Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epstein–Barr virus as a leading cause of multiple sclerosis: mechanisms and implications

Abstract

Epidemiological studies have provided compelling evidence that multiple sclerosis (MS) is a rare complication of infection with the Epstein–Barr virus (EBV), a herpesvirus that infects more than 90% of the global population. This link was long suspected because the risk of MS increases markedly after infectious mononucleosis (symptomatic primary EBV infection) and with high titres of antibodies to specific EBV antigens. However, it was not until 2022 that a longitudinal study demonstrated that MS risk is minimal in individuals who are not infected with EBV and that it increases over 30-fold following EBV infection. Over the past few years, a number of studies have provided clues on the underlying mechanisms, which might help us to develop more targeted treatments for MS. In this Review, we discuss the evidence linking EBV to the development of MS and the mechanisms by which the virus is thought to cause the disease. Furthermore, we discuss implications for the treatment and prevention of MS, including the use of antivirals and vaccines.

Key points

  • In a longitudinal study that followed individuals seronegative for Epstein–Barr virus (EBV) over time, multiple sclerosis (MS) risk increased more than 30-fold after EBV infection. The results are unlikely to be explained by reverse causation or confounding factors.

  • Among individuals who are EBV positive, those with a history of infectious mononucleosis or with high antibody titres against EBV nuclear antigens have an increased risk of developing MS.

  • Several mechanisms have been proposed to explain the link between EBV and MS, including molecular mimicry and an altered immune response to poorly controlled EBV infection.

  • Vaccines that might prevent EBV infection are currently being developed. If effective, these vaccines would be expected to prevent most MS cases.

  • Targeting EBV with therapeutic vaccines or antiviral drugs could represent a novel treatment strategy for MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MS risk factors and disease course.
Fig. 2: Mechanistic links between EBV infection and MS.
Fig. 3: EBV-targeted strategies to prevent or ameliorate MS.

Similar content being viewed by others

References

  1. Murray, J. Infection as a cause of multiple sclerosis. BMJ 325, 1128 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cook, S. D. Multiple sclerosis. Arch. Neurol. 55, 421–423 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Kurtzke, J. F. An epidemiologic approach to multiple sclerosis. Arch. Neurol. 14, 213–222 (1966).

    Article  CAS  PubMed  Google Scholar 

  4. Gale, C. R. & Martyn, C. N. Migrant studies in multiple sclerosis. Prog. Neurobiol. 47, 425–448 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Kurtzke, J. F. & Heltberg, A. Multiple sclerosis in the Faroe Islands: an epitome. J. Clin. Epidemiol. 54, 1–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Kurtzke, J. F., Gudmundsson, K. R. & Bergmann, S. Multiple sclerosis in Iceland: 1. Evidence of a postwar epidemic. Neurology 32, 143–150 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Poskanzer, D. C., Prenney, L. B., Sheridan, J. L. & Kondy, J. Y. Multiple sclerosis in the Orkney and Shetland Islands. I: Epidemiology, clinical factors, and methodology. J. Epidemiol. Commun. Health 34, 229–239 (1980).

    Article  CAS  Google Scholar 

  8. Bray, P. F., Bloomer, L. C., Salmon, V. C., Bagley, M. H. & Larsen, P. D. Epstein–Barr virus infection and antibody synthesis in patients with multiple sclerosis. Arch. Neurol. 40, 406–408 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Larsen, P. D., Bloomer, L. C. & Bray, P. F. Epstein–Barr nuclear antigen and viral capsid antigen antibody titers in multiple sclerosis. Neurology 35, 435–438 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Sumaya, C. V., Myers, L. W. & Ellison, G. W. Epstein–Barr virus antibodies in multiple sclerosis. Arch. Neurol. 37, 94–96 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Thacker, E. L., Mirzaei, F. & Ascherio, A. Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann. Neurol. 59, 499–503 (2006).

    Article  PubMed  Google Scholar 

  12. DeLorenze, G. N. et al. Epstein–Barr virus and multiple sclerosis: evidence of association from a prospective study with long-term follow-up. Arch. Neurol. 63, 839–844 (2006).

    Article  PubMed  Google Scholar 

  13. Levin, L. I. et al. Temporal relationship between elevation of Epstein–Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA 293, 2496–2500 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Munger, K. L., Levin, L. I., O’Reilly, E. J., Falk, K. I. & Ascherio, A. Anti-Epstein–Barr virus antibodies as serological markers of multiple sclerosis: a prospective study among United States military personnel. Mult. Scler. 17, 1185–1193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sundstrom, P. et al. An altered immune response to Epstein–Barr virus in multiple sclerosis: a prospective study. Neurology 62, 2277–2282 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Nielsen, T. R. et al. Multiple sclerosis after infectious mononucleosis. Arch. Neurol. 64, 72–75 (2007).

    Article  PubMed  Google Scholar 

  17. Jacobs, B. M., Giovannoni, G., Cuzick, J. & Dobson, R. Systematic review and meta-analysis of the association between Epstein–Barr virus, multiple sclerosis and other risk factors. Mult. Scler. 26, 1281–1297 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dobson, R., Kuhle, J., Middeldorp, J. & Giovannoni, G. Epstein–Barr-negative MS: a true phenomenon? Neurol. Neuroimmunol. Neuroinflamm. 4, e318 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Abrahamyan, S. et al. Complete Epstein–Barr virus seropositivity in a large cohort of patients with early multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 91, 681–686 (2020).

    Article  PubMed  Google Scholar 

  20. Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein–Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Burkitt, D. A sarcoma involving the jaws in African children. Br. J. Surg. 46, 218–223 (1958).

    Article  CAS  PubMed  Google Scholar 

  22. Epstein, M. A., Achong, B. G. & Barr, Y. M. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1, 702–703 (1964).

    Article  CAS  PubMed  Google Scholar 

  23. Hjalgrim, H., Friborg, J. & Melbye, M. in Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis (eds Arvin, A. et al.) (2007).

  24. Cohen, J. I. Epstein–Barr virus infection. N. Engl. J. Med. 343, 481–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Damania, B., Kenney, S. C. & Raab-Traub, N. Epstein–Barr virus: biology and clinical disease. Cell 185, 3652–3670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balfour, H. H. Jr. et al. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein–Barr virus infection in university students. J. Infect. Dis. 207, 80–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Houen, G. & Trier, N. H. Epstein–Barr virus and systemic autoimmune diseases. Front. Immunol. 11, 587380 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Bakkalci, D. et al. Risk factors for Epstein–Barr virus-associated cancers: a systematic review, critical appraisal, and mapping of the epidemiological evidence. J. Glob. Health 10, 010405 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Warner, H. B. & Carp, R. I. Multiple sclerosis etiology — an Epstein–Barr virus hypothesis. Med. Hypotheses 25, 93–97 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Hernan, M. A., Zhang, S. M., Lipworth, L., Olek, M. J. & Ascherio, A. Multiple sclerosis and age at infection with common viruses. Epidemiology 12, 301–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Xu, Y. et al. Hospital-diagnosed infections before age 20 and risk of a subsequent multiple sclerosis diagnosis. Brain 144, 2390–2400 (2021).

    Article  PubMed  Google Scholar 

  32. Crowcroft, N. S., Vyse, A., Brown, D. W. & Strachan, D. P. Epidemiology of Epstein–Barr virus infection in pre-adolescent children: application of a new salivary method in Edinburgh, Scotland. J. Epidemiol. Community Health 52, 101–104 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  34. Ascherio, A. & Munger, K. L. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann. Neurol. 61, 288–299 (2007).

    Article  PubMed  Google Scholar 

  35. Xu, Y. et al. Association of infectious mononucleosis in childhood and adolescence with risk for a subsequent multiple sclerosis diagnosis among siblings. JAMA Netw. Open. 4, e2124932 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Khalil, M. et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 14, 577–589 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Bjornevik, K. et al. Serum neurofilament light chain levels in patients with presymptomatic multiple sclerosis. JAMA Neurol. 77, 58–64 (2020).

    Article  PubMed  Google Scholar 

  38. Jons, D. et al. Axonal injury in asymptomatic individuals preceding onset of multiple sclerosis. Ann. Clin. Transl. Neurol. https://doi.org/10.1002/acn3.51568 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dowd, J. B., Aiello, A. E. & Alley, D. E. Socioeconomic disparities in the seroprevalence of cytomegalovirus infection in the US population: NHANES III. Epidemiol. Infect. 137, 58–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Ishii, T. et al. Clinical differentiation of infectious mononucleosis that is caused by Epstein–Barr virus or cytomegalovirus: a single-center case-control study in Japan. J. Infect. Chemother. 25, 431–436 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lipsitch, M., Tchetgen Tchetgen, E. & Cohen, T. Negative controls: a tool for detecting confounding and bias in observational studies. Epidemiology 21, 383–388 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Grut, V. et al. Cytomegalovirus seropositivity is associated with reduced risk of multiple sclerosis-a presymptomatic case-control study. Eur. J. Neurol. 28, 3072–3079 (2021).

    Article  PubMed  Google Scholar 

  43. VanderWeele, T. J. & Ding, P. Sensitivity analysis in observational research: introducing the e-value. Ann. Intern. Med. 167, 268–274 (2017).

    Article  PubMed  Google Scholar 

  44. Racaniello, V. R. One hundred years of poliovirus pathogenesis. Virology 344, 9–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Bodily, J. & Laimins, L. A. Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol. 19, 33–39 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Mechelli, R. et al. Epstein–Barr virus genetic variants are associated with multiple sclerosis. Neurology 84, 1362–1368 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Munger, K. L., Levin, L. I., Hollis, B. W., Howard, N. S. & Ascherio, A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296, 2832–2838 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Salzer, J. et al. Vitamin D as a protective factor in multiple sclerosis. Neurology 79, 2140–2145 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Hernan, M. A., Olek, M. J. & Ascherio, A. Cigarette smoking and incidence of multiple sclerosis. Am. J. Epidemiol. 154, 69–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Salzer, J. et al. Smoking as a risk factor for multiple sclerosis. Mult. Scler. 19, 1022–1027 (2013).

    Article  PubMed  Google Scholar 

  51. Munger, K. L. et al. Childhood body mass index and multiple sclerosis risk: a long-term cohort study. Mult. Scler. 19, 1323–1329 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Munger, K. L., Chitnis, T. & Ascherio, A. Body size and risk of MS in two cohorts of US women. Neurology 73, 1543–1550 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Munk Nielsen, N. et al. Multiple sclerosis among first- and second-generation immigrants in Denmark: a population-based cohort study. Brain 142, 1587–1597 (2019).

    Article  PubMed  Google Scholar 

  54. Hernan, M. A., Olek, M. J. & Ascherio, A. Geographic variation of MS incidence in two prospective studies of US women. Neurology 53, 1711–1718 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Wallin, M. T., Page, W. F. & Kurtzke, J. F. Multiple sclerosis in US veterans of the Vietnam era and later military service: race, sex, and geography. Ann. Neurol. 55, 65–71 (2004).

    Article  PubMed  Google Scholar 

  56. Wallin, M. T. et al. The Gulf War era multiple sclerosis cohort: age and incidence rates by race, sex and service. Brain 135, 1778–1785 (2012).

    Article  PubMed  Google Scholar 

  57. Koch-Henriksen, N., Thygesen, L. C., Stenager, E., Laursen, B. & Magyari, M. Incidence of MS has increased markedly over six decades in Denmark particularly with late onset and in women. Neurology 90, e1954–e1963 (2018).

    Article  PubMed  Google Scholar 

  58. Moutsianas, L. et al. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat. Genet. 47, 1107–1113 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ricigliano, V. A. et al. EBNA2 binds to genomic intervals associated with multiple sclerosis and overlaps with vitamin D receptor occupancy. PLoS One 10, e0119605 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Harley, J. B. et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat. Genet. 50, 699–707 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Afrasiabi, A., Parnell, G. P., Swaminathan, S., Stewart, G. J. & Booth, D. R. The interaction of multiple sclerosis risk loci with Epstein–Barr virus phenotypes implicates the virus in pathogenesis. Sci. Rep. 10, 193 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Olsson, T., Barcellos, L. F. & Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 13, 25–36 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Ascherio, A. & Munger, K. L. Epidemiology of multiple sclerosis: from risk factors to prevention — an update. Semin. Neurol. 36, 103–114 (2016).

    Article  PubMed  Google Scholar 

  64. Lennette, E. T. et al. Disease-related differences in antibody patterns against EBV-encoded nuclear antigens EBNA 1, EBNA 2 and EBNA 6. Eur. J. Cancer 29A, 1584–1589 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Munger, K. L. et al. Epstein–Barr virus and multiple sclerosis risk in the finnish maternity cohort. Ann. Neurol. 86, 436–442 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hedstrom, A. K. et al. High levels of Epstein–Barr virus nuclear antigen-1-specific antibodies and infectious mononucleosis act both independently and synergistically to increase multiple sclerosis risk. Front. Neurol. 10, 1368 (2019).

    Article  PubMed  Google Scholar 

  67. Makhani, N. & Tremlett, H. The multiple sclerosis prodrome. Nat. Rev. Neurol. 17, 515–521 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Boshoff, C. & Weiss, R. AIDS-related malignancies. Nat. Rev. Cancer 2, 373–382 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Gold, J. et al. HIV and lower risk of multiple sclerosis: beginning to unravel a mystery using a record-linked database study. J. Neurol. Neurosurg. Psychiatry 86, 9–12 (2015).

    Article  PubMed  Google Scholar 

  70. Drosu, N. C., Edelman, E. R. & Housman, D. E. Tenofovir prodrugs potently inhibit Epstein–Barr virus lytic DNA replication by targeting the viral DNA polymerase. Proc. Natl Acad. Sci. USA 117, 12368–12374 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Taylor, G. S., Long, H. M., Brooks, J. M., Rickinson, A. B. & Hislop, A. D. The immunology of Epstein–Barr virus-induced disease. Annu. Rev. Immunol. 33, 787–821 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Münz, C. Latency and lytic replication in the oncogenesis of the Epstein–Barr virus. Nat. Rev. Microbiol. 17, 691–700 (2019).

    Article  PubMed  Google Scholar 

  73. Farrell, P. J. Epstein–Barr virus and cancer. Annu. Rev. Pathol. 14, 29–53 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Dunmire, S. K., Verghese, P. S. & Balfour, H. H. Jr. Primary Epstein–Barr virus infection. J. Clin. Virol. 102, 84–92 (2018).

    Article  PubMed  Google Scholar 

  75. Damania, B. & Münz, C. Immunodeficiencies that predispose to pathologies by human oncogenic gamma-herpesviruses. FEMS Microbiol. Rev. 43, 181–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fournier, B. & Latour, S. Immunity to EBV as revealed by immunedeficiencies. Curr. Opin. Immunol. 72, 107–115 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Latour, S. & Fischer, A. Signaling pathways involved in the T-cell-mediated immunity against Epstein–Barr virus: lessons from genetic diseases. Immunol. Rev. 291, 174–189 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. McHugh, D. et al. Infection and immune control of human oncogenic gamma-herpesviruses in humanized mice. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Muhe, J. et al. Neutralizing antibodies against Epstein–Barr virus infection of B cells can protect from oral viral challenge in the rhesus macaque animal model. Cell Rep. Med. 2, 100352 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Muhe, J. & Wang, F. Non-human primate lymphocryptoviruses: past, present, and future. Curr. Top. Microbiol. Immunol. 391, 385–405 (2015).

    CAS  PubMed  Google Scholar 

  81. Gujer, C. et al. Plasmacytoid dendritic cells respond to Epstein–Barr virus infection with a distinct type I interferon subtype profile. Blood Adv. 3, 1129–1144 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chijioke, O. et al. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein–Barr virus infection. Cell Rep. 5, 1489–1498 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xiang, Z. et al. Targeted activation of human Vγ9Vδ2-T cells controls Epstein–Barr virus-induced B cell lymphoproliferative disease. Cancer Cell 26, 565–576 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Chung, B. K. et al. Innate immune control of EBV-infected B cells by invariant natural killer T cells. Blood 122, 2600–2608 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Strowig, T. et al. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J. Exp. Med. 206, 1423–1434 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Callan, M. F. et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein–Barr virus In vivo. J. Exp. Med. 187, 1395–1402 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Grant, M. L. & Bollard, C. M. Cell therapies for hematological malignancies: don’t forget non-gene-modified t cells! Blood Rev. 32, 203–224 (2018).

    Article  PubMed  Google Scholar 

  88. Middeldorp, J. M. Epstein–Barr virus-specific humoral immune responses in health and disease. Curr. Top. Microbiol. Immunol. 391, 289–323 (2015).

    CAS  PubMed  Google Scholar 

  89. Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tengvall, K. et al. Molecular mimicry between Anoctamin 2 and Epstein–Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc. Natl Acad. Sci. USA 116, 16955–16960 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sundstrom, P., Nystrom, M., Ruuth, K. & Lundgren, E. Antibodies to specific EBNA-1 domains and HLA DRB1*1501 interact as risk factors for multiple sclerosis. J. Neuroimmunol. 215, 102–107 (2009).

    Article  PubMed  Google Scholar 

  92. Lindsey, J. W. Antibodies to the Epstein–Barr virus proteins BFRF3 and BRRF2 cross-react with human proteins. J. Neuroimmunol. 310, 131–134 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Cepok, S. et al. Identification of Epstein–Barr virus proteins as putative targets of the immune response in multiple sclerosis. J. Clin. Invest. 115, 1352–1360 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, Z. et al. Antibodies from multiple sclerosis brain identified Epstein–Barr virus nuclear antigen 1 & 2 epitopes which are recognized by oligoclonal bands. J. Neuroimmune Pharmacol. 16, 567–580 (2021).

    Article  PubMed  Google Scholar 

  95. Bray, P. F., Luka, J., Bray, P. F., Culp, K. W. & Schlight, J. P. Antibodies against Epstein–Barr nuclear antigen (EBNA) in multiple sclerosis CSF, and two pentapeptide sequence identities between EBNA and myelin basic protein. Neurology 42, 1798–1804 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Nociti, V. et al. Epstein–Barr virus antibodies in serum and cerebrospinal fluid from multiple sclerosis, chronic inflammatory demyelinating polyradiculoneuropathy and amyotrophic lateral sclerosis. J. Neuroimmunol. 225, 149–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Kyllesbech, C. et al. Virus-specific antibody indices may supplement the total IgG index in diagnostics of multiple sclerosis. J. Neuroimmunol. 367, 577868 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Jog, N. R. et al. Epstein–Barr virus nuclear antigen 1 (EBNA-1) peptides recognized by adult multiple sclerosis patient sera induce neurologic symptoms in a murine model. J. Autoimmun. 106, 102332 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Kalchschmidt, J. S. et al. Epstein–Barr virus nuclear protein EBNA3C directly induces expression of AID and somatic mutations in B cells. J. Exp. Med. 213, 921–928 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. He, B., Raab-Traub, N., Casali, P. & Cerutti, A. EBV-encoded latent membrane protein 1 cooperates with BAFF/BLyS and APRIL to induce T cell-independent Ig heavy chain class switching. J. Immunol. 171, 5215–5224 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Thorley-Lawson, D. A. Epstein–Barr virus: exploiting the immune system. Nat. Rev. Immunol. 1, 75–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Cencioni, M. T., Mattoscio, M., Magliozzi, R., Bar-Or, A. & Muraro, P. A. B cells in multiple sclerosis - from targeted depletion to immune reconstitution therapies. Nat. Rev. Neurol. 17, 399–414 (2021).

    Article  PubMed  Google Scholar 

  103. Studer, V., Rossi, S., Motta, C., Buttari, F. & Centonze, D. Peripheral B cell depletion and central proinflammatory cytokine reduction following repeated intrathecal administration of rituximab in progressive Multiple Sclerosis. J. Neuroimmunol. 276, 229–231 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Angelini, D. F. et al. Increased CD8+ T cell response to Epstein–Barr virus lytic antigens in the active phase of multiple sclerosis. PLoS Pathog. 9, e1003220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hollsberg, P., Hansen, H. J. & Haahr, S. Altered CD8+ T cell responses to selected Epstein–Barr virus immunodominant epitopes in patients with multiple sclerosis. Clin. Exp. Immunol. 132, 137–143 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jilek, S. et al. Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain 131, 1712–1721 (2008).

    Article  PubMed  Google Scholar 

  107. Lunemann, J. D. et al. Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 129, 1493–1506 (2006).

    Article  PubMed  Google Scholar 

  108. Lunemann, J. D. et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-γ and IL-2. J. Exp. Med. 205, 1763–1773 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schneider-Hohendorf, T. et al. Broader Epstein–Barr virus-specific T cell receptor repertoire in patients with multiple sclerosis. J. Exp. Med. 219, e20220650 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lossius, A. et al. High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8+ T cells. Eur. J. Immunol. 44, 3439–3452 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Pender, M. P., Csurhes, P. A., Burrows, J. M. & Burrows, S. R. Defective T-cell control of Epstein–Barr virus infection in multiple sclerosis. Clin. Transl. Immunol. 6, e126 (2017).

    Article  Google Scholar 

  112. Erdur, H. et al. EBNA1 antigen-specific CD8+ T cells in cerebrospinal fluid of patients with multiple sclerosis. J. Neuroimmunol. 294, 14–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Jilek, S. et al. HLA-B7-restricted EBV-specific CD8+ T cells are dysregulated in multiple sclerosis. J. Immunol. 188, 4671–4680 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Zdimerova, H. et al. Attenuated immune control of Epstein–Barr virus in humanized mice is associated with the multiple sclerosis risk factor HLA-DR15. Eur. J. Immunol. 51, 64–75 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Wang, J. et al. HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell 183, 1264–1281.e20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wucherpfennig, K. W. & Strominger, J. L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lang, H. L. et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 3, 940–943 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Leung, C. S. et al. Robust T-cell stimulation by Epstein–Barr virus-transformed B cells after antigen targeting to DEC-205. Blood 121, 1584–1594 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hong, S. et al. B cells are the dominant antigen-presenting cells that activate naive CD4+ T cells upon immunization with a virus-derived nanoparticle antigen. Immunity 49, 695–708.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. van Zyl, D. G. et al. Immunogenic particles with a broad antigenic spectrum stimulate cytolytic T cells and offer increased protection against EBV infection ex vivo and in mice. PLoS Pathog. 14, e1007464 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Choi, I. K. et al. Mechanism of EBV inducing anti-tumour immunity and its therapeutic use. Nature 590, 157–162 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Choi, I. K. et al. Signaling by the Epstein–Barr virus LMP1 protein induces potent cytotoxic CD4+ and CD8+ T cell responses. Proc. Natl Acad. Sci. USA 115, E686–E695 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Keane, J. T. et al. The interaction of Epstein–Barr virus encoded transcription factor EBNA2 with multiple sclerosis risk loci is dependent on the risk genotype. EBioMedicine 71, 103572 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kwak, K., Akkaya, M. & Pierce, S. K. B cell signaling in context. Nat. Immunol. 20, 963–969 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Ascherio, A. et al. Epstein–Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286, 3083–3088 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Lunemann, J. D. et al. Elevated Epstein–Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis. Ann. Neurol. 67, 159–169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Munger, K. L. et al. No association of multiple sclerosis activity and progression with EBV or tobacco use in BENEFIT. Neurology 85, 1694–1701 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Farrell, R. A. et al. Humoral immune response to EBV in multiple sclerosis is associated with disease activity on MRI. Neurology 73, 32–38 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kvistad, S. et al. Antibodies to Epstein–Barr virus and MRI disease activity in multiple sclerosis. Mult. Scler. 20, 1833–1840 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Sundstrom, P., Nystrom, L., Jidell, E. & Hallmans, G. EBNA-1 reactivity and HLA DRB1*1501 as statistically independent risk factors for multiple sclerosis: a case-control study. Mult. Scler. 14, 1120–1122 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Waubant, E. et al. Common viruses associated with lower pediatric multiple sclerosis risk. Neurology 76, 1989–1995 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E. & Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 14, 164–174 (2004).

    Article  PubMed  Google Scholar 

  133. Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).

    Article  PubMed  Google Scholar 

  134. Schafflick, D. et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat. Commun. 11, 247 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ramesh, A. et al. A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis. Proc. Natl Acad. Sci. USA 117, 22932–22943 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pitteri, M. et al. Cerebrospinal fluid inflammatory profile of cognitive impairment in newly diagnosed multiple sclerosis patients. Mult. Scler. 28, 768–777 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Nohejlova, H. et al. Paediatric onset of multiple sclerosis: Analysis of chemokine and cytokine levels in the context of the early clinical course. Mult. Scler. Relat. Disord. 46, 102467 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. van Langelaar, J. et al. Induction of brain-infiltrating T-bet-expressing B cells in multiple sclerosis. Ann. Neurol. 86, 264–278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. White, R. E. et al. EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J. Clin. Invest. 122, 1487–1502 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Berer, K. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl Acad. Sci. USA 114, 10719–10724 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  141. Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  142. Wekerle, H., Berer, K. & Krishnamoorthy, G. Remote control-triggering of brain autoimmune disease in the gut. Curr. Opin. Immunol. 25, 683–689 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Duc, D. et al. Disrupting myelin-specific Th17 cell gut homing confers protection in an adoptive transfer experimental autoimmune encephalomyelitis. Cell Rep. 29, 378–390.e4 (2019).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  144. Laichalk, L. L., Hochberg, D., Babcock, G. J., Freeman, R. B. & Thorley-Lawson, D. A. The dispersal of mucosal memory B cells: evidence from persistent EBV infection. Immunity 16, 745–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Gasser, O. et al. HIV patients developing primary CNS lymphoma lack EBV-specific CD4+ T cell function irrespective of absolute CD4+ T cell counts. PLoS Med. 4, e96 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Roschewski, M. & Phelan, J. D. Sorting biologic subtypes of primary CNS lymphoma. Blood 137, 1436–1437 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Johnson, D. B. et al. A case report of clonal EBV-like memory CD4+ T cell activation in fatal checkpoint inhibitor-induced encephalitis. Nat. Med. 25, 1243–1250 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Serafini, B. et al. Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain. J. Exp. Med. 204, 2899–2912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Veroni, C., Serafini, B., Rosicarelli, B., Fagnani, C. & Aloisi, F. Transcriptional profile and Epstein–Barr virus infection status of laser-cut immune infiltrates from the brain of patients with progressive multiple sclerosis. J. Neuroinflammation 15, 18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Moreno, M. A. et al. Molecular signature of Epstein–Barr virus infection in MS brain lesions. Neurol. Neuroimmunol. Neuroinflamm. 5, e466 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Peferoen, L. A. et al. Epstein–Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis. Brain 133, e137 (2010).

    Article  PubMed  Google Scholar 

  152. Willis, S. N. et al. Epstein–Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 132, 3318–3328 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Serafini, B., Rosicarelli, B., Veroni, C., Mazzola, G. A. & Aloisi, F. Epstein–Barr virus-specific CD8 T cells selectively infiltrate the brain in multiple sclerosis and interact locally with virus-infected cells: clue for a virus-driven immunopathological mechanism. J. Virol. 93, e00980-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Mrozek-Gorska, P. et al. Epstein–Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. Proc. Natl Acad. Sci. USA 116, 16046–16055 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  155. SoRelle, E. D., Reinoso-Vizcaino, N. M., Horn, G. Q. & Luftig, M. A. Epstein–Barr virus perpetuates B cell germinal center dynamics and generation of autoimmune-associated phenotypes in vitro. Front. Immunol. 13, 1001145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. van Langelaar, J. et al. The association of Epstein–Barr virus infection with CXCR3+ B-cell development in multiple sclerosis: impact of immunotherapies. Eur. J. Immunol. 51, 626–633 (2021).

    Article  PubMed  Google Scholar 

  157. Soldan, S. S. et al. Epigenetic plasticity enables CNS-trafficking of EBV-infected B lymphocytes. PLoS Pathog. 17, e1009618 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Epstein, M. A., Morgan, A. J., Finerty, S., Randle, B. J. & Kirkwood, J. K. Protection of cottontop tamarins against Epstein–Barr virus-induced malignant lymphoma by a prototype subunit vaccine. Nature 318, 287–289 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  159. Bu, W. et al. Immunization with components of the viral fusion apparatus elicits antibodies that neutralize Epstein–Barr virus in B cells and epithelial cells. Immunity 50, 1305–1316.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sokal, E. M. et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein–Barr virus vaccine in healthy young adults. J. Infect. Dis. 196, 1749–1753 (2007).

    Article  PubMed  Google Scholar 

  161. Kanekiyo, M. et al. Rational design of an Epstein–Barr virus vaccine targeting the receptor-binding site. Cell 162, 1090–1100 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wei, C. J. et al. A bivalent Epstein–Barr virus vaccine induces neutralizing antibodies that block infection and confer immunity in humanized mice. Sci. Transl. Med. 14, eabf3685 (2022).

    Article  CAS  PubMed  Google Scholar 

  163. Cui, X. et al. Immunization with Epstein–Barr virus core fusion machinery envelope proteins elicit high titers of neutralizing activities and protect humanized mice from lethal dose EBV challenge. Vaccines 9, 285 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Escalante, G. M. et al. A pentavalent Epstein–Barr virus-like particle vaccine elicits high titers of neutralizing antibodies against Epstein–Barr virus infection in immunized rabbits. Vaccines 8, 169 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ruiss, R. et al. A virus-like particle-based Epstein–Barr virus vaccine. J. Virol. 85, 13105–13113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Taylor, G. S. et al. A recombinant modified vaccinia ankara vaccine encoding Epstein–Barr Virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer. Clin. Cancer Res. 20, 5009–5022 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zeng, Y. et al. LMP2-DC vaccine elicits specific EBV-LMP2 response to effectively improve immunotherapy in patients with nasopharyngeal cancer. Biomed. Env. Sci. 33, 849–856 (2020).

    CAS  Google Scholar 

  168. Chia, W. K. et al. A phase II study evaluating the safety and efficacy of an adenovirus-DeltaLMP1-LMP2 transduced dendritic cell vaccine in patients with advanced metastatic nasopharyngeal carcinoma. Ann. Oncol. 23, 997–1005 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Garcia, C. R., Jayswal, R., Adams, V., Anthony, L. B. & Villano, J. L. Multiple sclerosis outcomes after cancer immunotherapy. Clin. Transl. Oncol. 21, 1336–1342 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Messick, T. E. et al. Structure-based design of small-molecule inhibitors of EBNA1 DNA binding blocks Epstein–Barr virus latent infection and tumor growth. Sci. Transl. Med. 11, eaau5612 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Soldan, S. S., Messick, T. E. & Lieberman, P. M. Therapeutic approaches to Epstein–Barr virus cancers. Curr. Opin. Virol. 56, 101260 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Perrine, S. P. et al. A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein–Barr virus-associated lymphoid malignancies. Blood 109, 2571–2578 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hui, K. F. et al. Inhibition of class I histone deacetylases by romidepsin potently induces Epstein–Barr virus lytic cycle and mediates enhanced cell death with ganciclovir. Int. J. Cancer 138, 125–136 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Bollard, C. M. & Cohen, J. I. How I treat T-cell chronic active Epstein–Barr virus disease. Blood 131, 2899–2905 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Papadopoulou, A. et al. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci. Transl. Med. 6, 242ra283 (2014).

    Article  Google Scholar 

  176. Huang, J. et al. Epstein–Barr virus-specific adoptive immunotherapy for recurrent, metastatic nasopharyngeal carcinoma. Cancer 123, 2642–2650 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Pender, M. P. et al. Epstein–Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight 5, e144624 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Ioannides, Z. A. et al. Sustained clinical improvement in a subset of patients with progressive multiple sclerosis treated with Epstein–Barr virus-specific T cell therapy. Front. Neurol. 12, 652811 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Lutterotti, A., Hayward-Koennecke, H., Sospedra, M. & Martin, R. Antigen-specific immune tolerance in multiple sclerosis-promising approaches and how to bring them to patients. Front. Immunol. 12, 640935 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lutterotti, A. et al. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci. Transl. Med. 5, 188ra175 (2013).

    Article  Google Scholar 

  181. McRae, B. L., Vanderlugt, C. L., Dal Canto, M. C. & Miller, S. D. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J. Exp. Med. 182, 75–85 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.M. is supported by Cancer Research Switzerland (KFS-4962-02-2020), HMZ ImmunoTargET of the University of Zurich, the Sobek Foundation, the Swiss Vaccine Research Institute, the Swiss MS Society (2021-09), the Vontobel Foundation and the Swiss National Science Foundation (310030_204470/1, 310030L_197952/1 and CRSII5_180323). J.I.C. is supported by the intramural research programme of the National Institute of Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Alberto Ascherio.

Ethics declarations

Competing interests

J.I.C. is named as an inventor on patent applications for Epstein–Barr virus vaccines, which have been filed by the NIH. A.A. has received an honorarium as a speaker from Moderna. K.B. and C.M. declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks W. Robinson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjornevik, K., Münz, C., Cohen, J.I. et al. Epstein–Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nat Rev Neurol 19, 160–171 (2023). https://doi.org/10.1038/s41582-023-00775-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00775-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing