Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Origins and immunopathogenesis of autoimmune central nervous system disorders

Abstract

The field of autoimmune neurology is rapidly evolving, and recent discoveries have advanced our understanding of disease aetiologies. In this article, we review the key pathogenic mechanisms underlying the development of CNS autoimmunity. First, we review non-modifiable risk factors, such as age, sex and ethnicity, as well as genetic factors such as monogenic variants, common variants in vulnerability genes and emerging HLA associations. Second, we highlight how interactions between environmental factors and epigenetics can modify disease onset and severity. Third, we review possible disease mechanisms underlying triggers that are associated with the loss of immune tolerance with consequent recognition of self-antigens; these triggers include infections, tumours and immune-checkpoint inhibitor therapies. Fourth, we outline how advances in our understanding of the anatomy of lymphatic drainage and neuroimmune interfaces are challenging long-held notions of CNS immune privilege, with direct relevance to CNS autoimmunity, and how disruption of B cell and T cell tolerance and the passage of immune cells between the peripheral and intrathecal compartments have key roles in initiating disease activity. Last, we consider novel therapeutic approaches based on our knowledge of the immunopathogenesis of autoimmune CNS disorders.

Key points

  • The immunopathogenesis of autoimmune CNS disorders involves complex interactions among a number of contributing factors.

  • Non-modifiable risk factors, such as age, sex, ethnicity and genetics (including monogenic disorders, common variants and polymorphisms in vulnerability genes, and HLA associations), might help to determine an individual’s predisposition to neurological autoimmunity.

  • Interactions between epigenetic and environmental factors can modify disease onset and severity.

  • ‘Triggers’ for loss of immune tolerance, such as infections, neoplasms and iatrogenic drugs (for example, immune-checkpoint inhibitors), might precipitate neurological autoimmunity.

  • Disruption of B cell and T cell tolerance and the passage of immune cells from the peripheral circulation to the CNS have key roles in initiating disease activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The spectrum of autoimmune CNS disorders.
Fig. 2: Demographic associations in autoimmune CNS disorders.
Fig. 3: Immunopathogenic mechanisms that contribute to CNS autoimmunity.

Similar content being viewed by others

References

  1. Pruss, H. Autoantibodies in neurological disease. Nat. Rev. Immunol. 21, 798–813 (2021).

    PubMed  PubMed Central  Google Scholar 

  2. Sun, B., Ramberger, M., O’Connor, K. C., Bashford-Rogers, R. J. M. & Irani, S. R. The B cell immunobiology that underlies CNS autoantibody-mediated diseases. Nat. Rev. Neurol. 16, 481–492 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramanathan, S., Al-Diwani, A., Waters, P. & Irani, S. R. The autoantibody-mediated encephalitides: from clinical observations to molecular pathogenesis. J. Neurol. 268, 1689–1707 (2021).

    PubMed  Google Scholar 

  4. McGinley, M. P., Goldschmidt, C. H. & Rae-Grant, A. D. Diagnosis and treatment of multiple sclerosis: a review. JAMA 325, 765–779 (2021).

    CAS  PubMed  Google Scholar 

  5. Titulaer, M. J. et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 12, 157–165 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Florance, N. R. et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann. Neurol. 66, 11–18 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. Irani, S. R. et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 133, 2734–2748 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. Nosadini, M. et al. LGI1 and CASPR2 autoimmunity in children: systematic literature review and report of a young girl with Morvan syndrome. J. Neuroimmunol. 335, 577008 (2019).

    CAS  PubMed  Google Scholar 

  9. Ramanathan, S. et al. Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination. J. Neurol. Neurosurg. Psychiatry 89, 127–137 (2018).

    PubMed  Google Scholar 

  10. Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 282, 20143085 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Ray, D. & Yung, R. Immune senescence, epigenetics and autoimmunity. Clin. Immunol. 196, 59–63 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ngo, S. T., Steyn, F. J. & McCombe, P. A. Gender differences in autoimmune disease. Front. Neuroendocrinol. 35, 347–369 (2014).

    CAS  PubMed  Google Scholar 

  13. Voskuhl, R. R. The effect of sex on multiple sclerosis risk and disease progression. Mult. Scler. 26, 554–560 (2020).

    PubMed  PubMed Central  Google Scholar 

  14. Dalmau, J. et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol. 18, 1045–1057 (2019).

    CAS  PubMed  Google Scholar 

  15. Borisow, N. et al. Influence of female sex and fertile age on neuromyelitis optica spectrum disorders. Mult. Scler. 23, 1092–1103 (2017).

    PubMed  Google Scholar 

  16. Voskuhl, R. & Momtazee, C. Pregnancy: effect on multiple sclerosis, treatment considerations, and breastfeeding. Neurotherapeutics 14, 974–984 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mousavi, M. J., Mahmoudi, M. & Ghotloo, S. Escape from X chromosome inactivation and female bias of autoimmune diseases. Mol. Med. 26, 127 (2020).

    PubMed  PubMed Central  Google Scholar 

  18. Flanagan, E. P. et al. Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: analysis of 102 patients. Ann. Neurol. 81, 298–309 (2017).

    CAS  PubMed  Google Scholar 

  19. Marignier, R. et al. Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol. 20, 762–772 (2021).

    CAS  PubMed  Google Scholar 

  20. Jurynczyk, M. et al. Clinical presentation and prognosis in MOG-antibody disease: a UK study. Brain 140, 3128–3138 (2017).

    PubMed  Google Scholar 

  21. Thompson, J. et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain 141, 348–356 (2018).

    PubMed  Google Scholar 

  22. Gadoth, A. et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann. Neurol. 82, 79–92 (2017).

    CAS  PubMed  Google Scholar 

  23. Trewin, B., Freeman, I., Ramanathan, S. & Irani, S. R. Immunotherapy in autoimmune encephalitis. Curr. Opin. Neurol. 35, 399–414 (2022).

    PubMed  Google Scholar 

  24. Amezcua, L. & McCauley, J. L. Race and ethnicity on MS presentation and disease course. Mult. Scler. 26, 561–567 (2020).

    PubMed  PubMed Central  Google Scholar 

  25. Flanagan, E. P. et al. Epidemiology of aquaporin-4 autoimmunity and neuromyelitis optica spectrum. Ann. Neurol. 79, 775–783 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mohammad, S. S. et al. Symptomatic treatment of children with anti-NMDAR encephalitis. Dev. Med. Child Neurol. 58, 376–384 (2016).

    PubMed  Google Scholar 

  27. van Schaarenburg, R. A. et al. C1q deficiency and neuropsychiatric systemic lupus erythematosus. Front. Immunol. 7, 647 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Chua, G. T. et al. A case report of complement C4B deficiency in a patient with steroid and IVIG-refractory anti-NMDA receptor encephalitis. BMC Neurol. 20, 339 (2020).

    PubMed  PubMed Central  Google Scholar 

  29. Bride, K. & Teachey, D. Autoimmune lymphoproliferative syndrome: more than a FAScinating disease. F1000Res 6, 1928 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Alburaiky, S. et al. Opsoclonus-myoclonus in Aicardi-Goutieres syndrome. Dev. Med. Child Neurol. 63, 1483–1486 (2021).

    PubMed  Google Scholar 

  31. Hacohen, Y., Zuberi, S., Vincent, A., Crow, Y. J. & Cordeiro, N. Neuromyelitis optica in a child with Aicardi-Goutieres syndrome. Neurology 85, 381–383 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. Zhang, X. et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517, 89–93 (2015).

    CAS  PubMed  Google Scholar 

  33. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang, X. et al. STING-associated vasculopathy with onset in infancy in three children with new clinical aspect and unsatisfactory therapeutic responses to tofacitinib. J. Clin. Immunol. 40, 114–122 (2020).

    CAS  PubMed  Google Scholar 

  35. McNaughton, P. et al. Naive B cells followed by aquaporin-4 antibodies characterise the onset of neuromyelitis optica: evidence from stem cell transplantation. J. Neurol. Neurosurg. Psychiatry 93, 1234–1236 (2022).

    PubMed  Google Scholar 

  36. Armangue, T. et al. Toll-like receptor 3 deficiency in autoimmune encephalitis post-herpes simplex encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 6, e611 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. Nishimura, S. et al. IRAK4 deficiency presenting with anti-NMDAR encephalitis and HHV6 reactivation. J. Clin. Immunol. 41, 125–135 (2021).

    CAS  PubMed  Google Scholar 

  38. International Multiple Sclerosis Genetics Consortium et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

    Google Scholar 

  39. International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019).

    PubMed Central  Google Scholar 

  40. Sawcer, S., Franklin, R. J. & Ban, M. Multiple sclerosis genetics. Lancet Neurol. 13, 700–709 (2014).

    CAS  PubMed  Google Scholar 

  41. Acosta-Ampudia, Y., Monsalve, D. M. & Ramirez-Santana, C. Identifying the culprits in neurological autoimmune diseases. J. Transl. Autoimmun. 2, 100015 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Estrada, K. et al. A whole-genome sequence study identifies genetic risk factors for neuromyelitis optica. Nat. Commun. 9, 1929 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Li, T. et al. Multi-level analyses of genome-wide association study to reveal significant risk genes and pathways in neuromyelitis optica spectrum disorder. Front. Genet. 12, 690537 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhong, X. et al. Whole-exome sequencing reveals the major genetic factors contributing to neuromyelitis optica spectrum disorder in Chinese patients with aquaporin 4-IgG seropositivity. Eur. J. Neurol. 28, 2294–2304 (2021).

    PubMed  Google Scholar 

  45. Matsushita, T. et al. Genetic factors for susceptibility to and manifestations of neuromyelitis optica. Ann. Clin. Transl. Neurol. 7, 2082–2093 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Faraco, J. et al. ImmunoChip study implicates antigen presentation to T cells in narcolepsy. PLoS Genet. 9, e1003270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmidt, H., Williamson, D. & Ashley-Koch, A. HLA-DR15 haplotype and multiple sclerosis: a HuGE review. Am. J. Epidemiol. 165, 1097–1109 (2007).

    PubMed  Google Scholar 

  48. Zhang, Q., Lin, C. Y., Dong, Q., Wang, J. & Wang, W. Relationship between HLA-DRB1 polymorphism and susceptibility or resistance to multiple sclerosis in Caucasians: a meta-analysis of non-family-based studies. Autoimmun. Rev. 10, 474–481 (2011).

    CAS  PubMed  Google Scholar 

  49. Oksenberg, J. R. et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am. J. Hum. Genet. 74, 160–167 (2004).

    CAS  PubMed  Google Scholar 

  50. Matsuoka, T. et al. Association of the HLA-DRB1 alleles with characteristic MRI features of Asian multiple sclerosis. Mult. Scler. 14, 1181–1190 (2008).

    CAS  PubMed  Google Scholar 

  51. Wang, J. et al. HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell 183, 1264–1281.e20 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mignot, E. et al. Extensive HLA class II studies in 58 non-DRB1*15 (DR2) narcoleptic patients with cataplexy. Tissue Antigens 49, 329–341 (1997).

    CAS  PubMed  Google Scholar 

  53. Mignot, E. et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am. J. Hum. Genet. 68, 686–699 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hong, S. C. et al. DQB1*0301 and DQB1*0601 modulate narcolepsy susceptibility in Koreans. Hum. Immunol. 68, 59–68 (2007).

    CAS  PubMed  Google Scholar 

  55. Hor, H. et al. Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat. Genet. 42, 786–789 (2010).

    CAS  PubMed  Google Scholar 

  56. Kim, T. J. et al. Anti-LGI1 encephalitis is associated with unique HLA subtypes. Ann. Neurol. 81, 183–192 (2017).

    CAS  PubMed  Google Scholar 

  57. Binks, S. et al. Distinct HLA associations of LGI1 and CASPR2-antibody diseases. Brain 141, 2263–2271 (2018).

    PubMed  PubMed Central  Google Scholar 

  58. Muniz-Castrillo, S. et al. Clinical and prognostic value of immunogenetic characteristics in anti-LGI1 encephalitis. Neurol. Neuroimmunol. Neuroinflamm 8, e974 (2021).

    PubMed  PubMed Central  Google Scholar 

  59. Peris Sempere, V. et al. Human leukocyte antigen association study reveals DRB1*04:02 effects additional to DRB1*07:01 in anti-LGI1 encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 9, e1140 (2022).

    PubMed  PubMed Central  Google Scholar 

  60. Ramanathan, S. et al. Leucine-rich glioma-inactivated 1 versus contactin-associated protein-like 2 antibody neuropathic pain: clinical and biological comparisons. Ann. Neurol. 90, 683–690 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Muniz-Castrillo, S. et al. Anti-CASPR2 clinical phenotypes correlate with HLA and immunological features. J. Neurol. Neurosurg. Psychiatry 91, 1076–1084 (2020).

    PubMed  Google Scholar 

  62. Sabater, L. et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol. 13, 575–586 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Honorat, J. A. et al. IgLON5 antibody: neurological accompaniments and outcomes in 20 patients. Neurol. Neuroimmunol. Neuroinflamm. 4, e385 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Cabezudo-Garcia, P., Mena-Vazquez, N., Estivill Torrus, G. & Serrano-Castro, P. Response to immunotherapy in anti-IgLON5 disease: a systematic review. Acta Neurol. Scand. 141, 263–270 (2020).

    CAS  PubMed  Google Scholar 

  65. Shambrook, P. et al. Delayed benefit from aggressive immunotherapy in waxing and waning anti-IgLON5 disease. Neurol. Neuroimmunol. Neuroinflamm. 8, e1009 (2021).

    PubMed  PubMed Central  Google Scholar 

  66. Gaig, C. et al. Clinical manifestations of the anti-IgLON5 disease. Neurology 88, 1736–1743 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gaig, C. et al. HLA and microtubule-associated protein tau H1 haplotype associations in anti-IgLON5 disease. Neurol. Neuroimmunol. Neuroinflamm. 6, e605 (2019).

    PubMed  PubMed Central  Google Scholar 

  68. Grant-Peters, M. et al. No strong HLA association with MOG antibody disease in the UK population. Ann. Clin. Transl. Neurol. 8, 1502–1507 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Olsson, T., Barcellos, L. F. & Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 13, 25–36 (2017).

    CAS  PubMed  Google Scholar 

  70. Salzer, J. et al. Smoking as a risk factor for multiple sclerosis. Mult. Scler. 19, 1022–1027 (2013).

    PubMed  Google Scholar 

  71. Simpson, S. Jr., Blizzard, L., Otahal, P., Van der Mei, I. & Taylor, B. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J. Neurol. Neurosurg. Psychiatry 82, 1132–1141 (2011).

    PubMed  Google Scholar 

  72. Munger, K. L., Levin, L. I., Hollis, B. W., Howard, N. S. & Ascherio, A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296, 2832–2838 (2006).

    CAS  PubMed  Google Scholar 

  73. Bjornevik, K. et al. Sun exposure and multiple sclerosis risk in Norway and Italy: the EnvIMS study. Mult. Scler. 20, 1042–1049 (2014).

    PubMed  Google Scholar 

  74. Staples, J., Ponsonby, A. L. & Lim, L. Low maternal exposure to ultraviolet radiation in pregnancy, month of birth, and risk of multiple sclerosis in offspring: longitudinal analysis. BMJ 340, c1640 (2010).

    PubMed  PubMed Central  Google Scholar 

  75. Munger, K. L., Chitnis, T. & Ascherio, A. Body size and risk of MS in two cohorts of US women. Neurology 73, 1543–1550 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Probstel, A. K. & Baranzini, S. E. The Role of the gut microbiome in multiple sclerosis risk and progression: towards characterization of the “MS microbiome”. Neurotherapeutics 15, 126–134 (2018).

    CAS  PubMed  Google Scholar 

  77. Greer, J. M. & McCombe, P. A. The role of epigenetic mechanisms and processes in autoimmune disorders. Biologics 6, 307–327 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 459–480 (2019).

    Google Scholar 

  79. Kular, L. et al. DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nat. Commun. 9, 2397 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. Souren, N. Y. et al. DNA methylation signatures of monozygotic twins clinically discordant for multiple sclerosis. Nat. Commun. 10, 2094 (2019).

    PubMed  PubMed Central  Google Scholar 

  81. Shimada, M., Miyagawa, T., Toyoda, H., Tokunaga, K. & Honda, M. Epigenome-wide association study of DNA methylation in narcolepsy: an integrated genetic and epigenetic approach. Sleep https://doi.org/10.1093/sleep/zsy019 (2018).

    Article  PubMed  Google Scholar 

  82. Dai, R. & Ahmed, S. A. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl. Res. 157, 163–179 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Keller, A. et al. Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One 4, e7440 (2009).

    PubMed  PubMed Central  Google Scholar 

  84. Waschbisch, A. et al. Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis. PLoS One 6, e24604 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Keller, A. et al. Next-generation sequencing identifies altered whole blood microRNAs in neuromyelitis optica spectrum disorder which may permit discrimination from multiple sclerosis. J. Neuroinflamm. 12, 196 (2015).

    Google Scholar 

  86. Vaknin-Dembinsky, A. et al. Circulating microRNAs as biomarkers for rituximab therapy, in neuromyelitis optica (NMO). J. Neuroinflamm. 13, 179 (2016).

    Google Scholar 

  87. Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    CAS  PubMed  Google Scholar 

  88. Yuki, N., Yoshino, H., Sato, S. & Miyatake, T. Acute axonal polyneuropathy associated with anti-GM1 antibodies following Campylobacter enteritis. Neurology 40, 1900–1902 (1990).

    CAS  PubMed  Google Scholar 

  89. Yuki, N. et al. A bacterium lipopolysaccharide that elicits Guillain-Barre syndrome has a GM1 ganglioside-like structure. J. Exp. Med. 178, 1771–1775 (1993).

    CAS  PubMed  Google Scholar 

  90. Yuki, N. et al. Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome. Proc. Natl Acad. Sci. USA 101, 11404–11409 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rhodes, K. M. & Tattersfield, A. E. Guillain-Barre syndrome associated with Campylobacter infection. Br. Med. J. 285, 173–174 (1982).

    CAS  Google Scholar 

  92. Kirvan, C. A., Swedo, S. E., Heuser, J. S. & Cunningham, M. W. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat. Med. 9, 914–920 (2003).

    CAS  PubMed  Google Scholar 

  93. Yaddanapudi, K. et al. Passive transfer of streptococcus-induced antibodies reproduces behavioral disturbances in a mouse model of pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection. Mol. Psychiatry 15, 712–726 (2010).

    CAS  PubMed  Google Scholar 

  94. Brimberg, L. et al. Behavioral, pharmacological, and immunological abnormalities after streptococcal exposure: a novel rat model of Sydenham chorea and related neuropsychiatric disorders. Neuropsychopharmacology 37, 2076–2087 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Partinen, M. et al. Narcolepsy as an autoimmune disease: the role of H1N1 infection and vaccination. Lancet Neurol. 13, 600–613 (2014).

    CAS  PubMed  Google Scholar 

  96. Juvet, L. K., Robertson, A. H., Laake, I., Mjaaland, S. & Trogstad, L. Safety of influenza A H1N1pdm09 vaccines: an overview of systematic reviews. Front. Immunol. 12, 740048 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Szakacs, A., Darin, N. & Hallbook, T. Increased childhood incidence of narcolepsy in western Sweden after H1N1 influenza vaccination. Neurology 80, 1315–1321 (2013).

    PubMed  Google Scholar 

  98. Dauvilliers, Y. et al. Increased risk of narcolepsy in children and adults after pandemic H1N1 vaccination in France. Brain 136, 2486–2496 (2013).

    PubMed  Google Scholar 

  99. Han, F. et al. Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Ann. Neurol. 70, 410–417 (2011).

    PubMed  Google Scholar 

  100. Sarkanen, T. O., Alakuijala, A. P. E., Dauvilliers, Y. A. & Partinen, M. M. Incidence of narcolepsy after H1N1 influenza and vaccinations: systematic review and meta-analysis. Sleep Med. Rev. 38, 177–186 (2018).

    PubMed  Google Scholar 

  101. Bernard-Valnet, R. et al. Influenza vaccination induces autoimmunity against orexinergic neurons in a mouse model for narcolepsy. Brain 145, 2018–2030 (2022).

    PubMed  Google Scholar 

  102. Latorre, D. et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature 562, 63–68 (2018).

    CAS  PubMed  Google Scholar 

  103. Handel, A. E. et al. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS One 5, e12496 (2010).

    PubMed  PubMed Central  Google Scholar 

  104. Belbasis, L., Bellou, V., Evangelou, E., Ioannidis, J. P. & Tzoulaki, I. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 14, 263–273 (2015).

    PubMed  Google Scholar 

  105. Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022).

    CAS  PubMed  Google Scholar 

  106. Abrahamyan, S. et al. Complete Epstein-Barr virus seropositivity in a large cohort of patients with early multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 91, 681–686 (2020).

    PubMed  Google Scholar 

  107. Jacobs, B. M., Giovannoni, G., Cuzick, J. & Dobson, R. Systematic review and meta-analysis of the association between Epstein-Barr virus, multiple sclerosis and other risk factors. Mult. Scler. 26, 1281–1297 (2020).

    PubMed  PubMed Central  Google Scholar 

  108. Hedstrom, A. K., Lima Bomfim, I., Hillert, J., Olsson, T. & Alfredsson, L. Obesity interacts with infectious mononucleosis in risk of multiple sclerosis. Eur. J. Neurol. 22, 578–e38 (2015).

    CAS  PubMed  Google Scholar 

  109. Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Pruss, H. et al. N-methyl-D-aspartate receptor antibodies in herpes simplex encephalitis. Ann. Neurol. 72, 902–911 (2012).

    PubMed  PubMed Central  Google Scholar 

  111. Titulaer, M. J., Leypoldt, F. & Dalmau, J. Antibodies to N-methyl-D-aspartate and other synaptic receptors in choreoathetosis and relapsing symptoms post-herpes virus encephalitis. Mov. Disord. 29, 3–6 (2014).

    CAS  PubMed  Google Scholar 

  112. Hacohen, Y. et al. N-methyl-D-aspartate receptor antibodies in post-herpes simplex virus encephalitis neurological relapse. Mov. Disord. 29, 90–96 (2014).

    CAS  PubMed  Google Scholar 

  113. Mohammad, S. S. et al. Herpes simplex encephalitis relapse with chorea is associated with autoantibodies to N-methyl-D-aspartate receptor or dopamine-2 receptor. Mov. Disord. 29, 117–122 (2014).

    CAS  PubMed  Google Scholar 

  114. Armangue, T. et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol. 17, 760–772 (2018).

    PubMed  PubMed Central  Google Scholar 

  115. Linnoila, J. et al. Mouse model of anti-NMDA receptor post-herpes simplex encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 6, e529 (2019).

    PubMed  Google Scholar 

  116. Liu, B. et al. Autoimmune encephalitis after Japanese encephalitis in children: a prospective study. J. Neurol. Sci. 424, 117394 (2021).

    CAS  PubMed  Google Scholar 

  117. Dalmau, J. & Graus, F. Antibody-mediated encephalitis. N. Engl. J. Med. 378, 840–851 (2018).

    PubMed  Google Scholar 

  118. Al-Diwani, A. et al. Cervical lymph nodes and ovarian teratomas as germinal centres in NMDA receptor-antibody encephalitis. Brain 145, 2742–2754 (2022).

    PubMed  PubMed Central  Google Scholar 

  119. Varrin-Doyer, M. et al. Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann. Neurol. 72, 53–64 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Cree, B. A., Spencer, C. M., Varrin-Doyer, M., Baranzini, S. E. & Zamvil, S. S. Gut microbiome analysis in neuromyelitis optica reveals overabundance of Clostridium perfringens. Ann. Neurol. 80, 443–447 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Pandit, L. et al. Clostridium bolteae is elevated in neuromyelitis optica spectrum disorder in India and shares sequence similarity with AQP4. Neurol. Neuroimmunol. Neuroinflamm. 8, e907 (2021).

    PubMed  Google Scholar 

  122. Graus, F., Elkon, K. B., Cordon-Cardo, C. & Posner, J. B. Sensory neuronopathy and small cell lung cancer. Antineuronal antibody that also reacts with the tumor. Am. J. Med. 80, 45–52 (1986).

    CAS  PubMed  Google Scholar 

  123. Graus, F. et al. Updated diagnostic criteria for paraneoplastic neurologic syndromes. Neurol. Neuroimmunol. Neuroinflamm. 8, e1014 (2021).

    PubMed  PubMed Central  Google Scholar 

  124. Zekeridou, A. & Lennon, V. A. Neurologic autoimmunity in the era of checkpoint inhibitor cancer immunotherapy. Mayo Clin. Proc. 94, 1865–1878 (2019).

    PubMed  Google Scholar 

  125. Dubey, D. et al. Expanded clinical phenotype, oncological associations, and immunopathologic insights of paraneoplastic Kelch-like protein-11 encephalitis. JAMA Neurol. 77, 1420–1429 (2020).

    PubMed  Google Scholar 

  126. Dubey, D. et al. Amphiphysin-IgG autoimmune neuropathy: a recognizable clinicopathologic syndrome. Neurology 93, e1873–e1880 (2019).

    CAS  PubMed  Google Scholar 

  127. Meglic, B., Graus, F. & Grad, A. Anti-Yo-associated paraneoplastic cerebellar degeneration in a man with gastric adenocarcinoma. J. Neurol. Sci. 185, 135–138 (2001).

    CAS  PubMed  Google Scholar 

  128. Simabukuro, M. M. et al. GABAA receptor and LGI1 antibody encephalitis in a patient with thymoma. Neurol. Neuroimmunol. Neuroinflamm. 2, e73 (2015).

    PubMed  PubMed Central  Google Scholar 

  129. Makuch, M. et al. N-methyl-D-aspartate receptor antibody production from germinal center reactions: therapeutic implications. Ann. Neurol. 83, 553–561 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Guasp, M., Modena, Y., Armangue, T., Dalmau, J. & Graus, F. Clinical features of seronegative, but CSF antibody-positive, anti-NMDA receptor encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 7, e659 (2020).

    PubMed  PubMed Central  Google Scholar 

  131. Brioschi, S. et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 373, eabf9277 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Mayes, P. A., Hance, K. W. & Hoos, A. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug Discov. 17, 509–527 (2018).

    CAS  PubMed  Google Scholar 

  133. Sechi, E. et al. Neurologic autoimmunity and immune checkpoint inhibitors: autoantibody profiles and outcomes. Neurology 95, e2442–e2452 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Vogrig, A. et al. Central nervous system complications associated with immune checkpoint inhibitors. J. Neurol. Neurosurg. Psychiatry 91, 772–778 (2020).

    PubMed  Google Scholar 

  135. Marini, A. et al. Neurologic adverse events of immune checkpoint inhibitors: a systematic review. Neurology 96, 754–766 (2021).

    CAS  PubMed  Google Scholar 

  136. Iwama, S. et al. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci. Transl. Med. 6, 230ra245 (2014).

    Google Scholar 

  137. Yshii, L. M. et al. CTLA4 blockade elicits paraneoplastic neurological disease in a mouse model. Brain 139, 2923–2934 (2016).

    PubMed  Google Scholar 

  138. Mammen, A. L. et al. Pre-existing antiacetylcholine receptor autoantibodies and B cell lymphopaenia are associated with the development of myositis in patients with thymoma treated with avelumab, an immune checkpoint inhibitor targeting programmed death-ligand 1. Ann. Rheum. Dis. 78, 150–152 (2019).

    CAS  PubMed  Google Scholar 

  139. Vogrig, A. et al. Increased frequency of anti-Ma2 encephalitis associated with immune checkpoint inhibitors. Neurol. Neuroimmunol. Neuroinflamm. 6, e604 (2019).

    PubMed  PubMed Central  Google Scholar 

  140. Chang, H. et al. HLA-B27 association of autoimmune encephalitis induced by PD-L1 inhibitor. Ann. Clin. Transl. Neurol. 7, 2243–2250 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Gerdes, L. A. et al. CTLA4 as Immunological checkpoint in the development of multiple sclerosis. Ann. Neurol. 80, 294–300 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. Das, S. & Johnson, D. B. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J. Immunother. Cancer 7, 306 (2019).

    PubMed  PubMed Central  Google Scholar 

  143. Maddison, P., Newsom-Davis, J., Mills, K. R. & Souhami, R. L. Favourable prognosis in Lambert-Eaton myasthenic syndrome and small-cell lung carcinoma. Lancet 353, 117–118 (1999).

    CAS  PubMed  Google Scholar 

  144. Wirtz, P. W. et al. P/Q-type calcium channel antibodies, Lambert-Eaton myasthenic syndrome and survival in small cell lung cancer. J. Neuroimmunol. 164, 161–165 (2005).

    CAS  PubMed  Google Scholar 

  145. Rudnick, E. et al. Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: clinical outcome and antineuronal antibodies-a report from the Children’s Cancer Group Study. Med. Pediatr. Oncol. 36, 612–622 (2001).

    CAS  PubMed  Google Scholar 

  146. Wenke, N. K. et al. N-methyl-D-aspartate receptor dysfunction by unmutated human antibodies against the NR1 subunit. Ann. Neurol. 85, 771–776 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Kornau, H. C. et al. Human cerebrospinal fluid monoclonal LGI1 autoantibodies increase neuronal excitability. Ann. Neurol. 87, 405–418 (2020).

    CAS  PubMed  Google Scholar 

  148. Kowarik, M. C. et al. The cerebrospinal fluid immunoglobulin transcriptome and proteome in neuromyelitis optica reveals central nervous system-specific B cell populations. J. Neuroinflamm. 12, 19 (2015).

    Google Scholar 

  149. Zrzavy, T. et al. Neuropathological variability within a spectrum of NMDAR-encephalitis. Ann. Neurol. 90, 725–737 (2021).

    CAS  PubMed  Google Scholar 

  150. Damato, V. et al. Rituximab abrogates aquaporin-4-specific germinal center activity in patients with neuromyelitis optica spectrum disorders. Proc. Natl Acad. Sci. USA 119, e2121804119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Irani, S. R. et al. N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain 133, 1655–1667 (2010).

    PubMed  PubMed Central  Google Scholar 

  152. Ramberger, M. et al. Distinctive binding properties of human monoclonal LGI1 autoantibodies determine pathogenic mechanisms. Brain 143, 1731–1745 (2020).

    PubMed  PubMed Central  Google Scholar 

  153. Wilson, R. et al. Condition-dependent generation of aquaporin-4 antibodies from circulating B cells in neuromyelitis optica. Brain 141, 1063–1074 (2018).

    PubMed  PubMed Central  Google Scholar 

  154. Winklmeier, S. et al. Identification of circulating MOG-specific B cells in patients with MOG antibodies. Neurol. Neuroimmunol. Neuroinflamm. 6, 625 (2019).

    PubMed  PubMed Central  Google Scholar 

  155. Cotzomi, E. et al. Early B cell tolerance defects in neuromyelitis optica favour anti-AQP4 autoantibody production. Brain 142, 1598–1615 (2019).

    PubMed  PubMed Central  Google Scholar 

  156. Hara, M. et al. Clinical and pathogenic significance of IgG, IgA, and IgM antibodies against the NMDA receptor. Neurology 90, e1386–e1394 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Pruss, H. et al. Retrospective analysis of NMDA receptor antibodies in encephalitis of unknown origin. Neurology 75, 1735–1739 (2010).

    CAS  PubMed  Google Scholar 

  158. Pruss, H. et al. IgA NMDA receptor antibodies are markers of synaptic immunity in slow cognitive impairment. Neurology 78, 1743–1753 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Burt, R. K. et al. Autologous nonmyeloablative hematopoietic stem cell transplantation for neuromyelitis optica. Neurology 93, e1732–e1741 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kothur, K. et al. Utility of CSF Cytokine/chemokines as markers of active intrathecal inflammation: comparison of demyelinating, anti-NMDAR and enteroviral encephalitis. PLoS One 11, e0161656 (2016).

    PubMed  PubMed Central  Google Scholar 

  161. Kothur, K. et al. B cell, Th17, and neutrophil related cerebrospinal fluid cytokine/chemokines are elevated in MOG antibody associated demyelination. PLoS One 11, e0149411 (2016).

    PubMed  PubMed Central  Google Scholar 

  162. Kothur, K., Wienholt, L., Brilot, F. & Dale, R. C. CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: a systematic review. Cytokine 77, 227–237 (2016).

    PubMed  Google Scholar 

  163. Giovannelli, J. et al. A meta-analysis comparing first-line immunosuppressants in neuromyelitis optica. Ann. Clin. Transl. Neurol. 8, 2025–2037 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Thaler, F. S. et al. Rituximab treatment and long-term outcome of patients with autoimmune encephalitis: real-world evidence from the GENERATE Registry. Neurol. Neuroimmunol. Neuroinflamm. 8, e1088 (2021).

    PubMed  PubMed Central  Google Scholar 

  165. Nosadini, M. et al. Use and safety of immunotherapeutic management of N-methyl-d-aspartate receptor antibody encephalitis: a meta-analysis. JAMA Neurol. 78, 1333–1344 (2021).

    PubMed  Google Scholar 

  166. Pittock, S. J. et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 12, 554–562 (2013).

    CAS  PubMed  Google Scholar 

  167. Pittock, S. J. et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N. Engl. J. Med. 381, 614–625 (2019).

    CAS  PubMed  Google Scholar 

  168. Jun, J. S., Lee, S. T., Kim, R., Chu, K. & Lee, S. K. Tocilizumab treatment for new onset refractory status epilepticus. Ann. Neurol. 84, 940–945 (2018).

    CAS  PubMed  Google Scholar 

  169. Kothur, K. et al. An open-label trial of JAK 1/2 blockade in progressive IFIH1-associated neuroinflammation. Neurology 90, 289–291 (2018).

    CAS  PubMed  Google Scholar 

  170. Lee, W. J. et al. Tocilizumab in autoimmune encephalitis refractory to rituximab: an institutional cohort study. Neurotherapeutics 13, 824–832 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Hanna, J., Hossain, G. S. & Kocerha, J. The potential for microRNA therapeutics and clinical research. Front. Genet. 10, 478 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Ramanathan, S., Dale, R. C. & Brilot, F. Anti-MOG antibody: the history, clinical phenotype, and pathogenicity of a serum biomarker for demyelination. Autoimmun. Rev. 15, 307–324 (2016).

    CAS  PubMed  Google Scholar 

  173. Houzen, H. et al. Prevalence and clinical features of neuromyelitis optica spectrum disorders in northern Japan. Neurology 89, 1995–2001 (2017).

    PubMed  Google Scholar 

  174. Viswanathan, S. & Wah, L. M. A nationwide epidemiological study on the prevalence of multiple sclerosis and neuromyelitis optica spectrum disorder with important multi-ethnic differences in Malaysia. Mult. Scler. 25, 1452–1461 (2019).

    PubMed  Google Scholar 

  175. Simpson, A., Mowry, E. M. & Newsome, S. D. Early aggressive treatment approaches for multiple sclerosis. Curr. Treat. Options Neurol. 23, 19 (2021).

    PubMed  PubMed Central  Google Scholar 

  176. Velasco, M. et al. Effectiveness of treatments in neuromyelitis optica to modify the course of disease in adult patients. Systematic review of literature. Mult. Scler. Relat. Disord. 50, 102869 (2021).

    CAS  PubMed  Google Scholar 

  177. Kim, S. H. et al. Less frequent rituximab retreatment maintains remission of neuromyelitis optica spectrum disorder, following long-term rituximab treatment. J. Neurol. Neurosurg. Psychiatry 90, 486–487 (2019).

    PubMed  Google Scholar 

  178. Kim, Y. et al. Functional impairment of CD19+CD24hiCD38hi B cells in neuromyelitis optica spectrum disorder is restored by B cell depletion therapy. Sci. Transl. Med. 13, eabk2132 (2021).

    CAS  PubMed  Google Scholar 

  179. Belot, A. et al. Protein kinase cdelta deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum. 65, 2161–2171 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Atallah, I. et al. Immune deficiency, autoimmune disease and intellectual disability: a pleiotropic disorder caused by biallelic variants in the TPP2 gene. Clin. Genet. 99, 780–788 (2021).

    CAS  PubMed  Google Scholar 

  181. Briggs, T. A. et al. Spondyloenchondrodysplasia due to mutations in ACP5: a comprehensive survey. J. Clin. Immunol. 36, 220–234 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Toubiana, J. et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 127, 3154–3164 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Schuh, E. et al. Expanding spectrum of neurologic manifestations in patients with NLRP3 low-penetrance mutations. Neurol. Neuroimmunol. Neuroinflamm. 2, e109 (2015).

    PubMed  PubMed Central  Google Scholar 

  184. Zhou, Q. et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat. Genet. 48, 67–73 (2016).

    CAS  PubMed  Google Scholar 

  185. Duan, R. et al. A De novo frameshift mutation in TNFAIP3 impairs A20 deubiquitination function to cause neuropsychiatric systemic lupus erythematosus. J. Clin. Immunol. 39, 795–804 (2019).

    CAS  PubMed  Google Scholar 

  186. Moseley, N. et al. Anti-voltage-gated potassium channel (VGKC) antibodies and acquired neuromyotonia in patients with immune dysregulation, polyendocrinopathy, enteropathy X-lined (IPEX) syndrome. J. Clin. Immunol. 41, 1972–1974 (2021).

    CAS  PubMed  Google Scholar 

  187. Schindler, M. K. et al. Haploinsufficiency of immune checkpoint receptor CTLA4 induces a distinct neuroinflammatory disorder. J. Clin. Invest. 130, 5551–5561 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Kopczak, A. et al. GAD antibody-associated limbic encephalitis in a young woman with APECED. Endocrinol. Diabetes Metab. Case Rep. 2017, 17–0010 (2017).

    PubMed  PubMed Central  Google Scholar 

  189. van Sonderen, A. et al. Anti-LGI1 encephalitis is strongly associated with HLA-DR7 and HLA-DRB4. Ann. Neurol. 81, 193–198 (2017).

    PubMed  Google Scholar 

  190. Sun, X. et al. Anti-SOX1 antibodies in paraneoplastic neurological syndrome. J. Clin. Neurol. 16, 530–546 (2020).

    PubMed  PubMed Central  Google Scholar 

  191. McKeon, A. et al. Purkinje cell cytoplasmic autoantibody type 1 accompaniments: the cerebellum and beyond. Arch. Neurol. 68, 1282–1289 (2011).

    PubMed  Google Scholar 

  192. Venkatraman, A. & Opal, P. Paraneoplastic cerebellar degeneration with anti-Yo antibodies — a review. Ann. Clin. Transl. Neurol. 3, 655–663 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Lorusso, L. et al. Immunophenotypical characterization of paraneoplastic neurological syndrome patients: a multicentric study. J. Biosci. 46, 13 (2021).

    CAS  PubMed  Google Scholar 

  194. de Graaff, E. et al. Identification of delta/notch-like epidermal growth factor-related receptor as the Tr antigen in paraneoplastic cerebellar degeneration. Ann. Neurol. 71, 815–824 (2012).

    PubMed  Google Scholar 

  195. Dubey, D. et al. Autoimmune CRMP5 neuropathy phenotype and outcome defined from 105 cases. Neurology 90, e103–e110 (2018).

    CAS  PubMed  Google Scholar 

  196. Jitprapaikulsan, J. et al. Phenotypic presentations of paraneoplastic neuropathies associated with MAP1B-IgG. J. Neurol. Neurosurg. Psychiatry 91, 328–330 (2020).

    PubMed  Google Scholar 

  197. Hammami, M. B. et al. Paraneoplastic cochleovestibulopathy: clinical presentations, oncological and serological associations. J. Neurol. Neurosurg. Psychiatry 92, 1181–1185 (2021).

    PubMed  Google Scholar 

  198. Mandel-Brehm, C. et al. Kelch-like protein 11 antibodies in seminoma-associated paraneoplastic encephalitis. N. Engl. J. Med. 381, 47–54 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Valencia-Sanchez, C. et al. Characterisation of TRIM46 autoantibody-associated paraneoplastic neurological syndrome. J. Neurol. Neurosurg. Psychiatry 93, 196–200 (2022).

    PubMed  Google Scholar 

  200. Hoftberger, R., Rosenfeld, M. R. & Dalmau, J. Update on neurological paraneoplastic syndromes. Curr. Opin. Oncol. 27, 489–495 (2015).

    PubMed  PubMed Central  Google Scholar 

  201. Simard, C. et al. Clinical spectrum and diagnostic pitfalls of neurologic syndromes with Ri antibodies. Neurol. Neuroimmunol. Neuroinflamm. 7, e699 (2020).

    PubMed  PubMed Central  Google Scholar 

  202. Joubert, B. et al. Clinical spectrum of encephalitis associated with antibodies against the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor: case series and review of the literature. JAMA Neurol. 72, 1163–1169 (2015).

    PubMed  Google Scholar 

  203. McKay, J. H., Dimberg, E. L. & Lopez Chiriboga, A. S. A systematic review of gamma-aminobutyric acid receptor type B autoimmunity. Neurol. Neurochir. Pol. 53, 1–7 (2019).

    PubMed  Google Scholar 

  204. Spatola, M. et al. Encephalitis with mGluR5 antibodies: symptoms and antibody effects. Neurology 90, e1964–e1972 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Zalewski, N. L. et al. P/Q- and N-type calcium-channel antibodies: oncological, neurological, and serological accompaniments. Muscle Nerve 54, 220–227 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Bost, C. et al. Malignant tumors in autoimmune encephalitis with anti-NMDA receptor antibodies. J. Neurol. 265, 2190–2200 (2018).

    CAS  PubMed  Google Scholar 

  207. Christ, M. et al. Autoimmune encephalitis associated with antibodies against the metabotropic glutamate receptor type 1: case report and review of the literature. Ther. Adv. Neurol. Disord. 12, 1756286419847418 (2019).

    PubMed  PubMed Central  Google Scholar 

  208. Petit-Pedrol, M. et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol. 13, 276–286 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Spatola, M. et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology 88, 1012–1020 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Irani, S. R. et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann. Neurol. 72, 241–255 (2012).

    PubMed  Google Scholar 

  211. Dubey, D. et al. Autoimmune GFAP astrocytopathy: prospective evaluation of 90 patients in 1 year. J. Neuroimmunol. 321, 157–163 (2018).

    CAS  PubMed  Google Scholar 

  212. Budhram, A. et al. Clinical spectrum of high-titre GAD65 antibodies. J. Neurol. Neurosurg. Psychiatry 92, 645–654 (2021).

    PubMed  Google Scholar 

  213. van Sonderen, A. et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 87, 1449–1456 (2016).

    PubMed  Google Scholar 

  214. Tobin, W. O. et al. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 83, 1797–1803 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Carvajal-Gonzalez, A. et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 137, 2178–2192 (2014).

    PubMed  PubMed Central  Google Scholar 

  216. Sepulveda, M. et al. Clinical profile of patients with paraneoplastic neuromyelitis optica spectrum disorder and aquaporin-4 antibodies. Mult. Scler. 24, 1753–1759 (2018).

    CAS  PubMed  Google Scholar 

  217. Wildemann, B. et al. MOG-expressing teratoma followed by MOG-IgG-positive optic neuritis. Acta Neuropathol. 141, 127–131 (2021).

    CAS  PubMed  Google Scholar 

  218. Gresa-Arribas, N. et al. Human neurexin-3α antibodies associate with encephalitis and alter synapse development. Neurology 86, 2235–2242 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Dale, R. C. et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain 135, 3453–3468 (2012).

    PubMed  Google Scholar 

  220. Murphy, K. P., Kennedy, M. P., Barry, J. E., O’Regan, K. N. & Power, D. G. New-onset mediastinal and central nervous system sarcoidosis in a patient with metastatic melanoma undergoing CTLA4 monoclonal antibody treatment. Oncol. Res. Treat. 37, 351–353 (2014).

    CAS  PubMed  Google Scholar 

  221. Bukhari, W. et al. NMOSD and MS prevalence in the Indigenous populations of Australia and New Zealand. J. Neurol. 269, 836–845 (2022).

    PubMed  Google Scholar 

  222. Papp, V. et al. Worldwide incidence and prevalence of neuromyelitis optica: a systematic review. Neurology 96, 59–77 (2021).

    PubMed  PubMed Central  Google Scholar 

  223. van Sonderen, A. et al. The clinical spectrum of Caspr2 antibody-associated disease. Neurology 87, 521–528 (2016).

    PubMed  PubMed Central  Google Scholar 

  224. Syrbe, S. et al. CASPR2 autoimmunity in children expanding to mild encephalopathy with hypertension. Neurology 94, e2290–e2301 (2020).

    CAS  PubMed  Google Scholar 

  225. Jarius, S. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J. Neuroinflamm. 13, 280 (2016).

    Google Scholar 

  226. Wegener-Panzer, A. et al. Clinical and imaging features of children with autoimmune encephalitis and MOG antibodies. Neurol. Neuroimmunol. Neuroinflamm. 7, e731 (2020).

    PubMed  PubMed Central  Google Scholar 

  227. Medawar, P. B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Engelhardt, B. et al. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 132, 317–338 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Schlager, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

    PubMed  Google Scholar 

  230. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Carare, R. O., Hawkes, C. A. & Weller, R. O. Afferent and efferent immunological pathways of the brain. Anatomy, function and failure. Brain Behav. Immun. 36, 9–14 (2014).

    CAS  PubMed  Google Scholar 

  232. Hughes, E. G. et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J. Neurosci. 30, 5866–5875 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Haselmann, H. et al. Human autoantibodies against the AMPA receptor subunit GluA2 induce receptor reorganization and memory dysfunction. Neuron 100, 91–105.e9 (2018).

    CAS  PubMed  Google Scholar 

  234. Petit-Pedrol, M. et al. LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory. Brain 141, 3144–3159 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.R. and R.C.D. researched data for the article and wrote the article. All authors contributed substantially to discussion of the content, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Russell C. Dale.

Ethics declarations

Competing interests

S.R. has received research funding from the National Health and Medical Research Council (NHMRC, Australia), the Petre Foundation, the Brain Foundation (Australia), the Royal Australasian College of Physicians, and the University of Sydney. She is supported by an NHMRC Investigator Grant (GNT2008339). She serves as a consultant on an advisory board for UCB and Limbic Neurology, and has been an invited speaker for Biogen, Excemed and Limbic Neurology. F.B. has received research funding from NSW Health, MS Australia, the NHMRC (Australia), the Medical Research Future Fund (Australia) and Novartis. She was on an advisory board for Novartis and Merck, and has been an invited speaker for Biogen, Novartis and Limbic Neurology. S.R.I. is supported by the Wellcome Trust (104079/Z/14/Z) and has received research funding from the UCB–Oxford University Alliance, BMA Research Grants — Vera Down (2013) and Margaret Temple (2017), Fulbright UK-US commission (MS Society research award), and Epilepsy Research UK (P1201). S.R.I. is a co-applicant on ‘Diagnostic Strategy to improve specificity of CASPR2 antibody detection’ (PCT/G82019 /051257) and receives royalties on a licenced patent application WO/210/046716 (PCT/GB2009/051441) entitled Neurological Autoimmune Disorders. S.R.I. has received honoraria from UCB, Immunovant, MedImmun, Roche, Cerebral therapeutics, ADC therapeutics, Brain and Medlink Neurology, and has received research support from CSL Behring, UCB and ONO Pharma. R.C.D. has received research funding from the Star Scientific Foundation, The Trish Multiple Sclerosis Research Foundation, Multiple Sclerosis Research Australia, the Petre Foundation and the NHMRC (Australia; Investigator Grant). He has also received honoraria from Biogen Idec as an invited speaker.

Peer review

Peer review information

Nature Reviews Neurology thanks J. Dalmau, A. McKeon and S. Vernino for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanathan, S., Brilot, F., Irani, S.R. et al. Origins and immunopathogenesis of autoimmune central nervous system disorders. Nat Rev Neurol 19, 172–190 (2023). https://doi.org/10.1038/s41582-023-00776-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00776-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing