry, S., Shi, X. Q., Rivest, S. & Zhang, J. Peripheral nerve injury alters blood-spinal cord barrier functional and molecular integrity through a selective inflammatory pathway. J. Neurosci. 31, 10819–10828 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Alexander, J. F. et al. Targeting the meningeal compartment to resolve chemobrain and neuropathy via nasal delivery of functionalized mitochondria. Adv. Healthc. Mater. 11, e2102153 (2022).

    Article  PubMed  Google Scholar 

  120. Alexander, J. F. et al. Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits. Theranostics 11, 3109–3130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Guan, Z. et al. Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nat. Neurosci. 19, 94–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Belkaid, Y. & Harrison, O. J. Homeostatic immunity and the microbiota. Immunity 46, 562–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Guo, R., Chen, L. H., Xing, C. & Liu, T. Pain regulation by gut microbiota: molecular mechanisms and therapeutic potential. Br. J. Anaesth. 123, 637–654 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Minerbi, A. et al. Altered microbiome composition in individuals with fibromyalgia. Pain 160, 2589–2602 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Pane, K. et al. Role of gut microbiota in neuropathy and neuropathic pain states: a systematic preclinical review. Neurobiol. Dis. 170, 105773 (2022).

    Article  PubMed  Google Scholar 

  127. Ellis, R. J., Heaton, R. K., Gianella, S., Rahman, G. & Knight, R. Reduced gut microbiome diversity in people with HIV who have distal neuropathic pain. J. Pain 23, 318–325 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Morais, L. H., Schreiber, H. L. T. & Mazmanian, S. K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19, 241–255 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Chen, P. et al. Alterations in the gut microbiota and metabolite profiles in the context of neuropathic pain. Mol. Brain 14, 50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lian, N. et al. Drinking hydrogen-rich water alleviates chemotherapy-induced neuropathic pain through the regulation of gut microbiota. J. Pain Res. 14, 681–691 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ma, P. et al. Gut microbiota depletion by antibiotics ameliorates somatic neuropathic pain induced by nerve injury, chemotherapy, and diabetes in mice. J. Neuroinflammation 19, 169 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shen, S. et al. Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat. Neurosci. 20, 1213–1216 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wardill, H. R. et al. Irinotecan-induced gastrointestinal dysfunction and pain are mediated by common TLR4-dependent mechanisms. Mol. Cancer Ther. 15, 1376–1386 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Alemi, F. et al. The TGR5 receptor mediates bile acid-induced itch and analgesia. J. Clin. Invest. 123, 1513–1530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Minerbi, A. et al. Altered serum bile acid profile in fibromyalgia is associated with specific gut microbiome changes and symptom severity. Pain 164, e66–e76 (2022).

    Article  PubMed  Google Scholar 

  136. Ramakrishna, C. et al. Dominant role of the gut microbiota in chemotherapy induced neuropathic pain. Sci. Rep. 9, 20324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhou, F. et al. Short-chain fatty acids contribute to neuropathic pain via regulating microglia activation and polarization. Mol. Pain 17, 1744806921996520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jing, Y. et al. Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis. Microbiome 9, 59 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sideris-Lampretsas, G. & Malcangio, M. Pain-resolving microglia. Science 376, 33–34 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ding, W. et al. Gut microbiota influences neuropathic pain through modulating proinflammatory and anti-inflammatory T cells. Anesth. Analg. 132, 1146–1155 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, Z. et al. Lactobacillus paracasei S16 alleviates lumbar disc herniation by modulating inflammation response and gut microbiota. Front. Nutr. 8, 701644 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Singh, V. et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 36, 7428–7440 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Markle, J. G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Serhan, C. N. Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. Mol. Asp. Med. 58, 1–11 (2017).

    Article  Google Scholar 

  148. Serhan, C. N. A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem. Cell Biol. 122, 305–321 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Serhan, C. N. et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196, 1025–1037 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dalli, J. & Serhan, C. N. Pro-resolving mediators in regulating and conferring macrophage function. Front. Immunol. 8, 1400 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Chiang, N., Bermudez, E. A., Ridker, P. M., Hurwitz, S. & Serhan, C. N. Aspirin triggers antiinflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial. Proc. Natl Acad. Sci. USA 101, 15178–15183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Basil, M. C. & Levy, B. D. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 16, 51–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Serhan, C. N., Dalli, J., Colas, R. A., Winkler, J. W. & Chiang, N. Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim. Biophys. Acta 1851, 397–413 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Chiang, N. & Serhan, C. N. Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol. Asp. Med. 58, 114–129 (2017).

    Article  CAS  Google Scholar 

  155. Chiang, N. & Serhan, C. N. Specialized pro-resolving mediator network: an update on production and actions. Essays Biochem. 64, 443–462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Serhan, C. N. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J. 31, 1273–1288 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kasuga, K. et al. Rapid appearance of resolvin precursors in inflammatory exudates: novel mechanisms in resolution. J. Immunol. 181, 8677–8687 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Serhan, C. N. & Petasis, N. A. Resolvins and protectins in inflammation resolution. Chem. Rev. 111, 5922–5943 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Dalli, J. & Serhan, C. N. Identification and structure elucidation of the pro-resolving mediators provides novel leads for resolution pharmacology. Br. J. Pharmacol. 176, 1024–1037 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Chavez-Castillo, M. et al. Specialized pro-resolving lipid mediators: the future of chronic pain therapy? Int. J. Mol. Sci. 22, 10370 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Leuti, A., Fava, M., Pellegrini, N. & Maccarrone, M. Role of specialized pro-resolving mediators in neuropathic pain. Front. Pharmacol. 12, 717993 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fattori, V., Zaninelli, T. H., Rasquel-Oliveira, F. S., Casagrande, R. & Verri, W. A. Jr Specialized pro-resolving lipid mediators: a new class of non-immunosuppressive and non-opioid analgesic drugs. Pharmacol. Res. 151, 104549 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Zhang, L. Y., Jia, M. R. & Sun, T. The roles of special proresolving mediators in pain relief. Rev. Neurosci. 29, 645–660 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Zhang, J., Li, Z., Fan, M. & Jin, W. Lipoxins in the nervous system: brighter prospects for neuroprotection. Front. Pharmacol. 13, 781889 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ji, R. R., Xu, Z. Z., Strichartz, G. & Serhan, C. N. Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci. 34, 599–609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Luo, X., Gu, Y., Tao, X., Serhan, C. N. & Ji, R. R. Resolvin D5 inhibits neuropathic and inflammatory pain in male but not female mice: distinct actions of D-series resolvins in chemotherapy-induced peripheral neuropathy. Front. Pharmacol. 10, 745 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Baggio, D. F. et al. Sex dimorphism in resolvin D5-induced analgesia in rat models of trigeminal pain. J. Pain https://doi.org/10.1016/j.jpain.2022.12.013 (2022).

    Article  PubMed  Google Scholar 

  168. Liu, Z. H. et al. Resolvin D1 inhibits mechanical hypersensitivity in sciatica by modulating the expression of nuclear factor-κB, phospho-extracellular signal-regulated kinase, and pro- and antiinflammatory cytokines in the spinal cord and dorsal root ganglion. Anesthesiology 124, 934–944 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Zhang, L. et al. Distinct analgesic actions of DHA and DHA-derived specialized pro-resolving mediators on post-operative pain after bone fracture in mice. Front. Pharmacol. 9, 412 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Wang, J. C. & Strichartz, G. R. Prevention of chronic post-thoracotomy pain in rats by intrathecal resolvin D1 and D2: effectiveness of perioperative and delayed drug delivery. J. Pain 18, 535–545 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Huang, L., Wang, C. F., Serhan, C. N. & Strichartz, G. Enduring prevention and transient reduction of postoperative pain by intrathecal resolvin D1. Pain 152, 557–565 (2011).

    Article  PubMed  Google Scholar 

  172. Klein, C. P. et al. Effects of D-series resolvins on behavioral and neurochemical changes in a fibromyalgia-like model in mice. Neuropharmacology 86, 57–66 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Bang, S. et al. Resolvin D1 attenuates activation of sensory transient receptor potential channels leading to multiple anti-nociception. Br. J. Pharmacol. 161, 707–720 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Park, C. K. et al. Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct roles of resolvin D1, D2, and E1. J. Neurosci. 31, 18433–18438 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Tao, X., Lee, M. S., Donnelly, C. R. & Ji, R. R. Neuromodulation, specialized proresolving mediators, and resolution of pain. Neurotherapeutics 17, 886–899 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Serhan, C. N., de la Rosa, X. & Jouvene, C. Novel mediators and mechanisms in the resolution of infectious inflammation: evidence for vagus regulation. J. Intern. Med. 286, 240–258 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Tao, X. et al. Spinal Cord stimulation attenuates mechanical allodynia and increases central resolvin D1 levels in rats with spared nerve injury. Front. Physiol. 12, 687046 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Bang, S. et al. Activation of GPR37 in macrophages confers protection against infection-induced sepsis and pain-like behaviour in mice. Nat. Commun. 12, 1704 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Xu, Z. Z. et al. Neuroprotectin/protectin D1 protects against neuropathic pain in mice after nerve trauma. Ann. Neurol. 74, 490–495 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Park, C. K. et al. Resolving TRPV1- and TNF-α-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J. Neurosci. 31, 15072–15085 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Nesman, J. I. et al. A new synthetic protectin D1 analog 3-oxa-PD1n-3 DPA reduces neuropathic pain and chronic itch in mice. Org. Biomol. Chem. 19, 2744–2752 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pham, T. L. & Bazan, H. E. P. Docosanoid signaling modulates corneal nerve regeneration: effect on tear secretion, wound healing, and neuropathic pain. J. Lipid Res. 62, 100033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pham, T. L. et al. Defining a mechanistic link between pigment epithelium-derived factor, docosahexaenoic acid, and corneal nerve regeneration. J. Biol. Chem. 292, 18486–18499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chiang, N., Libreros, S., Norris, P. C., de la Rosa, X. & Serhan, C. N. Maresin 1 activates LGR6 receptor promoting phagocyte immunoresolvent functions. J. Clin. Invest. 129, 5294–5311 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Serhan, C. N. et al. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J. 26, 1755–1765 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Fattori, V. et al. The specialised pro-resolving lipid mediator maresin 1 reduces inflammatory pain with a long-lasting analgesic effect. Br. J. Pharmacol. 176, 1728–1744 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Gao, J. et al. Pro-resolving mediator maresin 1 ameliorates pain hypersensitivity in a rat spinal nerve ligation model of neuropathic pain. J. Pain Res. 11, 1511–1519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wang, Y. H. et al. Maresin 1 attenuates radicular pain through the inhibition of NLRP3 inflammasome-induced pyroptosis via NF-κB signaling. Front. Neurosci. 14, 831 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Francos-Quijorna, I. et al. Maresin 1 promotes inflammatory resolution, neuroprotection, and functional neurological recovery after spinal cord injury. J. Neurosci. 37, 11731–11743 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Herová, M., Schmid, M., Gemperle, C. & Hersberger, M. ChemR23, the receptor for chemerin and resolvin E1, is expressed and functional on M1 but not on M2 macrophages. J. Immunol. 194, 2330–2337 (2015).

    Article  PubMed  Google Scholar 

  191. Tiberi, M. & Chiurchiu, V. Specialized pro-resolving lipid mediators and glial cells: emerging candidates for brain homeostasis and repair. Front. Cell. Neurosci. 15, 673549 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Arita, M. et al. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 178, 3912–3917 (2007).

    Article  CAS  PubMed  Google Scholar 

  193. Xu, Z. Z., Berta, T. & Ji, R. R. Resolvin E1 inhibits neuropathic pain and spinal cord microglial activation following peripheral nerve injury. J. Neuroimmune Pharmacol. 8, 37–41 (2013).

    Article  PubMed  Google Scholar 

  194. Xu, Z. Z. et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat. Med. 16, 592–597 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Jo, Y. Y., Lee, J. Y. & Park, C. K. Resolvin E1 inhibits substance P-induced potentiation of TRPV1 in primary sensory neurons. Mediators Inflamm. 2016, 5259321 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Bang, S., Yoo, S., Oh, U. & Hwang, S. W. Endogenous lipid-derived ligands for sensory TRP ion channels and their pain modulation. Arch. Pharm. Res. 33, 1509–1520 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. Roh, J., Go, E. J., Park, J. W., Kim, Y. H. & Park, C. K. Resolvins: potent pain inhibiting lipid mediators via transient receptor potential regulation. Front. Cell. Dev. Biol. 8, 584206 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Nolan, K. & Godson, C. in Encyclopedia of Signaling Molecules (ed. Choi, S.) 1854–1862 (Springer, 2018).

  199. Liu, G. J. et al. Functions of resolvin D1-ALX/FPR2 receptor interaction in the hemoglobin-induced microglial inflammatory response and neuronal injury. J. Neuroinflammation 17, 239 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Cooray, S. N. et al. Ligand-specific conformational change of the G-protein–coupled receptor ALX/FPR2 determines proresolving functional responses. Proc. Natl Acad. Sci. USA 110, 18232–18237 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Maciuszek, M., Cacace, A., Brennan, E., Godson, C. & Chapman, T. M. Recent advances in the design and development of formyl peptide receptor 2 (FPR2/ALX) agonists as pro-resolving agents with diverse therapeutic potential. Eur. J. Med. Chem. 213, 113167 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Sun, T. et al. Lipoxin A4 induced antinociception and decreased expression of NF-κB and pro-inflammatory cytokines after chronic dorsal root ganglia compression in rats. Eur. J. Pain 16, 18–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  203. Martini, A. C. et al. Lipoxin A4 inhibits microglial activation and reduces neuroinflammation and neuropathic pain after spinal cord hemisection. J. Neuroinflammation 13, 75 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Svensson, C. I., Zattoni, M. & Serhan, C. N. Lipoxins and aspirin-triggered lipoxin inhibit inflammatory pain processing. J. Exp. Med. 204, 245–252 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Miao, G. S. et al. Lipoxin A4 attenuates radicular pain possibly by inhibiting spinal ERK, JNK and NF-κB/p65 and cytokine signals, but not p38, in a rat model of non-compressive lumbar disc herniation. Neuroscience 300, 10–18 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Wang, Z. F. et al. Aspirin-triggered lipoxin A4 attenuates mechanical allodynia in association with inhibiting spinal JAK2/STAT3 signaling in neuropathic pain in rats. Neuroscience 273, 65–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. Li, Q. et al. Involvement of the spinal NALP1 inflammasome in neuropathic pain and aspirin-triggered-15-epi-lipoxin A4 induced analgesia. Neuroscience 254, 230–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Liu, Z. Q., Zhang, H. B., Wang, J., Xia, L. J. & Zhang, W. Lipoxin A4 ameliorates ischemia/reperfusion induced spinal cord injury in rabbit model. Int. J. Clin. Exp. Med. 8, 12826–12833 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Finnerup, N. B. et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 14, 162–173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Veluchamy, A., Hébert, H. L., Meng, W., Palmer, C. N. A. & Smith, B. H. Systematic review and meta-analysis of genetic risk factors for neuropathic pain. Pain 159, 825–848 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Albrecht, D. S. et al. Brain glial activation in fibromyalgia — a multi-site positron emission tomography investigation. Brain Behav. Immun. 75, 72–83 (2019).

    Article  PubMed  Google Scholar 

  212. Loggia, M. L. et al. Evidence for brain glial activation in chronic pain patients. Brain 138, 604–615 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Gravius, N. et al. Selective L4 dorsal root ganglion stimulation evokes pain relief and changes of inflammatory markers: part I, profiling of saliva and serum molecular patterns. Neuromodulation 22, 44–52 (2019).

    Article  PubMed  Google Scholar 

  214. Kinfe, T. M. et al. Unilateral L4-dorsal root ganglion stimulation evokes pain relief in chronic neuropathic postsurgical knee pain and changes of inflammatory markers: part II, whole transcriptome profiling. J. Transl. Med. 17, 205 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Kriek, N. et al. Spinal cord stimulation in patients with complex regional pain syndrome: a possible target for immunomodulation. Neuromodulation 21, 77–86 (2018).

    Article  PubMed  Google Scholar 

  216. Das, B., Conroy, M., Moore, D., Lysaght, J. & McCrory, C. Human dorsal root ganglion pulsed radiofrequency treatment modulates cerebrospinal fluid lymphocytes and neuroinflammatory markers in chronic radicular pain. Brain Behav. Immun. 70, 157–165 (2018).

    Article  PubMed  Google Scholar 

  217. Moore, D. et al. Characterisation of the effects of pulsed radio frequency treatment of the dorsal root ganglion on cerebrospinal fluid cellular and peptide constituents in patients with chronic radicular pain: a randomised, triple-blinded, controlled trial. J. Neuroimmunol. 343, 577219 (2020).

    Article  CAS  PubMed  Google Scholar 

  218. Chatterjee, P. et al. Effect of deep tissue laser therapy treatment on peripheral neuropathic pain in older adults with type 2 diabetes: a pilot randomized clinical trial. BMC Geriatr. 19, 218 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Choi, E. M. et al. Efficacy of intermittent epidural dexamethasone bolus for zoster-associated pain beyond the acute phase. Int. J. Med. Sci. 17, 1811–1818 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Kikuchi, A. et al. Comparative therapeutic evaluation of intrathecal versus epidural methylprednisolone for long-term analgesia in patients with intractable postherpetic neuralgia. Reg. Anesth. Pain Med. 24, 287–293 (1999).

    CAS  PubMed  Google Scholar 

  221. Bayry, J. et al. Mechanisms of action of intravenous immunoglobulin in autoimmune and inflammatory diseases. Transfus. Clin. Biol. 10, 165–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  222. Hartung, H. P. et al. Patient-reported outcomes with subcutaneous immunoglobulin in chronic inflammatory demyelinating polyneuropathy: the PATH study. Eur. J. Neurol. 27, 196–203 (2020).

    Article  PubMed  Google Scholar 

  223. Huang, Y. H. et al. Intravenous immunoglobulin for postpolio syndrome: a systematic review and meta-analysis. BMC Neurol. 15, 39 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Sumitani, M. et al. Minocycline does not decrease intensity of neuropathic pain, but does improve its affective dimension. J. Pain Palliat. Care Pharmacother. 30, 31–35 (2016).

    PubMed  Google Scholar 

  225. Nishida, T. et al. Involvement of high mobility group Box 1 in the development and maintenance of chemotherapy-induced peripheral neuropathy in rats. Toxicology 365, 48–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  226. Kotaka, M. et al. A placebo-controlled, double-blind, randomized study of recombinant thrombomodulin (ART-123) to prevent oxaliplatin-induced peripheral neuropathy. Cancer Chemother. Pharmacol. 86, 607–618 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Araki, M. et al. Efficacy of the anti-IL-6 receptor antibody tocilizumab in neuromyelitis optica: a pilot study. Neurology 82, 1302–1306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Ohtori, S. et al. Epidural administration of spinal nerves with the tumor necrosis factor-α inhibitor, etanercept, compared with dexamethasone for treatment of sciatica in patients with lumbar spinal stenosis: a prospective randomized study. Spine 37, 439–444 (2012).

    Article  PubMed  Google Scholar 

  229. Cohen, S. P. et al. Randomized, double-blind, placebo-controlled, dose-response, and preclinical safety study of transforaminal epidural etanercept for the treatment of sciatica. Anesthesiology 110, 1116–1126 (2009).

    Article  CAS  PubMed  Google Scholar 

  230. Ohtori, S. et al. Efficacy of epidural administration of anti-interleukin-6 receptor antibody onto spinal nerve for treatment of sciatica. Eur. Spine J. 21, 2079–2084 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Genevay, S. et al. Adalimumab in severe and acute sciatica: a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 62, 2339–2346 (2010).

    Article  PubMed  Google Scholar 

  232. Genevay, S. et al. Adalimumab in acute sciatica reduces the long-term need for surgery: a 3-year follow-up of a randomised double-blind placebo-controlled trial. Ann. Rheum. Dis. 71, 560–562 (2012).

    Article  CAS  PubMed  Google Scholar 

  233. Karppinen, J. et al. Tumor necrosis factor-α monoclonal antibody, infliximab, used to manage severe sciatica. Spine 28, 750–754 (2003).

    Article  PubMed  Google Scholar 

  234. Williams, N. H. et al. A systematic review and meta-analysis of biological treatments targeting tumour necrosis factor α for sciatica. Eur. Spine J. 22, 1921–1935 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Watkins, L. R. et al. Targeted interleukin-10 plasmid DNA therapy in the treatment of osteoarthritis: toxicology and pain efficacy assessments. Brain Behav. Immun. 90, 155–166 (2020).

    Article  CAS  PubMed  Google Scholar 

  236. Rosenzwajg, M. et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 78, 209–217 (2019).

    Article  CAS  PubMed  Google Scholar 

  237. Duffy, S. S., Keating, B. A., Perera, C. J. & Moalem-Taylor, G. The role of regulatory T cells in nervous system pathologies. J. Neurosci. Res. 96, 951–968 (2018).

    Article  CAS  PubMed  Google Scholar 

  238. Qu, G. et al. Current status and perspectives of regulatory T cell-based therapy. J. Genet. Genom. 49, 599–611 (2022).

    Article  Google Scholar 

  239. Chernykh, E. R. et al. Safety and therapeutic potential of M2 macrophages in stroke treatment. Cell Transpl. 25, 1461–1471 (2016).

    Article  Google Scholar 

  240. Mia, S., Warnecke, A., Zhang, X. M., Malmström, V. & Harris, R. A. An optimized protocol for human M2 macrophages using M-CSF and IL-4/IL-10/TGF-β yields a dominant immunosuppressive phenotype. Scand. J. Immunol. 79, 305–314 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005).

    Article  CAS  PubMed  Google Scholar 

  242. Lin, B. et al. Gut microbiota regulates neuropathic pain: potential mechanisms and therapeutic strategy. J. Headache Pain 21, 103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Pimentel, M. et al. Effects of rifaximin treatment and retreatment in nonconstipated IBS subjects. Dig. Dis. Sci. 56, 2067–2072 (2011).

    Article  CAS  PubMed  Google Scholar 

  244. Sorbara, M. T. & Pamer, E. G. Microbiome-based therapeutics. Nat. Rev. Microbiol. 20, 365–380 (2022).

    Article  CAS  PubMed  Google Scholar 

  245. Hungin, A. P. S. et al. Systematic review: probiotics in the management of lower gastrointestinal symptoms — an updated evidence-based international consensus. Aliment. Pharmacol. Ther. 47, 1054–1070 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Mandel, D. R., Eichas, K. & Holmes, J. Bacillus coagulans: a viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial. BMC Complement. Altern. Med. 10, 1 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Vaghef-Mehrabany, E. et al. Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition 30, 430–435 (2014).

    Article  CAS  PubMed  Google Scholar 

  248. Zhou, S. Y. et al. FODMAP diet modulates visceral nociception by lipopolysaccharide-mediated intestinal inflammation and barrier dysfunction. J. Clin. Invest. 128, 267–280 (2018).

    Article  PubMed  Google Scholar 

  249. Singh, P. et al. High FODMAP diet causes barrier loss via lipopolysaccharide-mediated mast cell activation. JCI Insight https://doi.org/10.1172/jci.insight.146529 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Allison, D. J., Thomas, A., Beaudry, K. & Ditor, D. S. Targeting inflammation as a treatment modality for neuropathic pain in spinal cord injury: a randomized clinical trial. J. Neuroinflammation 13, 152 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Casini, I. et al. Food-specific IgG4 antibody-guided exclusion diet improves conditions of patients with chronic pain. Pain Ther. 11, 873–906 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Vendrik, K. E. W. et al. Fecal microbiota transplantation in neurological disorders. Front. Cell Infect. Microbiol. 10, 98 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    Article  PubMed  Google Scholar 

  254. Thurm, T., Ablin, J., Buskila, D. & Maharshak, N. Fecal microbiota transplantation for fibromyalgia: a case report and review of the literature. Open J. Gastroenterol. 7, 131–139 (2017).

    Article  Google Scholar 

  255. Schebb, N. H. et al. Formation, signaling and occurrence of specialized pro-resolving lipid mediators-what is the evidence so far? Front. Pharmacol. 13, 838782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Duran, A. M. et al. Effects of omega-3 polyunsaturated fatty-acid supplementation on neuropathic pain symptoms and sphingosine levels in Mexican-Americans with type 2 diabetes. Diabetes Metab. Syndr. Obes. 12, 109–120 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Duran, A. M., Beeson, W. L., Firek, A., Cordero-MacIntyre, Z. & De Leon, M. Dietary omega-3 polyunsaturated fatty-acid supplementation upregulates protective cellular pathways in patients with type 2 diabetes exhibiting improvement in painful diabetic neuropathy. Nutrients 14, 761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Ko, G. D., Nowacki, N. B., Arseneau, L., Eitel, M. & Hum, A. Omega-3 fatty acids for neuropathic pain: case series. Clin. J. Pain 26, 168–172 (2010).

    Article  PubMed  Google Scholar 

  259. Barden, A. E. et al. Specialised pro-resolving mediators of inflammation in inflammatory arthritis. Prostaglandins Leukot. Essent. Fat. Acids 107, 24–29 (2016).

    Article  CAS  Google Scholar 

  260. Ramsden, C. E. et al. Targeted alterations in dietary n-3 and n-6 fatty acids improve life functioning and reduce psychological distress among patients with chronic headache: a secondary analysis of a randomized trial. Pain 156, 587–596 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Tajmirriahi, M. et al. The effects of sodium valproate with fish oil supplementation or alone in migraine prevention: a randomized single-blind clinical trial. Iran. J. Neurol. 11, 21–24 (2012).

    PubMed  PubMed Central  Google Scholar 

  262. Levine, J. D., Gooding, J., Donatoni, P., Borden, L. & Goetzl, E. J. The role of the polymorphonuclear leukocyte in hyperalgesia. J. Neurosci. 5, 3025–3029 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Perkins, N. M. & Tracey, D. J. Hyperalgesia due to nerve injury: role of neutrophils. Neuroscience 101, 745–757 (2000).

    Article  CAS  PubMed  Google Scholar 

  264. Zuo, Y., Perkins, N. M., Tracey, D. J. & Geczy, C. L. Inflammation and hyperalgesia induced by nerve injury in the rat: a key role of mast cells. Pain 105, 467–479 (2003).

    Article  PubMed  Google Scholar 

  265. Carreira, E. U. et al. Neutrophils recruited by CXCR1/2 signalling mediate post-incisional pain. Eur. J. Pain 17, 654–663 (2013).

    Article  CAS  PubMed  Google Scholar 

  266. Harada, Y. et al. Cathepsin E in neutrophils contributes to the generation of neuropathic pain in experimental autoimmune encephalomyelitis. Pain 160, 2050–2062 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Caxaria, S. B. et al. Neutrophils infiltrate sensory ganglia and mediate chronic 1 widespread pain in fibromyalgia. Preprint at bioRxiv https://doi.org/10.1101/2022.06.29.498149 (2022).

    Article  Google Scholar 

  268. Morin, N. et al. Neutrophils invade lumbar dorsal root ganglia after chronic constriction injury of the sciatic nerve. J. Neuroimmunol. 184, 164–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  269. Kim, C. F. & Moalem-Taylor, G. Detailed characterization of neuro-immune responses following neuropathic injury in mice. Brain Res. 1405, 95–108 (2011).

    Article  CAS  PubMed  Google Scholar 

  270. Lindborg, J. A., Mack, M. & Zigmond, R. E. Neutrophils are critical for myelin removal in a peripheral nerve injury model of Wallerian degeneration. J. Neurosci. 37, 10258–10277 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Cui, J. G., Holmin, S., Mathiesen, T., Meyerson, B. A. & Linderoth, B. Possible role of inflammatory mediators in tactile hypersensitivity in rat models of mononeuropathy. Pain 88, 239–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  272. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  273. Shinotsuka, N. & Denk, F. Fibroblasts: the neglected cell type in peripheral sensitisation and chronic pain? A review based on a systematic search of the literature. BMJ Open Sci. 6, e100235 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Singhmar, P. et al. The fibroblast-derived protein PI16 controls neuropathic pain. Proc. Natl Acad. Sci. USA 117, 5463–5471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Silva, C. E. A., Guimaraes, R. M. & Cunha, T. M. Sensory neuron-associated macrophages as novel modulators of neuropathic pain. Pain Rep. 6, e873 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Yu, X. et al. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat. Commun. 11, 264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Msheik, Z., El Massry, M., Rovini, A., Billet, F. & Desmouliere, A. The macrophage: a key player in the pathophysiology of peripheral neuropathies. J. Neuroinflammation 19, 97 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Inoue, K. & Tsuda, M. Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat. Rev. Neurosci. 19, 138–152 (2018).

    Article  CAS  PubMed  Google Scholar 

  279. Tsuda, M. et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424, 778–783 (2003).

    Article  CAS  PubMed  Google Scholar 

  280. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    Article  CAS  PubMed  Google Scholar 

  281. Tansley, S. et al. Microglia-mediated degradation of perineuronal nets promotes pain. Science 377, 80–86 (2022).

    Article  CAS  PubMed  Google Scholar 

  282. Kobayashi, Y. et al. Macrophage-T cell interactions mediate neuropathic pain through the glucocorticoid-induced tumor necrosis factor ligand system. J. Biol. Chem. 290, 12603–12613 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Draleau, K. et al. Phenotypic identification of spinal cord-infiltrating CD4+ T Lymphocytes in a murine model of neuropathic pain. J. Pain Relief 2014, 003 (2014).

    Google Scholar 

  284. Jaggi, A. S., Jain, V. & Singh, N. Animal models of neuropathic pain. Fundam. Clin. Pharmacol. 25, 1–28 (2011).

    Article  CAS  PubMed  Google Scholar 

  285. Serhan, C. N. & Levy, B. D. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J. Clin. Invest. 128, 2657–2669 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Chen, G., Zhang, Y. Q., Qadri, Y. J., Serhan, C. N. & Ji, R. R. Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron 100, 1292–1311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Serhan, C. N., Chiang, N. & Dalli, J. The resolution code of acute inflammation: novel pro-resolving lipid mediators in resolution. Semin. Immunol. 27, 200–215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Serhan, C. N. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot. Essent. Fat. Acids 73, 141–162 (2005).

    Article  CAS  Google Scholar 

  289. Buckley, C. D., Gilroy, D. W., Serhan, C. N., Stockinger, B. & Tak, P. P. The resolution of inflammation. Nat. Rev. Immunol. 13, 59–66 (2013).

    Article  CAS  PubMed  Google Scholar 

  290. Serhan, C. N. et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 21, 325–332 (2007).

    Article  CAS  PubMed  Google Scholar 

  291. Abboud, C. et al. Animal models of pain: diversity and benefits. J. Neurosci. Methods 348, 108997 (2021).

    Article  PubMed  Google Scholar 

  292. Challa, S. R. Surgical animal models of neuropathic pain: pros and cons. Int. J. Neurosci. 125, 170–174 (2015).

    Article  CAS  PubMed  Google Scholar 

  293. Khan, N. & Smith, M. T. Multiple sclerosis-induced neuropathic pain: pharmacological management and pathophysiological insights from rodent EAE models. Inflammopharmacology 22, 1–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  294. Liu, Y. et al. Animal models of complex regional pain syndrome type I. J. Pain Res. 14, 3711–3721 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Mirabelli, E. & Elkabes, S. Neuropathic pain in multiple sclerosis and its animal models: focus on mechanisms, knowledge gaps and future directions. Front. Neurol. 12, 793745 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Yanow, J., Pappagallo, M. & Pillai, L. Complex regional pain syndrome (CRPS/RSD) and neuropathic pain: role of intravenous bisphosphonates as analgesics. Sci. World J. 8, 229–236 (2008).

    Article  Google Scholar 

  297. Bouali-Benazzouz, R., Landry, M., Benazzouz, A. & Fossat, P. Neuropathic pain modeling: focus on synaptic and ion channel mechanisms. Prog. Neurobiol. 201, 102030 (2021).

    Article  PubMed  Google Scholar 

  298. Brum, E. S., Becker, G., Fialho, M. F. P. & Oliveira, S. M. Animal models of fibromyalgia: what is the best choice? Pharmacol. Ther. 230, 107959 (2022).

    Article  CAS  PubMed  Google Scholar 

  299. Matsuda, M., Huh, Y. & Ji, R. R. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J. Anesth. 33, 131–139 (2019).

    Article  PubMed  Google Scholar 

  300. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Health and Medical Research Council (NHMRC) of Australia (ID APP1162060 and ID APP1187416) awarded to G.M.-T. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors thank Timothy Lee for providing professional medical illustration services used to generate the original figures.

Review criteria

The authors searched PubMed and Google Scholar for original research articles and reviews published in English, using the keywords or search terms “neuropathic pain” or “pain resolution” and “neutrophils”, “natural killer cells’, “fibroblasts”, “microglia”, “T cells’, “B cells”, “gut microbiota”, “microbiome”, “specialized pro-resolving mediators”, “animal models”, “inflammation”, “inflammatory response” and “immune response”. Relevant studies on other pain conditions were also included. CENTRAL, MEDLINE, EMBASE and ClinicalTrials.gov were searched for additional relevant clinical articles, using the following search terms and keywords: “inflammation” or “immune” and “pain” and “neuropathic” or “chronic”. Additional relevant articles were selected from the reference lists of publications identified in these searches. The final reference list was generated based on relevance to the topics covered, focusing on publications within the past 10 years.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Gila Moalem-Taylor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Claudia Sommer, who co-reviewed with Patricia García Fernández; Francesca Guida; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiore, N.T., Debs, S.R., Hayes, J.P. et al. Pain-resolving immune mechanisms in neuropathic pain. Nat Rev Neurol 19, 199–220 (2023). https://doi.org/10.1038/s41582-023-00777-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00777-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing