Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sex and gender in neurodevelopmental conditions

Abstract

Health-related conditions often differ qualitatively or quantitatively between individuals of different birth-assigned sexes and gender identities, and/or with different gendered experiences, requiring tailored care. Studying the moderating and mediating effects of sex-related and gender-related factors on impairment, disability, wellbeing and health is of paramount importance especially for neurodivergent individuals, who are diagnosed with neurodevelopmental conditions with uneven sex/gender distributions. Researchers have become aware of the myriad influences that sex-related and gender-related variables have on the manifestations of neurodevelopmental conditions, and contemporary work has begun to investigate the mechanisms through which these effects are mediated. Here we describe topical concepts of sex and gender science, summarize current knowledge, and discuss research and clinical challenges related to autism, attention-deficit/hyperactivity disorder and other neurodevelopmental conditions. We consider sex and gender in the context of epidemiology, behavioural phenotypes, neurobiology, genetics, endocrinology and neighbouring disciplines. The available evidence supports the view that sex and gender are important contributors to the biological and behavioural variability in neurodevelopmental conditions. Methodological caveats such as frequent conflation of sex and gender constructs, inappropriate measurement of these constructs and under-representation of specific demographic groups (for example, female and gender minority individuals and people with intellectual disabilities) limit the translational potential of research so far. Future research and clinical implementation should integrate sex and gender into next-generation diagnostics, mechanistic investigations and support practices.

Key points

  • Sex-related and gender-related factors moderate or mediate biological and behavioural variability in neurodevelopmental conditions; they exert influence through diverse mechanisms that act at multiple levels.

  • Moderating effects of sex and/or gender are supported by epidemiological, behavioural, cognitive, neurobiological, genetic, endocrinological and immunological evidence, especially in autism, but also in attention-deficit/hyperactivity disorder (ADHD), Tourette syndrome, dyslexia and fragile X syndrome.

  • In autism and ADHD, research has started to raise awareness of clinical nuances to enable better and earlier identification of neurodivergent females.

  • In neuroimaging studies, the neurobiological correlates of autism and ADHD show some overlap between males and females, but also some qualitative differences; preliminary evidence indicates that there are differences in the presentation of fragile X syndrome, dyslexia and Tourette syndrome in the brain between female and male individuals.

  • Sex hormones are implicated in the mechanisms underlying sex differences in brain development and in susceptibility to neurodevelopmental conditions, but much of the evidence relies on preclinical studies.

  • Future research needs to address under-representation of females, gender minorities and specific diagnoses; challenges of interpretation; insufficient understanding of specific sex and gender attributes; developmental variabilities; intersectionality of ethnocultural and sex/gender factors; and sex/gender influences of intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Why are sex and gender important for neurodevelopmental conditions?
Fig. 2: Simplified schema of the influences of sex-related and gender-related attributes on brain development.

Similar content being viewed by others

References

  1. Poeschl, G. A hundred years of debates on sex differences: developing research for social change. J. Soc. Polit. Psychol. 9, 221–235 (2021).

    Google Scholar 

  2. Joel, D. Beyond the binary: rethinking sex and the brain. Neurosci. Biobehav. Rev. 122, 165–175 (2021).

    PubMed  Google Scholar 

  3. Kiesow, H. et al. 10,000 social brains: sex differentiation in human brain anatomy. Sci. Adv. 6, eaaz1170 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. Hines, M. Neuroscience and sex/gender: looking back and forward. J. Neurosci. 40, 37–43 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. DeCasien, A. R., Guma, E., Liu, S. & Raznahan, A. Sex differences in the human brain: a roadmap for more careful analysis and interpretation of a biological reality. Biol. Sex. Differ. 13, 43 (2022).

    PubMed  PubMed Central  Google Scholar 

  6. Lanzenberger, R., Kranz, G. S. & Savic, I. (eds) Sex Differences in Neurology and Psychiatry (Elsevier, 2020). [Series Eds Aminoff, M. J., Boller, F. & Swaab, D. F. Handbook of Clinical Neurology Vol. 175]

  7. Mauvais-Jarvis, F. et al. Sex and gender: modifiers of health, disease, and medicine. Lancet 396, 565–582 (2020).

    PubMed  PubMed Central  Google Scholar 

  8. White, J., Tannenbaum, C., Klinge, I., Schiebinger, L. & Clayton, J. The integration of sex and gender considerations into biomedical research: lessons from international funding agencies. J. Clin. Endocrinol. Metab. 106, 3034–3048 (2021).

    PubMed  PubMed Central  Google Scholar 

  9. Thapar, A., Cooper, M. & Rutter, M. Neurodevelopmental disorders. Lancet Psychiatry 4, 339–346 (2017).

    PubMed  Google Scholar 

  10. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th edn Text Revision (American Psychiatric Association, 2022).

  11. World Health Organization. International Classification of Diseases, eleventh revision (ICD-11). (WHO, 2019).

  12. Zablotsky, B. et al. Prevalence and trends of developmental disabilities among children in the United States: 2009-2017. Pediatrics 144, e20190811 (2019).

    PubMed  Google Scholar 

  13. Merikangas, A. K. & Almasy, L. Using the tools of genetic epidemiology to understand sex differences in neuropsychiatric disorders. Genes Brain Behav. 19, e12660 (2020).

    PubMed  Google Scholar 

  14. Posserud, M. B., Skretting Solberg, B., Engeland, A., Haavik, J. & Klungsoyr, K. Male to female ratios in autism spectrum disorders by age, intellectual disability and attention-deficit/hyperactivity disorder. Acta Psychiatr. Scand. 144, 635–646 (2021).

    PubMed  Google Scholar 

  15. Loomes, R., Hull, L. & Mandy, W. P. L. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 56, 466–474 (2017).

    PubMed  Google Scholar 

  16. Kallitsounaki, A. & Williams, D. M. Autism spectrum disorder and gender dysphoria/incongruence. A systematic literature review and meta-analysis. J. Autism Dev. Disord. https://doi.org/10.1007/s10803-022-05517-y (2022).

    Article  PubMed  Google Scholar 

  17. McPhate, L. et al. Gender variance in children and adolescents with neurodevelopmental and psychiatric conditions from Australia. Arch. Sex. Behav. 50, 863–871 (2021).

    PubMed  Google Scholar 

  18. Ismail, F. Y. & Shapiro, B. K. What are neurodevelopmental disorders? Curr. Opin. Neurol. 32, 611–616 (2019).

    PubMed  Google Scholar 

  19. Faraone, S. V. et al. The World Federation of ADHD International Consensus Statement: 208 evidence-based conclusions about the disorder. Neurosci. Biobehav. Rev. 128, 789–818 (2021).

    PubMed  PubMed Central  Google Scholar 

  20. Norton, E. S., Beach, S. D. & Gabrieli, J. D. Neurobiology of dyslexia. Curr. Opin. Neurobiol. 30, 73–78 (2015).

    CAS  PubMed  Google Scholar 

  21. Astle, D. E., Holmes, J., Kievit, R. & Gathercole, S. E. Annual research review: the transdiagnostic revolution in neurodevelopmental disorders. J. Child Psychol. Psychiatry 63, 397–417 (2022).

    PubMed  Google Scholar 

  22. Hoogman, M. et al. Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: the ENIGMA adventure. Hum. Brain Mapp. 43, 37–55 (2022).

    PubMed  Google Scholar 

  23. Morris-Rosendahl, D. J. & Crocq, M. A. Neurodevelopmental disorders – the history and future of a diagnostic concept. Dialogues Clin. Neurosci. 22, 65–72 (2020).

    PubMed  PubMed Central  Google Scholar 

  24. Rapoport, J. L., Giedd, J. N. & Gogtay, N. Neurodevelopmental model of schizophrenia: update 2012. Mol. Psychiatry 17, 1228–1238 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sibley, M. H. et al. Late-onset ADHD reconsidered with comprehensive repeated assessments between ages 10 and 25. Am. J. Psychiatry 175, 140–149 (2018).

    PubMed  Google Scholar 

  26. Agnew-Blais, J. & Arseneault, L. Late-onset ADHD: case closed or open question? Am. J. Psychiatry 175, 481–482 (2018).

    PubMed  Google Scholar 

  27. Asherson, P. & Agnew-Blais, J. Annual research review: does late-onset attention-deficit/hyperactivity disorder exist? J. Child Psychol. Psychiatry 60, 333–352 (2019).

    PubMed  Google Scholar 

  28. Bölte, S. et al. Standardised assessment of functioning in ADHD: consensus on the ICF core sets for ADHD. Eur. Child Adolesc. Psychiatry 27, 1261–1281 (2018).

    PubMed  Google Scholar 

  29. Bölte, S. et al. The gestalt of functioning in autism spectrum disorder: results of the international conference to develop final consensus International Classification of Functioning, Disability and Health core sets. Autism 23, 449–467 (2019).

    PubMed  Google Scholar 

  30. D’Souza, H. & Karmiloff-Smith, A. Neurodevelopmental disorders. Wiley Interdiscip. Rev. Cogn. Sci. 8, e1398 (2017).

    Google Scholar 

  31. Tick, B., Bolton, P., Happe, F., Rutter, M. & Rijsdijk, F. Heritability of autism spectrum disorders: a meta-analysis of twin studies. J. Child Psychol. Psychiatry 57, 585–595 (2016).

    PubMed  Google Scholar 

  32. Faraone, S. V. & Larsson, H. Genetics of attention deficit hyperactivity disorder. Mol. Psychiatry 24, 562–575 (2019).

    CAS  PubMed  Google Scholar 

  33. Bölte, S., Girdler, S. & Marschik, P. B. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol. Life Sci. 76, 1275–1297 (2019).

    PubMed  Google Scholar 

  34. Mandy, W. & Lai, M. C. Annual research review: the role of the environment in the developmental psychopathology of autism spectrum condition. J. Child Psychol. Psychiatry 57, 271–292 (2016).

    PubMed  Google Scholar 

  35. Kiser, D. P., Rivero, O. & Lesch, K. P. Annual research review: the (epi)genetics of neurodevelopmental disorders in the era of whole-genome sequencing – unveiling the dark matter. J. Child Psychol. Psychiatry 56, 278–295 (2015).

    PubMed  Google Scholar 

  36. Jonsson, U. et al. Annual research review: quality of life and childhood mental and behavioural disorders – a critical review of the research. J. Child Psychol. Psychiatry 58, 439–469 (2017).

    PubMed  Google Scholar 

  37. Lai, M. C., Anagnostou, E., Wiznitzer, M., Allison, C. & Baron-Cohen, S. Evidence-based support for autistic people across the lifespan: maximising potential, minimising barriers, and optimising the person-environment fit. Lancet Neurol. 19, 434–451 (2020).

    PubMed  Google Scholar 

  38. Kapp, S. K. Social support, well-being, and quality of life among individuals on the autism spectrum. Pediatrics 141, S362–S368 (2018).

    PubMed  Google Scholar 

  39. Dwyer, P. The neurodiversity approach(es): what are they and what do they mean for researchers? Hum. Dev. 66, 73–92 (2022).

    PubMed  Google Scholar 

  40. Coghill, D. & Sonuga-Barke, E. J. Annual research review: categories versus dimensions in the classification and conceptualisation of child and adolescent mental disorders – implications of recent empirical study. J. Child Psychol. Psychiatry 53, 469–489 (2012).

    PubMed  Google Scholar 

  41. Posner, J., Polanczyk, G. V. & Sonuga-Barke, E. Attention-deficit hyperactivity disorder. Lancet 395, 450–462 (2020).

    PubMed  PubMed Central  Google Scholar 

  42. Happé, F. & Frith, U. Dimensional or categorical approaches to autism? Both are needed. A reply to Nick Chown and Julia Leatherland. J. Autism Dev. Disord. 51, 752–753 (2021).

    PubMed  Google Scholar 

  43. Pellicano, E. & den Houting, J. Annual research review: shifting from ‘normal science’ to neurodiversity in autism science. J. Child Psychol. Psychiatry 63, 381–396 (2022).

    PubMed  Google Scholar 

  44. Schuck, R. K. et al. Neurodiversity and autism intervention: reconciling perspectives through a naturalistic developmental behavioral intervention framework. J. Autism Dev. Disord. 52, 4625–4645 (2022).

    PubMed  Google Scholar 

  45. Chapman, R. Neurodiversity and the social ecology of mental functions. Perspect. Psychol. Sci. 16, 1360–1372 (2021).

    PubMed  Google Scholar 

  46. Chapman, R. in Neurodiversity Studies Ch. 14 (eds Rosqvist, H., Chown, N. & Stenning, A.) 218–220 (Routledge, 2020).

  47. Dwyer, P., Ryan, J. G., Williams, Z. J. & Gassner, D. L. First do no harm: suggestions regarding respectful autism language. Pediatrics 149, e2020049437N (2022).

    PubMed  Google Scholar 

  48. Fletcher-Watson, S. Transdiagnostic research and the neurodiversity paradigm: commentary on the transdiagnostic revolution in neurodevelopmental disorders by Astle et al. J. Child Psychol. Psychiatry 63, 418–420 (2022).

    PubMed  PubMed Central  Google Scholar 

  49. Leadbitter, K., Buckle, K. L., Ellis, C. & Dekker, M. Autistic self-advocacy and the neurodiversity movement: implications for autism early intervention research and practice. Front. Psychol. 12, 635690 (2021).

    PubMed  PubMed Central  Google Scholar 

  50. Brown, H. M. et al. The Autism Intervention Research Network on Physical Health Autistic Researcher Review Board. Pediatrics 149, e2020049437F (2022).

    PubMed  Google Scholar 

  51. Wehmeyer, M. L. The future of positive psychology and disability. Front. Psychol. 12, 790506 (2021).

    PubMed  PubMed Central  Google Scholar 

  52. Joel, D. & McCarthy, M. M. Incorporating sex as a biological variable in neuropsychiatric research: where are we now and where should we be? Neuropsychopharmacology 42, 379–385 (2017).

    PubMed  Google Scholar 

  53. Bhargava, A. et al. Considering sex as a biological variable in basic and clinical studies: an Endocrine Society scientific statement. Endocr. Rev. 42, 219–258 (2021).

    PubMed  PubMed Central  Google Scholar 

  54. Cost, K. T. et al. Checking assumptions: advancing the analysis of sex and gender in human health and psychological sciences. Preprint at OSF Preprints https://doi.org/10.31219/osf.io/c29kg (2022).

  55. Tadiri, C. P. et al. Methods for prospectively incorporating gender into health sciences research. J. Clin. Epidemiol. 129, 191–197 (2021).

    PubMed  Google Scholar 

  56. Nielsen, M. W. et al. Gender-related variables for health research. Biol. Sex. Differ. 12, 23 (2021).

    PubMed  PubMed Central  Google Scholar 

  57. van Anders, S. M., Steiger, J. & Goldey, K. L. Effects of gendered behavior on testosterone in women and men. Proc. Natl Acad. Sci. USA 112, 13805–13810 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. Cortes, L. R., Cisternas, C. D. & Forger, N. G. Does gender leave an epigenetic imprint on the brain? Front. Neurosci. 13, 173 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. Fine, C., Dupre, J. & Joel, D. Sex-linked behavior: evolution, stability, and variability. Trends Cogn. Sci. 21, 666–673 (2017).

    PubMed  Google Scholar 

  60. Polanczyk, G. V., Willcutt, E. G., Salum, G. A., Kieling, C. & Rohde, L. A. ADHD prevalence estimates across three decades: an updated systematic review and meta-regression analysis. Int. J. Epidemiol. 43, 434–442 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. Zeidan, J. et al. Global prevalence of autism: a systematic review update. Autism Res. 15, 778–790 (2022).

    PubMed  PubMed Central  Google Scholar 

  62. Black, L. I., Vahratian, A. & Hoffman, H. J. Communication disorders and use of intervention services among children aged 3–17 years: United States, 2012. NCHS Data Brief. 205, 1–8 (2015).

    Google Scholar 

  63. Altarac, M. & Saroha, E. Lifetime prevalence of learning disability among US children. Pediatrics 119, S77–S83 (2007).

    PubMed  Google Scholar 

  64. Knight, T. et al. Prevalence of tic disorders: a systematic review and meta-analysis. Pediatr. Neurol. 47, 77–90 (2012).

    PubMed  Google Scholar 

  65. Maulik, P. K., Mascarenhas, M. N., Mathers, C. D., Dua, T. & Saxena, S. Prevalence of intellectual disability: a meta-analysis of population-based studies. Res. Dev. Disabil. 32, 419–436 (2011).

    PubMed  Google Scholar 

  66. Fayyad, J. et al. The descriptive epidemiology of DSM-IV Adult ADHD in the World Health Organization World Mental Health Surveys. Atten. Defic. Hyperact. Disord. 9, 47–65 (2017).

    PubMed  Google Scholar 

  67. Levine, J. L. S., Szejko, N. & Bloch, M. H. Meta-analysis: adulthood prevalence of Tourette syndrome. Prog. Neuropsychopharmacol. Biol. Psychiatry 95, 109675 (2019).

    PubMed  Google Scholar 

  68. Russell, G. et al. Time trends in autism diagnosis over 20 years: a UK population-based cohort study. J. Child Psychol. Psychiatry 63, 674–682 (2022).

    PubMed  Google Scholar 

  69. Rutherford, M. et al. Gender ratio in a clinical population sample, age of diagnosis and duration of assessment in children and adults with autism spectrum disorder. Autism 20, 628–634 (2016).

    PubMed  Google Scholar 

  70. Idring, S. et al. Changes in prevalence of autism spectrum disorders in 2001-2011: findings from the Stockholm Youth Cohort. J. Autism Dev. Disord. 45, 1766–1773 (2015).

    PubMed  Google Scholar 

  71. Yang, J. et al. The prevalence of diagnosed Tourette syndrome in Canada: a national population-based study. Mov. Disord. 31, 1658–1663 (2016).

    PubMed  Google Scholar 

  72. Willcutt, E. G. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics 9, 490–499 (2012).

    PubMed  PubMed Central  Google Scholar 

  73. Lord, C. et al. The Lancet Commission on the future of care and clinical research in autism. Lancet 399, 271–334 (2022).

    PubMed  Google Scholar 

  74. Bölte, S., Poustka, L. & Geurts, H. M. in Oxford Textbook of Attention Deficit Hyperactivity Disorder Ch. 24 (eds Banaschewski, T., Coghill, D. & Zuddas, A.) 227–234 (Oxford Univ. Press, 2018).

  75. Brimo, K. et al. The co-occurrence of neurodevelopmental problems in dyslexia. Dyslexia 27, 277–293 (2021).

    PubMed  Google Scholar 

  76. Pan, P. Y., Bölte, S., Kaur, P., Jamil, S. & Jonsson, U. Neurological disorders in autism: a systematic review and meta-analysis. Autism 25, 812–830 (2021).

    PubMed  Google Scholar 

  77. Pan, P. Y. & Bölte, S. The association between ADHD and physical health: a co-twin control study. Sci. Rep. 10, 22388 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lai, M. C. et al. Prevalence of co-occurring mental health diagnoses in the autism population: a systematic review and meta-analysis. Lancet Psychiatry 6, 819–829 (2019).

    PubMed  Google Scholar 

  79. Kassee, C. et al. Physical health of autistic girls and women: a scoping review. Mol. Autism 11, 84 (2020).

    PubMed  PubMed Central  Google Scholar 

  80. Lundin, K., Mahdi, S., Isaksson, J. & Bölte, S. Functional gender differences in autism: an international, multidisciplinary expert survey using the International Classification of Functioning, Disability, and Health model. Autism 25, 1020–1035 (2021).

    PubMed  Google Scholar 

  81. de Schipper, E. et al. Towards an ICF core set for ADHD: a worldwide expert survey on ability and disability. Eur. Child Adolesc. Psychiatry 24, 1509–1521 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Ottosen, C. et al. Sex differences in comorbidity patterns of attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 58, 412–422 (2019).

    PubMed  Google Scholar 

  83. Simonoff, E. et al. Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J. Am. Acad. Child Adolesc. Psychiatry 47, 921–929 (2008).

    PubMed  Google Scholar 

  84. Martin, J. et al. Sex differences in anxiety and depression in children with attention deficit hyperactivity disorder: investigating genetic liability and comorbidity. Am. J. Med. Genet. B Neuropsychiatr. Genet. 186, 412–422 (2021).

    PubMed  Google Scholar 

  85. Hirvikoski, T. et al. Premature mortality in autism spectrum disorder. Br. J. Psychiatry 208, 232–238 (2016).

    PubMed  Google Scholar 

  86. Kirby, A. V. et al. A 20-year study of suicide death in a statewide autism population. Autism Res. 12, 658–666 (2019).

    PubMed  PubMed Central  Google Scholar 

  87. Hirvikoski, T. et al. Individual risk and familial liability for suicide attempt and suicide in autism: a population-based study. Psychol. Med. 50, 1463–1474 (2020).

    CAS  PubMed  Google Scholar 

  88. Catala-Lopez, F. et al. Mortality in persons with autism spectrum disorder or attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. JAMA Pediatr. 176, e216401 (2022).

    PubMed  PubMed Central  Google Scholar 

  89. Lunsky, Y. et al. Premature mortality in a population-based cohort of autistic adults in Canada. Autism Res. 15, 1550–1559 (2022).

    PubMed  Google Scholar 

  90. Dalsgaard, S., Østergaard, S. D., Leckman, J. F., Mortensen, P. B. & Pedersen, M. G. Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: a nationwide cohort study. Lancet 385, 2190–2196 (2015).

    PubMed  Google Scholar 

  91. Wing, L. Sex ratios in early childhood autism and related conditions. Psychiatry Res. 5, 129–137 (1981).

    CAS  PubMed  Google Scholar 

  92. Tsai, L. Y. & Beisler, J. M. The development of sex differences in infantile autism. Br. J. Psychiatry 142, 373–378 (1983).

    CAS  PubMed  Google Scholar 

  93. Dworzynski, K., Ronald, A., Bolton, P. & Happé, F. How different are girls and boys above and below the diagnostic threshold for autism spectrum disorders? J. Am. Acad. Child Adolesc. Psychiatry 51, 788–797 (2012).

    PubMed  Google Scholar 

  94. Frazier, T. W., Georgiades, S., Bishop, S. L. & Hardan, A. Y. Behavioral and cognitive characteristics of females and males with autism in the Simons Simplex Collection. J. Am. Acad. Child Adolesc. Psychiatry 53, 329–340 (2014).

    PubMed  Google Scholar 

  95. Duvekot, J. et al. Factors influencing the probability of a diagnosis of autism spectrum disorder in girls versus boys. Autism 21, 646–658 (2017).

    PubMed  Google Scholar 

  96. Rødgaard, E. M., Jensen, K., Miskowiak, K. W. & Mottron, L. Autism comorbidities show elevated female-to-male odds ratios and are associated with the age of first autism diagnosis. Acta Psychiatr. Scand. 144, 475–486 (2021).

    PubMed  PubMed Central  Google Scholar 

  97. May, T. & Williams, K. Brief report: gender and age of diagnosis time trends in children with autism using Australian Medicare data. J. Autism Dev. Disord. 48, 4056–4062 (2018).

    PubMed  Google Scholar 

  98. McCormick, C. E. B. et al. Autism heterogeneity in a densely sampled US population: results from the first 1000 participants in the RI-CART study. Autism Res. 13, 474–488 (2020).

    PubMed  PubMed Central  Google Scholar 

  99. Huang, Y. et al. Factors associated with age at autism diagnosis in a community sample of Australian adults. Autism Res. 14, 2677–2687 (2021).

    PubMed  Google Scholar 

  100. Kavanaugh, B. C. et al. Moderators of age of diagnosis in >20,000 females with autism in two large US studies. J. Autism Dev. Disord. https://doi.org/10.1007/s10803-021-05026-4 (2021).

    Article  PubMed  Google Scholar 

  101. Fusar-Poli, L., Brondino, N., Politi, P. & Aguglia, E. Missed diagnoses and misdiagnoses of adults with autism spectrum disorder. Eur. Arch. Psychiatry Clin. Neurosci. 272, 187–198 (2022).

    PubMed  Google Scholar 

  102. Bonney, E., Abbo, C., Ogara, C., Villalobos, M. E. & Elison, J. T. Sex differences in age of diagnosis of autism spectrum disorder: preliminary evidence from Uganda. Autism Res. 15, 183–191 (2022).

    PubMed  Google Scholar 

  103. Whitlock, A., Fulton, K., Lai, M. C., Pellicano, E. & Mandy, W. Recognition of girls on the autism spectrum by primary school educators: an experimental study. Autism Res. 13, 1358–1372 (2020).

    PubMed  Google Scholar 

  104. Tillmann, J. et al. Evaluating sex and age differences in ADI-R and ADOS scores in a large European multi-site sample of individuals with autism spectrum disorder. J. Autism Dev. Disord. 48, 2490–2505 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kaat, A. J. et al. Sex differences in scores on standardized measures of autism symptoms: a multisite integrative data analysis. J. Child Psychol. Psychiatry 62, 97–106 (2021).

    PubMed  Google Scholar 

  106. Lai, M. C., Lin, H. Y. & Ameis, S. H. Towards equitable diagnoses for autism and attention-deficit/hyperactivity disorder across sexes and genders. Curr. Opin. Psychiatry 35, 90–100 (2022).

    PubMed  Google Scholar 

  107. Wood-Downie, H., Wong, B., Kovshoff, H., Cortese, S. & Hadwin, J. A. Research review: a systematic review and meta-analysis of sex/gender differences in social interaction and communication in autistic and nonautistic children and adolescents. J. Child Psychol. Psychiatry 62, 922–936 (2021).

    PubMed  Google Scholar 

  108. Clarke, E. et al. Assessing gender differences in autism spectrum disorder using the gendered autism behavioral scale (GABS): an exploratory study. Res. Autism Spectr. Disord. 88, 101844 (2021).

    Google Scholar 

  109. Ai, W., Cunningham, W. A. & Lai, M. C. Reconsidering autistic ‘camouflaging’ as transactional impression management. Trends Cogn. Sci. 26, 631–645 (2022).

    PubMed  Google Scholar 

  110. Yankowitz, L. D. et al. Infants later diagnosed with autism have lower canonical babbling ratios in the first year of life. Mol. Autism 13, 28 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Parish-Morris, J. et al. Linguistic camouflage in girls with autism spectrum disorder. Mol. Autism 8, 48 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Sturrock, A., Marsden, A., Adams, C. & Freed, J. Observational and reported measures of language and pragmatics in young people with autism: a comparison of respondent data and gender profiles. J. Autism Dev. Disord. 50, 812–830 (2020).

    PubMed  Google Scholar 

  113. Boorse, J. et al. Linguistic markers of autism in girls: evidence of a “blended phenotype” during storytelling. Mol. Autism 10, 14 (2019).

    PubMed  PubMed Central  Google Scholar 

  114. Conlon, O. et al. Gender differences in pragmatic communication in school-aged children with autism spectrum disorder (ASD). J. Autism Dev. Disord. 49, 1937–1948 (2019).

    PubMed  Google Scholar 

  115. Uljarević, M. et al. Deconstructing the repetitive behaviour phenotype in autism spectrum disorder through a large population-based analysis. J. Child Psychol. Psychiatry 61, 1030–1042 (2020).

    PubMed  Google Scholar 

  116. Uljarević, M. et al. Big data approach to characterize restricted and repetitive behaviors in autism. J. Am. Acad. Child Adolesc. Psychiatry 61, 446–457 (2022).

    PubMed  Google Scholar 

  117. Tsirgiotis, J. M., Young, R. L. & Weber, N. Sex/gender differences in CARS2 and GARS-3 item scores: evidence of phenotypic differences between males and females with ASD. J. Autism Dev. Disord. 52, 3958–3976 (2022).

    PubMed  Google Scholar 

  118. Stephenson, K. G., Norris, M. & Butter, E. M. Sex-based differences in autism symptoms in a large, clinically-referred sample of preschool-aged children with ASD. J. Autism Dev. Disord. https://doi.org/10.1007/s10803-020-04836-2 (2021).

    Article  PubMed  Google Scholar 

  119. Uljarević, M. et al. Dimensional assessment of restricted and repetitive behaviors: development and preliminary validation of a new measure. J. Am. Acad. Child Adolesc. Psychiatry https://doi.org/10.1016/j.jaac.2022.07.863 (2022).

    Article  PubMed  Google Scholar 

  120. Szatmari, P. et al. Developmental trajectories of symptom severity and adaptive functioning in an inception cohort of preschool children with autism spectrum disorder. JAMA Psychiatry 72, 276–283 (2015).

    PubMed  Google Scholar 

  121. Waizbard-Bartov, E. et al. Trajectories of autism symptom severity change during early childhood. J. Autism Dev. Disord. 51, 227–242 (2021).

    PubMed  Google Scholar 

  122. Bölte, S., Duketis, E., Poustka, F. & Holtmann, M. Sex differences in cognitive domains and their clinical correlates in higher-functioning autism spectrum disorders. Autism 15, 497–511 (2011).

    PubMed  Google Scholar 

  123. Lai, M. C., Lombardo, M. V., Auyeung, B., Chakrabarti, B. & Baron-Cohen, S. Sex/gender differences and autism: setting the scene for future research. J. Am. Acad. Child Adolesc. Psychiatry 54, 11–24 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Hull, L., Mandy, W. & Petrides, K. V. Behavioural and cognitive sex/gender differences in autism spectrum condition and typically developing males and females. Autism 21, 706–727 (2017).

    PubMed  Google Scholar 

  125. Liu, X. et al. Prevalence of epilepsy in autism spectrum disorders: a systematic review and meta-analysis. Autism 26, 33–50 (2022).

    PubMed  Google Scholar 

  126. Wallace, G. L., Richard, E., Wolff, A., Nadeau, M. & Zucker, N. Increased emotional eating behaviors in children with autism: sex differences and links with dietary variety. Autism 25, 603–612 (2021).

    PubMed  Google Scholar 

  127. Lundin Remnélius, K., Neufeld, J., Isaksson, J. & Bolte, S. Eating problems in autistic females and males: a co-twin control study. J. Autism Dev. Disord. 52, 3153–3168 (2022).

    PubMed  Google Scholar 

  128. Weir, E., Allison, C., Ong, K. K. & Baron-Cohen, S. An investigation of the diet, exercise, sleep, BMI, and health outcomes of autistic adults. Mol. Autism 12, 31 (2021).

    PubMed  PubMed Central  Google Scholar 

  129. Loyer Carbonneau, M., Demers, M., Bigras, M. & Guay, M. C. Meta-analysis of sex differences in ADHD symptoms and associated cognitive deficits. J. Atten. Disord. 25, 1640–1656 (2021).

    PubMed  Google Scholar 

  130. Rucklidge, J. J. Gender differences in attention-deficit/hyperactivity disorder. Psychiatr. Clin. North. Am. 33, 357–373 (2010).

    PubMed  Google Scholar 

  131. Cortese, S., Faraone, S. V., Bernardi, S., Wang, S. & Blanco, C. Gender differences in adult attention-deficit/hyperactivity disorder: results from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). J. Clin. Psychiatry 77, e421–e428 (2016).

    PubMed  Google Scholar 

  132. Young, S. et al. Females with ADHD: an expert consensus statement taking a lifespan approach providing guidance for the identification and treatment of attention-deficit/hyperactivity disorder in girls and women. BMC Psychiatry 20, 404 (2020).

    PubMed  PubMed Central  Google Scholar 

  133. Hinshaw, S. P., Nguyen, P. T., O’Grady, S. M. & Rosenthal, E. A. Annual research review: attention-deficit/hyperactivity disorder in girls and women: underrepresentation, longitudinal processes, and key directions. J. Child Psychol. Psychiatry 63, 484–496 (2022).

    PubMed  Google Scholar 

  134. Meyer, B. J., Stevenson, J. & Sonuga-Barke, E. J. S. Sex differences in the meaning of parent and teacher ratings of ADHD behaviors: an observational study. J. Atten. Disord. 24, 1847–1856 (2020).

    PubMed  Google Scholar 

  135. Balint, S. et al. Attention deficit hyperactivity disorder (ADHD): gender- and age-related differences in neurocognition. Psychol. Med. 39, 1337–1345 (2009).

    CAS  PubMed  Google Scholar 

  136. Elkins, I. J. et al. Increased risk of smoking in female adolescents who had childhood ADHD. Am. J. Psychiatry 175, 63–70 (2018).

    PubMed  Google Scholar 

  137. Solberg, B. S. et al. Gender differences in psychiatric comorbidity: a population-based study of 40 000 adults with attention deficit hyperactivity disorder. Acta Psychiatr. Scand. 137, 176–186 (2018).

    CAS  PubMed  Google Scholar 

  138. Chen, Q. et al. Common psychiatric and metabolic comorbidity of adult attention-deficit/hyperactivity disorder: a population-based cross-sectional study. PLoS ONE 13, e0204516 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Chilosi, A. M., Brovedani, P., Cipriani, P. & Casalini, C. Sex differences in early language delay and in developmental language disorder. J. Neurosci. Res. https://doi.org/10.1002/jnr.24976 (2021).

    Article  PubMed  Google Scholar 

  140. Oller, D. K. et al. Infant boys are more vocal than infant girls. Curr. Biol. 30, R426–R427 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Rinaldi, P., Pasqualetti, P., Volterra, V. & Caselli, M. C. Gender differences in early stages of language development. Some evidence and possible explanations. J. Neurosci. Res. https://doi.org/10.1002/jnr.24914 (2021).

    Article  PubMed  Google Scholar 

  142. Etchell, A. et al. A systematic literature review of sex differences in childhood language and brain development. Neuropsychologia 114, 19–31 (2018).

    PubMed  PubMed Central  Google Scholar 

  143. Norbury, C. F. et al. The impact of nonverbal ability on prevalence and clinical presentation of language disorder: evidence from a population study. J. Child Psychol. Psychiatry 57, 1247–1257 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Landerl, K. & Moll, K. Comorbidity of learning disorders: prevalence and familial transmission. J. Child Psychol. Psychiatry 51, 287–294 (2010).

    PubMed  Google Scholar 

  145. Moll, K., Kunze, S., Neuhoff, N., Bruder, J. & Schulte-Korne, G. Specific learning disorder: prevalence and gender differences. PLoS ONE 9, e103537 (2014).

    PubMed  PubMed Central  Google Scholar 

  146. Arnett, A. B. et al. Explaining the sex difference in dyslexia. J. Child Psychol. Psychiatry 58, 719–727 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Krafnick, A. J. & Evans, T. M. Neurobiological sex differences in developmental dyslexia. Front. Psychol. 9, 2669 (2019).

    PubMed  PubMed Central  Google Scholar 

  148. Willcutt, E. G. & Pennington, B. F. Comorbidity of reading disability and attention-deficit/hyperactivity disorder: differences by gender and subtype. J. Learn. Disabil. 33, 179–191 (2000).

    CAS  PubMed  Google Scholar 

  149. Garris, J. & Quigg, M. The female Tourette patient: sex differences in Tourette disorder. Neurosci. Biobehav. Rev. 129, 261–268 (2021).

    PubMed  Google Scholar 

  150. Meoni, S., Macerollo, A. & Moro, E. Sex differences in movement disorders. Nat. Rev. Neurol. 16, 84–96 (2020).

    CAS  PubMed  Google Scholar 

  151. Schwabe, M. J. & Konkol, R. J. Menstrual cycle-related fluctuations of tics in Tourette syndrome. Pediatr. Neurol. 8, 43–46 (1992).

    CAS  PubMed  Google Scholar 

  152. Leckman, J. F., Walker, D. E. & Cohen, D. J. Premonitory urges in Tourette’s syndrome. Am. J. Psychiatry 150, 98–102 (1993).

    CAS  PubMed  Google Scholar 

  153. Santangelo, S. L. et al. Tourette’s syndrome: what are the influences of gender and comorbid obsessive-compulsive disorder? J. Am. Acad. Child Adolesc. Psychiatry 33, 795–804 (1994).

    CAS  PubMed  Google Scholar 

  154. Baizabal-Carvallo, J. F. & Jankovic, J. Sex differences in patients with Tourette syndrome. CNS Spectr. https://doi.org/10.1017/S1092852922000074 (2022).

    Article  PubMed  Google Scholar 

  155. Rodgers, S. et al. Sex-related and non-sex-related comorbidity subtypes of tic disorders: a latent class approach. Eur. J. Neurol. 21, 700–707 (2014).

    CAS  PubMed  Google Scholar 

  156. Lewin, A. B. et al. A phenomenological investigation of women with Tourette or other chronic tic disorders. Compr. Psychiatry 53, 525–534 (2012).

    PubMed  Google Scholar 

  157. Cleaton, M. A. M., Tal-Saban, M., Hill, E. L. & Kirby, A. Gender and age differences in the presentation of at-risk or probable developmental coordination disorder in adults. Res. Dev. Disabil. 115, 104010 (2021).

    PubMed  Google Scholar 

  158. Tsakanikos, E., Bouras, N., Sturmey, P. & Holt, G. Psychiatric co-morbidity and gender differences in intellectual disability. J. Intellect. Disabil. Res. 50, 582–587 (2006).

    CAS  PubMed  Google Scholar 

  159. Lunsky, Y. Depressive symptoms in intellectual disability: does gender play a role? J. Intellect. Disabil. Res. 47, 417–427 (2003).

    CAS  PubMed  Google Scholar 

  160. Axmon, A., Sandberg, M. & Ahlstrom, G. Gender differences in psychiatric diagnoses in older people with intellectual disability: a register study. BMC Psychiatry 17, 192 (2017).

    PubMed  PubMed Central  Google Scholar 

  161. Society for the Study of Behavioural Phenotypes. Syndrome Sheets: Resources for Clinicians – Syndrome Specific Information and Current Research. SSBP https://ssbp.org.uk/syndrome-sheets/ (2022).

  162. Hunter, J. et al. Epidemiology of fragile X syndrome: a systematic review and meta-analysis. Am. J. Med. Genet. A 164A, 1648–1658 (2014).

    PubMed  Google Scholar 

  163. Bartholomay, K. L., Lee, C. H., Bruno, J. L., Lightbody, A. A. & Reiss, A. L. Closing the gender gap in fragile X syndrome: review on females with FXS and preliminary research findings. Brain Sci. 9, 11 (2019).

    PubMed  PubMed Central  Google Scholar 

  164. Hagerman, R. J. et al. Fragile X syndrome. Nat. Rev. Dis. Prim. 3, 17065 (2017).

    PubMed  Google Scholar 

  165. Tint, A. & Weiss, J. A. A qualitative study of the service experiences of women with autism spectrum disorder. Autism 22, 928–937 (2018).

    PubMed  Google Scholar 

  166. Mademtzi, M., Singh, P., Shic, F. & Koenig, K. Challenges of females with autism: a parental perspective. J. Autism Dev. Disord. 48, 1301–1310 (2018).

    PubMed  Google Scholar 

  167. Mowlem, F. D. et al. Sex differences in predicting ADHD clinical diagnosis and pharmacological treatment. Eur. Child Adolesc. Psychiatry 28, 481–489 (2019).

    PubMed  Google Scholar 

  168. Kok, F. M., Groen, Y., Fuermaier, A. B. M. & Tucha, O. The female side of pharmacotherapy for ADHD – a systematic literature review. PLoS ONE 15, e0239257 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Sonuga-Barke, E. J. S. et al. Sex differences in the response of children with ADHD to once-daily formulations of methylphenidate. J. Am. Acad. Child Adolesc. Psychiatry 46, 701–710 (2007).

    PubMed  Google Scholar 

  170. Schwabe, M. J. & Konkol, R. J. Treating Tourette syndrome with haloperidol: predictors of success. Wis. Med. J. 88, 23–27 (1989).

    CAS  PubMed  Google Scholar 

  171. Choque Olsson, N. et al. Social skills training for children and adolescents with autism spectrum disorder: a randomized controlled trial. J. Am. Acad. Child Adolesc. Psychiatry 56, 585–592 (2017).

    PubMed  Google Scholar 

  172. Ko, J. A., Schuck, R. K., Jimenez-Munoz, M., Penner-Baiden, K. M. & Vernon, T. W. Brief report: sex/gender differences in adolescents with autism: socialization profiles and response to social skills intervention. J. Autism Dev. Disord. 52, 2812–2818 (2022).

    PubMed  Google Scholar 

  173. Lai, M. C. et al. Imaging sex/gender and autism in the brain: etiological implications. J. Neurosci. Res. 95, 380–397 (2017).

    CAS  PubMed  Google Scholar 

  174. Hammill, C. et al. Quantitative and qualitative sex modulations in the brain anatomy of autism. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 898–909 (2021).

    PubMed  Google Scholar 

  175. Walsh, M. J. M., Wallace, G. L., Gallegos, S. M. & Braden, B. B. Brain-based sex differences in autism spectrum disorder across the lifespan: a systematic review of structural MRI, fMRI, and DTI findings. Neuroimage Clin. 31, 102719 (2021).

    PubMed  PubMed Central  Google Scholar 

  176. Bedford, S. A. et al. Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder. Mol. Psychiatry 25, 614–628 (2020).

    PubMed  Google Scholar 

  177. Floris, D. L. et al. The link between autism and sex-related neuroanatomy, and associated cognition and gene expression. Am. J. Psychiatry 180, 50–64 (2022).

    PubMed  Google Scholar 

  178. Surén, P. et al. Early growth patterns in children with autism. Epidemiology 24, 660–670 (2013).

    PubMed  PubMed Central  Google Scholar 

  179. Sparks, B. F. et al. Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59, 184–192 (2002).

    CAS  PubMed  Google Scholar 

  180. Bloss, C. S. & Courchesne, E. MRI neuroanatomy in young girls with autism: a preliminary study. J. Am. Acad. Child Adolesc. Psychiatry 46, 515–523 (2007).

    PubMed  Google Scholar 

  181. Schumann, C. M. et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J. Neurosci. 30, 4419–4427 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Lee, J. K. et al. Longitudinal evaluation of cerebral growth across childhood in boys and girls with autism spectrum disorder. Biol. Psychiatry 90, 286–294 (2021).

    PubMed  Google Scholar 

  183. Lee, J. K. et al. Altered development of amygdala-connected brain regions in males and females with autism. J. Neurosci. 42, 6145–6155 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Nordahl, C. W. et al. High psychopathology subgroup in young children with autism: associations with biological sex and amygdala volume. J. Am. Acad. Child Adolesc. Psychiatry 59, 1353–1363.e2 (2020).

    PubMed  PubMed Central  Google Scholar 

  185. Zielinski, B. A. et al. Sex-dependent structure of socioemotional salience, executive control, and default mode networks in preschool-aged children with autism. Neuroimage 257, 119252 (2022).

    PubMed  Google Scholar 

  186. Olafson, E. et al. Examining the boundary sharpness coefficient as an index of cortical microstructure in autism spectrum disorder. Cereb. Cortex 31, 3338–3352 (2021).

    PubMed  PubMed Central  Google Scholar 

  187. Mo, K. et al. Sex/gender differences in the human autistic brains: a systematic review of 20 years of neuroimaging research. Neuroimage Clin. 32, 102811 (2021).

    PubMed  PubMed Central  Google Scholar 

  188. Chien, Y. L. et al. Neurodevelopmental model of schizophrenia revisited: similarity in individual deviation and idiosyncrasy from the normative model of whole-brain white matter tracts and shared brain-cognition covariation with ADHD and ASD. Mol. Psychiatry 27, 3262–3271 (2022).

    PubMed  Google Scholar 

  189. Tung, Y. H. et al. Whole brain white matter tract deviation and idiosyncrasy from normative development in autism and ADHD and unaffected siblings link with dimensions of psychopathology and cognition. Am. J. Psychiatry 178, 730–743 (2021).

    PubMed  Google Scholar 

  190. Andrews, D. S. et al. A longitudinal study of white matter development in relation to changes in autism severity across early childhood. Biol. Psychiatry 89, 424–432 (2021).

    PubMed  Google Scholar 

  191. Nordahl, C. W. et al. Sex differences in the corpus callosum in preschool-aged children with autism spectrum disorder. Mol. Autism 6, 26 (2015).

    PubMed  PubMed Central  Google Scholar 

  192. Lee, J. K. et al. Sex differences in the amygdala resting-state connectome of children with autism spectrum disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 320–329 (2020).

    PubMed  Google Scholar 

  193. Floris, D. L. et al. Towards robust and replicable sex differences in the intrinsic brain function of autism. Mol. Autism 12, 19 (2021).

    PubMed  PubMed Central  Google Scholar 

  194. Sohal, V. S. & Rubenstein, J. L. R. Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol. Psychiatry 24, 1248–1257 (2019).

    PubMed  PubMed Central  Google Scholar 

  195. Dickinson, A., Jones, M. & Milne, E. Measuring neural excitation and inhibition in autism: different approaches, different findings and different interpretations. Brain Res. 1648, 277–289 (2016).

    CAS  PubMed  Google Scholar 

  196. Trakoshis, S. et al. Intrinsic excitation-inhibition imbalance affects medial prefrontal cortex differently in autistic men versus women. Elife 9, e55684 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Mottron, L. et al. Sex differences in brain plasticity: a new hypothesis for sex ratio bias in autism. Mol. Autism 6, 33 (2015).

    PubMed  PubMed Central  Google Scholar 

  198. O’Neill, J. et al. Parsing the heterogeneity of brain metabolic disturbances in autism spectrum disorder. Biol. Psychiatry 87, 174–184 (2020).

    PubMed  Google Scholar 

  199. Fung, L. K. et al. Thalamic and prefrontal GABA concentrations but not GABAA receptor densities are altered in high-functioning adults with autism spectrum disorder. Mol. Psychiatry 26, 1634–1646 (2021).

    CAS  PubMed  Google Scholar 

  200. James, D., Lam, V. T., Jo, B. & Fung, L. K. Region-specific associations between gamma-aminobutyric acid A receptor binding and cortical thickness in high-functioning autistic adults. Autism Res. 15, 1068–1082 (2022).

    PubMed  Google Scholar 

  201. Greven, C. U., Richards, J. S. & Buitelaar, J. K. in Oxford Textbook of Attention Deficit Hyperactivity Disorder Ch. 16 (eds Banaschewski, T., Coghill, D. & Zuddas, A.) 154–160 (Oxford Univ. Press, 2018).

  202. Mooney, M. A. et al. Smaller total brain volume but not subcortical structure volume related to common genetic risk for ADHD. Psychol. Med. 51, 1279–1288 (2021).

    PubMed  Google Scholar 

  203. Onnink, A. M. et al. Brain alterations in adult ADHD: effects of gender, treatment and comorbid depression. Eur. Neuropsychopharmacol. 24, 397–409 (2014).

    CAS  PubMed  Google Scholar 

  204. Rosch, K. S. et al. Reduced subcortical volumes among preschool-age girls and boys with ADHD. Psychiatry Res. Neuroimaging 271, 67–74 (2018).

    PubMed  Google Scholar 

  205. Jacobson, L. A. et al. Sex-based dissociation of white matter microstructure in children with attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 54, 938–946 (2015).

    PubMed  PubMed Central  Google Scholar 

  206. Lin, Q. et al. Sex differences in microstructural alterations in the corpus callosum tracts in drug-naive children with ADHD. Brain Imaging Behav. 16, 1592–1604 (2022).

    PubMed  Google Scholar 

  207. Rosch, K. S., Mostofsky, S. H. & Nebel, M. B. ADHD-related sex differences in fronto-subcortical intrinsic functional connectivity and associations with delay discounting. J. Neurodev. Disord. 10, 34 (2018).

    PubMed  PubMed Central  Google Scholar 

  208. Zou, H. & Yang, J. Exploring the brain lateralization in ADHD based on variability of resting-state fMRI signal. J. Atten. Disord. 25, 258–264 (2021).

    PubMed  Google Scholar 

  209. Chen, Y., Li, G., Ide, J. S., Luo, X. & Li, C. R. Sex differences in attention deficit hyperactivity symptom severity and functional connectivity of the dorsal striatum in young adults. Neuroimage Rep. 1, 100025 (2021).

    Google Scholar 

  210. Nikolaidis, A., He, X., Pekar, J., Rosch, K. & Mostofsky, S. H. Frontal corticostriatal functional connectivity reveals task positive and negative network dysregulation in relation to ADHD, sex, and inhibitory control. Dev. Cogn. Neurosci. 54, 101101 (2022).

    PubMed  PubMed Central  Google Scholar 

  211. Yeo, R. A. et al. Proton magnetic resonance spectroscopy investigation of the right frontal lobe in children with attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 42, 303–310 (2003).

    PubMed  Google Scholar 

  212. Endres, D. et al. Neurochemical sex differences in adult ADHD patients: an MRS study. Biol. Sex. Differ. 10, 50 (2019).

    PubMed  PubMed Central  Google Scholar 

  213. Peyre, H. et al. Neuroanatomy of dyslexia: an allometric approach. Eur. J. Neurosci. 52, 3595–3609 (2020).

    PubMed  Google Scholar 

  214. Ramus, F., Altarelli, I., Jednoróg, K., Zhao, J. & Scotto di Covella, L. in Dyslexia and Neuroscience: The Geschwind-Galaburda Hypothesis 30 Years Later Ch. 7 (eds Galaburda, A. M., Gaab, N., Hoeft, F. & McCardle, P.) 78–86 (Brookes, 2018).

  215. Horowitz-Kraus, T., Brunst, K. J. & Cecil, K. M. Children with dyslexia and typical readers: sex-based choline differences revealed using proton magnetic resonance spectroscopy acquired within anterior cingulate cortex. Front. Hum. Neurosci. 12, 466 (2018).

    PubMed  PubMed Central  Google Scholar 

  216. Pinares-Garcia, P., Stratikopoulos, M., Zagato, A., Loke, H. & Lee, J. Sex: a significant risk factor for neurodevelopmental and neurodegenerative disorders. Brain Sci. 8, 154 (2018).

    PubMed  PubMed Central  Google Scholar 

  217. Fahim, C. et al. Somatosensory-motor bodily representation cortical thinning in Tourette: effects of tic severity, age and gender. Cortex 46, 750–760 (2010).

    PubMed  Google Scholar 

  218. Greene, D. J. et al. Brain structure in pediatric Tourette syndrome. Mol. Psychiatry 22, 972–980 (2017).

    CAS  PubMed  Google Scholar 

  219. Peterson, B. S. et al. Regional brain and ventricular volumes in Tourette syndrome. Arch. Gen. Psychiatry 58, 427–440 (2001).

    CAS  PubMed  Google Scholar 

  220. Lightbody, A. A. & Reiss, A. L. Gene, brain, and behavior relationships in fragile X syndrome: evidence from neuroimaging studies. Dev. Disabil. Res. Rev. 15, 343–352 (2009).

    PubMed  PubMed Central  Google Scholar 

  221. Gharehgazlou, A. et al. Cortical gyrification morphology in individuals with ASD and ADHD across the lifespan: a systematic review and meta-analysis. Cereb. Cortex 31, 2653–2669 (2021).

    PubMed  Google Scholar 

  222. Pietschnig, J., Penke, L., Wicherts, J. M., Zeiler, M. & Voracek, M. Meta-analysis of associations between human brain volume and intelligence differences: how strong are they and what do they mean? Neurosci. Biobehav. Rev. 57, 411–432 (2015).

    PubMed  Google Scholar 

  223. Jiang, R. et al. Gender differences in connectome-based predictions of individualized intelligence quotient and sub-domain scores. Cereb. Cortex 30, 888–900 (2020).

    PubMed  Google Scholar 

  224. Carter, C. O. Genetics of common disorders. Br. Med. Bull. 25, 52–57 (1969).

    CAS  PubMed  Google Scholar 

  225. Robinson, E. B., Lichtenstein, P., Anckarsater, H., Happe, F. & Ronald, A. Examining and interpreting the female protective effect against autistic behavior. Proc. Natl Acad. Sci. USA 110, 5258–5262 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Dougherty, J. D. et al. Can the “female protective effect” liability threshold model explain sex differences in autism spectrum disorder? Neuron 110, 3243–3262 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Palmer, N. et al. Association of sex with recurrence of autism spectrum disorder among siblings. JAMA Pediatr. 171, 1107–1112 (2017).

    PubMed  PubMed Central  Google Scholar 

  228. Wigdor, E. M. et al. The female protective effect against autism spectrum disorder. Cell Genomics 2, 100134 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Warrier, V. et al. Genetic correlates of phenotypic heterogeneity in autism. Nat. Genet. 54, 1293–1304 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Solberg, B. S. et al. Sex differences in parent-offspring recurrence of attention-deficit/hyperactivity disorder. J. Child Psychol. Psychiatry 62, 1010–1018 (2021).

    PubMed  Google Scholar 

  231. Mouridsen, S. E., Rich, B. & Isager, T. The sex ratio of full and half siblings of people diagnosed with ADHD in childhood and adolescence: a Danish nationwide register-based cohort study. J. Atten. Disord. 20, 1017–1022 (2016).

    PubMed  Google Scholar 

  232. Martin, J. et al. Investigating gender-specific effects of familial risk for attention-deficit hyperactivity disorder and other neurodevelopmental disorders in the Swedish population. BJPsych Open 6, e65 (2020).

    PubMed  PubMed Central  Google Scholar 

  233. Nayar, K. et al. Elevated polygenic burden for autism spectrum disorder is associated with the broad autism phenotype in mothers of individuals with autism spectrum disorder. Biol. Psychiatry 89, 476–485 (2021).

    CAS  PubMed  Google Scholar 

  234. Martin, J. et al. Examining sex differences in neurodevelopmental and psychiatric genetic risk in anxiety and depression. PLoS ONE 16, e0248254 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Zhang, Y. et al. Genetic evidence of gender difference in autism spectrum disorder supports the female-protective effect. Transl. Psychiatry 10, 4 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Antaki, D. et al. A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex. Nat. Genet. 54, 1284–1292 (2022).

    CAS  PubMed  Google Scholar 

  237. Doan, R. N. et al. Recessive gene disruptions in autism spectrum disorder. Nat. Genet. 51, 1092–1098 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Polyak, A., Rosenfeld, J. A. & Girirajan, S. An assessment of sex bias in neurodevelopmental disorders. Genome Med. 7, 94 (2015).

    PubMed  PubMed Central  Google Scholar 

  239. van Rijn, S. A review of neurocognitive functioning and risk for psychopathology in sex chromosome trisomy (47,XXY, 47,XXX, 47,XYY). Curr. Opin. Psychiatry 32, 79–84 (2019).

    PubMed  PubMed Central  Google Scholar 

  240. Rau, S. et al. Patterns of psychopathology and cognition in sex chromosome aneuploidy. J. Neurodev. Disord. 13, 61 (2021).

    PubMed  PubMed Central  Google Scholar 

  241. Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961).

    CAS  PubMed  Google Scholar 

  242. Worsham, W., Dalton, S. & Bilder, D. A. The prenatal hormone milieu in autism spectrum disorder. Front. Psychiatry 12, 655438 (2021).

    PubMed  PubMed Central  Google Scholar 

  243. Martin, H. C. et al. The contribution of X-linked coding variation to severe developmental disorders. Nat. Commun. 12, 627 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Brand, B. A., Blesson, A. E. & Smith-Hicks, C. L. The impact of X-chromosome inactivation on phenotypic expression of X-linked neurodevelopmental disorders. Brain Sci. 11, 904 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Slavney, A., Arbiza, L., Clark, A. G. & Keinan, A. Strong constraint on human genes escaping X-inactivation is modulated by their expression level and breadth in both sexes. Mol. Biol. Evol. 33, 384–393 (2016).

    CAS  PubMed  Google Scholar 

  246. Jamain, S. et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 34, 27–29 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Tahira, A. C. et al. Putative contributions of the sex chromosome proteins SOX3 and SRY to neurodevelopmental disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 180, 390–414 (2019).

    CAS  PubMed  Google Scholar 

  248. Grunblatt, E. et al. The involvement of the canonical Wnt-signaling receptor LRP5 and LRP6 gene variants with ADHD and sexual dimorphism: association study and meta-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 180, 365–376 (2019).

    PubMed  Google Scholar 

  249. Berkel, S. et al. Sex hormones regulate SHANK expression. Front. Mol. Neurosci. 11, 337 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Jung, H. et al. Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice. Nat. Neurosci. 21, 1218–1228 (2018).

    CAS  PubMed  Google Scholar 

  251. Panaitof, S. C., Abrahams, B. S., Dong, H., Geschwind, D. H. & White, S. A. Language-related Cntnap2 gene is differentially expressed in sexually dimorphic song nuclei essential for vocal learning in songbirds. J. Comp. Neurol. 518, 1995–2018 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Martin, J. et al. Examining sex-differentiated genetic effects across neuropsychiatric and behavioral traits. Biol. Psychiatry 89, 1127–1137 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Sidorenko, J. et al. The effect of X-linked dosage compensation on complex trait variation. Nat. Commun. 10, 3009 (2019).

    PubMed  PubMed Central  Google Scholar 

  254. Geens, M. et al. Female human pluripotent stem cells rapidly lose X chromosome inactivation marks and progress to a skewed methylation pattern during culture. Mol. Hum. Reprod. 22, 285–298 (2016).

    CAS  PubMed  Google Scholar 

  255. Tukiainen, T. et al. Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248 (2017).

    PubMed  PubMed Central  Google Scholar 

  256. Terloyeva, D. et al. Meconium androgens are correlated with ASD-related phenotypic traits in early childhood in a familial enriched risk cohort. Mol. Autism 11, 93 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Baron-Cohen, S. The extreme male brain theory of autism. Trends Cogn. Sci. 6, 248–254 (2002).

    PubMed  Google Scholar 

  258. Baron-Cohen, S. et al. Why are autism spectrum conditions more prevalent in males? PLoS Biol. 9, e1001081 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Greenberg, D. M., Warrier, V., Allison, C. & Baron-Cohen, S. Testing the empathizing-systemizing theory of sex differences and the extreme male brain theory of autism in half a million people. Proc. Natl Acad. Sci. USA 115, 12152–12157 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Fusar-Poli, L. et al. Second-to-fourth digit ratio (2D:4D) in psychiatric disorders: a systematic review of case-control studies. Clin. Psychopharmacol. Neurosci. 19, 26–45 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. McKenna, B. G. et al. Genetic and morphological estimates of androgen exposure predict social deficits in multiple neurodevelopmental disorder cohorts. Mol. Autism 12, 43 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. McCarthy, M. M. Estradiol and the developing brain. Physiol. Rev. 88, 91–124 (2008).

    CAS  PubMed  Google Scholar 

  263. Baron-Cohen, S. et al. Elevated fetal steroidogenic activity in autism. Mol. Psychiatry 20, 369–376 (2015).

    CAS  PubMed  Google Scholar 

  264. Baron-Cohen, S. et al. Foetal oestrogens and autism. Mol. Psychiatry 25, 2970–2978 (2020).

    CAS  PubMed  Google Scholar 

  265. Windham, G. C., Lyall, K., Anderson, M. & Kharrazi, M. Autism spectrum disorder risk in relation to maternal mid-pregnancy serum hormone and protein markers from prenatal screening in California. J. Autism Dev. Disord. 46, 478–488 (2016).

    PubMed  Google Scholar 

  266. Dubey, P. et al. A systematic review and meta-analysis of the association between maternal polycystic ovary syndrome and neuropsychiatric disorders in children. Transl. Psychiatry 11, 569 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Coscini, N. et al. Association between early androgens and autistic traits: a systematic review and meta-analysis. Res. Autism Spectr. Disord. 85, 101789 (2021).

    Google Scholar 

  268. Arambula, S. E. & McCarthy, M. M. Neuroendocrine-immune crosstalk shapes sex-specific brain development. Endocrinology 161, bqaa055 (2020).

    PubMed  PubMed Central  Google Scholar 

  269. McCarthy, M. M. & Wright, C. L. Convergence of sex differences and the neuroimmune system in autism spectrum disorder. Biol. Psychiatry 81, 402–410 (2017).

    CAS  PubMed  Google Scholar 

  270. Turano, A., McAuley, E. M., Muench, M. C. & Schwarz, J. M. Examining the impact of neuroimmune dysregulation on social behavior of male and female juvenile rats. Behav. Brain Res. 415, 113449 (2021).

    PubMed  PubMed Central  Google Scholar 

  271. Cho, S. H., Chai, J. H., Chang, S. Y. & Kim, S. A. Acute valproate exposure induces sex-specific changes in steroid hormone metabolism in the cerebral cortex of juvenile mice. Neurochem. Res. 45, 2044–2051 (2020).

    CAS  PubMed  Google Scholar 

  272. Han, V. X., Patel, S., Jones, H. F. & Dale, R. C. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat. Rev. Neurol. 17, 564–579 (2021).

    PubMed  Google Scholar 

  273. Kim, D. W., Glendining, K. A., Grattan, D. R. & Jasoni, C. L. Maternal obesity leads to increased proliferation and numbers of astrocytes in the developing fetal and neonatal mouse hypothalamus. Int. J. Dev. Neurosci. 53, 18–25 (2016).

    CAS  PubMed  Google Scholar 

  274. Lee, S. C. et al. Solving for X: evidence for sex-specific autism biomarkers across multiple transcriptomic studies. Am. J. Med. Genet. B Neuropsychiatr. Genet. 180, 377–389 (2019).

    PubMed  Google Scholar 

  275. Marí-Bauset, S. et al. Systematic review of prenatal exposure to endocrine disrupting chemicals and autism spectrum disorder in offspring. Autism 26, 6–32 (2022).

    PubMed  Google Scholar 

  276. Thongkorn, S. et al. Sex differences in the effects of prenatal bisphenol A exposure on genes associated with autism spectrum disorder in the hippocampus. Sci. Rep. 9, 3038 (2019).

    PubMed  PubMed Central  Google Scholar 

  277. Kissel, L. T. & Werling, D. M. Neural transcriptomic analysis of sex differences in autism spectrum disorder: current insights and future directions. Biol. Psychiatry 91, 53–60 (2022).

    CAS  PubMed  Google Scholar 

  278. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    CAS  PubMed  Google Scholar 

  279. Breach, M. R. & Lenz, K. M. Sex Differences in Neurodevelopmental Disorders: A Key Role for the Immune System (Springer, 2022). [Series Eds Geyer, M. A. et al. Current Topics in Behavioral Neurosciences]

  280. Brynge, M. et al. Maternal infection during pregnancy and likelihood of autism and intellectual disability in children in Sweden: a negative control and sibling comparison cohort study. Lancet Psychiatry 9, 782–791 (2022).

    PubMed  Google Scholar 

  281. Solek, C. M., Farooqi, N., Verly, M., Lim, T. K. & Ruthazer, E. S. Maternal immune activation in neurodevelopmental disorders. Dev. Dyn. 247, 588–619 (2018).

    PubMed  Google Scholar 

  282. Lennington, J. B. et al. Transcriptome analysis of the human striatum in Tourette syndrome. Biol. Psychiatry 79, 372–382 (2016).

    CAS  PubMed  Google Scholar 

  283. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Chen, S. W. et al. Maternal autoimmune diseases and the risk of autism spectrum disorders in offspring: a systematic review and meta-analysis. Behav. Brain Res. 296, 61–69 (2016).

    PubMed  Google Scholar 

  285. Lee, H. et al. Risk of attention deficit hyperactivity and autism spectrum disorders among the children of parents with autoimmune diseases: a nationwide birth cohort study. Eur. Child Adolesc. Psychiatry https://doi.org/10.1007/s00787-021-01860-0 (2021).

    Article  PubMed  Google Scholar 

  286. Tylee, D. S. et al. Genetic correlations among psychiatric and immune-related phenotypes based on genome-wide association data. Am. J. Med. Genet. B Neuropsychiatr. Genet. 177, 641–657 (2018).

    PubMed  PubMed Central  Google Scholar 

  287. Hegvik, T. A., Instanes, J. T., Haavik, J., Klungsoyr, K. & Engeland, A. Associations between attention-deficit/hyperactivity disorder and autoimmune diseases are modified by sex: a population-based cross-sectional study. Eur. Child Adolesc. Psychiatry 27, 663–675 (2018).

    PubMed  Google Scholar 

  288. Xuan, I. C. & Hampson, D. R. Gender-dependent effects of maternal immune activation on the behavior of mouse offspring. PLoS ONE 9, e104433 (2014).

    PubMed  PubMed Central  Google Scholar 

  289. Custódio, C. S. et al. Neonatal immune challenge with lipopolysaccharide triggers long-lasting sex- and age-related behavioral and immune/neurotrophic alterations in mice: relevance to autism spectrum disorders. Mol. Neurobiol. 55, 3775–3788 (2018).

    PubMed  Google Scholar 

  290. Turano, A., Lawrence, J. H. & Schwarz, J. M. Activation of neonatal microglia can be influenced by other neural cells. Neurosci. Lett. 657, 32–37 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Coretti, L. et al. Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism spectrum disorder. Sci. Rep. 7, 45356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Basil, P. et al. Prenatal maternal immune activation causes epigenetic differences in adolescent mouse brain. Transl. Psychiatry 4, e434 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Diaz Heijtz, R. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl Acad. Sci. USA 108, 3047–3052 (2011).

    PubMed  Google Scholar 

  294. Holingue, C. et al. Sex differences in the gut-brain axis: implications for mental health. Curr. Psychiatry Rep. 22, 83 (2020).

    PubMed  PubMed Central  Google Scholar 

  295. Jaggar, M., Rea, K., Spichak, S., Dinan, T. G. & Cryan, J. F. You’ve got male: sex and the microbiota-gut-brain axis across the lifespan. Front. Neuroendocrinol. 56, 100815 (2020).

    PubMed  Google Scholar 

  296. Narayanan, S. P., Anderson, B. & Bharucha, A. E. Sex- and gender-related differences in common functional gastroenterologic disorders. Mayo Clin. Proc. 96, 1071–1089 (2021).

    PubMed  Google Scholar 

  297. Isaksson, J., Pettersson, E., Kostrzewa, E., Diaz Heijtz, R. & Bölte, S. Brief report: association between autism spectrum disorder, gastrointestinal problems and perinatal risk factors within sibling pairs. J. Autism Dev. Disord. 47, 2621–2627 (2017).

    PubMed  Google Scholar 

  298. Andreo-Martínez, P., Rubio-Aparicio, M., Sánchez-Meca, J., Veas, A. & Martínez-González, A. E. A meta-analysis of gut microbiota in children with autism. J. Autism Dev. Disord. 52, 1374–1387 (2022).

    PubMed  Google Scholar 

  299. Wang, M. et al. Alteration of gut microbiota-associated epitopes in children with autism spectrum disorders. Brain Behav. Immun. 75, 192–199 (2019).

    PubMed  Google Scholar 

  300. Foley, K. A., MacFabe, D. F., Vaz, A., Ossenkopp, K. P. & Kavaliers, M. Sexually dimorphic effects of prenatal exposure to propionic acid and lipopolysaccharide on social behavior in neonatal, adolescent, and adult rats: implications for autism spectrum disorders. Int. J. Dev. Neurosci. 39, 68–78 (2014).

    CAS  PubMed  Google Scholar 

  301. Cameron, J. J. & Stinson, D. A. Gender (mis)measurement: guidelines for respecting gender diversity in psychological research. Soc. Personal. Psychol. Compass 13, e12506 (2019).

    Google Scholar 

  302. Strang, J. F. et al. Both sex- and gender-related factors should be considered in autism research and clinical practice. Autism 24, 539–543 (2020).

    PubMed  Google Scholar 

  303. Rechlin, R. K., Splinter, T. F. L., Hodges, T. E., Albert, A. Y. & Galea, L. A. M. An analysis of neuroscience and psychiatry papers published from 2009 and 2019 outlines opportunities for increasing discovery of sex differences. Nat. Commun. 13, 2137 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Russell, G. et al. Selection bias on intellectual ability in autism research: a cross-sectional review and meta-analysis. Mol. Autism 10, 9 (2019).

    PubMed  PubMed Central  Google Scholar 

  305. Thurm, A. et al. Making research possible: barriers and solutions for those with ASD and ID. J. Autism Dev. Disord. 52, 4646–4650 (2022).

    PubMed  Google Scholar 

  306. Arvidsson, O., Gillberg, C., Lichtenstein, P. & Lundstrom, S. Secular changes in the symptom level of clinically diagnosed autism. J. Child Psychol. Psychiatry 59, 744–751 (2018).

    PubMed  Google Scholar 

  307. Willcutt, E. G. et al. Validity of DSM-IV attention deficit/hyperactivity disorder symptom dimensions and subtypes. J. Abnorm. Psychol. 121, 991–1010 (2012).

    PubMed  PubMed Central  Google Scholar 

  308. Taylor, L. E., Kaplan-Kahn, E. A., Lighthall, R. A. & Antshel, K. M. Adult-onset ADHD: a critical analysis and alternative explanations. Child Psychiatry Hum. Dev. 53, 635–653 (2022).

    PubMed  Google Scholar 

  309. Lai, M. C. & Szatmari, P. Sex and gender impacts on the behavioural presentation and recognition of autism. Curr. Opin. Psychiatry 33, 117–123 (2020).

    PubMed  Google Scholar 

  310. Hull, L., Petrides, K. V. & Mandy, W. The female autism phenotype and camouflaging: a narrative review. Rev. J. Autism Dev. Disord. 7, 306–317 (2020).

    Google Scholar 

  311. Fombonne, E. Camouflage and autism. J. Child Psychol. Psychiatry 61, 735–738 (2020).

    PubMed  Google Scholar 

  312. Cook, J., Hull, L., Crane, L. & Mandy, W. Camouflaging in autism: a systematic review. Clin. Psychol. Rev. 89, 102080 (2021).

    PubMed  Google Scholar 

  313. Libsack, E. J. et al. A systematic review of passing as non-autistic in autism spectrum disorder. Clin. Child Fam. Psychol. Rev. 24, 783–812 (2021).

    PubMed  Google Scholar 

  314. Lai, M. C. et al. Commentary: ‘Camouflaging’ in autistic people – reflection on Fombonne (2020). J. Child Psychol. Psychiatry 62, 1037–1041 (2021).

    Google Scholar 

  315. Williams, Z. J. Commentary: the construct validity of ‘camouflaging’ in autism: psychometric considerations and recommendations for future research – reflection on Lai et al. (2020). J. Child Psychol. Psychiatry 63, 118–121 (2022).

    PubMed  Google Scholar 

  316. Santos, S., Ferreira, H., Martins, J., Goncalves, J. & Castelo-Branco, M. Male sex bias in early and late onset neurodevelopmental disorders: shared aspects and differences in autism spectrum disorder, attention deficit/hyperactivity disorder, and schizophrenia. Neurosci. Biobehav. Rev. 135, 104577 (2022).

    CAS  PubMed  Google Scholar 

  317. Halpern, D. F. Sex Differences in Cognitive Abilities 4th edn (Psychology Press, 2011).

  318. Mac Giolla, E. & Kajonius, P. J. Sex differences in personality are larger in gender equal countries: replicating and extending a surprising finding. Int. J. Psychol. 54, 705–711 (2019).

    Google Scholar 

  319. Buitelaar, J. et al. Toward precision medicine in ADHD. Front. Behav. Neurosci. 16, 900981 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  320. Gershon, J. A meta-analytic review of gender differences in ADHD. J. Atten. Disord. 5, 143–154 (2002).

    CAS  PubMed  Google Scholar 

  321. Martin, J. et al. A genetic investigation of sex bias in the prevalence of attention-deficit/hyperactivity disorder. Biol. Psychiatry 83, 1044–1053 (2018).

    PubMed  PubMed Central  Google Scholar 

  322. Cheslack-Postava, K. & Jordan-Young, R. M. Autism spectrum disorders: toward a gendered embodiment model. Soc. Sci. Med. 74, 1667–1674 (2012).

    PubMed  Google Scholar 

  323. Kreiser, N. L. & White, S. W. ASD in females: are we overstating the gender difference in diagnosis? Clin. Child Fam. Psychol. Rev. 17, 67–84 (2014).

    PubMed  Google Scholar 

  324. Bauer, G. R. Sex and gender multidimensionality in epidemiological research. Am. J. Epidemiol. https://doi.org/10.1093/aje/kwac173 (2022).

    Article  PubMed Central  Google Scholar 

  325. Bauer, G. R. Incorporating intersectionality theory into population health research methodology: challenges and the potential to advance health equity. Soc. Sci. Med. 110, 10–17 (2014).

    PubMed  Google Scholar 

  326. Mendenhall, E., Kohrt, B. A., Logie, C. H. & Tsai, A. C. Syndemics and clinical science. Nat. Med. 28, 1359–1362 (2022).

    CAS  PubMed  Google Scholar 

  327. Khramtsova, E. A., Davis, L. K. & Stranger, B. E. The role of sex in the genomics of human complex traits. Nat. Rev. Genet. 20, 173–190 (2019).

    CAS  PubMed  Google Scholar 

  328. Nguyen, T. V., Ducharme, S. & Karama, S. Effects of sex steroids in the human brain. Mol. Neurobiol. 54, 7507–7519 (2017).

    CAS  PubMed  Google Scholar 

  329. Oliva, M. et al. The impact of sex on gene expression across human tissues. Science 369, eaba3066 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  330. Zhang, Y. et al. The human brain is best described as being on a female/male continuum: evidence from a neuroimaging connectivity study. Cereb. Cortex 31, 3021–3033 (2021).

    PubMed  PubMed Central  Google Scholar 

  331. Phillips, O. R. et al. Beyond a binary classification of sex: an examination of brain sex differentiation, psychopathology, and genotype. J. Am. Acad. Child Adolesc. Psychiatry 58, 787–798 (2019).

    PubMed  Google Scholar 

  332. Ostatníková, D., Lakatosova, S., Babkova, J., Hodosy, J. & Celec, P. Testosterone and the brain: from cognition to autism. Physiol. Res. 69, S403–S419 (2020).

    PubMed  PubMed Central  Google Scholar 

  333. Liu, S., Seidlitz, J., Blumenthal, J. D., Clasen, L. S. & Raznahan, A. Integrative structural, functional, and transcriptomic analyses of sex-biased brain organization in humans. Proc. Natl Acad. Sci. USA 117, 18788–18798 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  334. Bethlehem, R. A. I. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  335. Juster, R. P. et al. Sex and gender roles in relation to mental health and allostatic load. Psychosom. Med. 78, 788–804 (2016).

    PubMed  Google Scholar 

  336. Li, S. H. & Graham, B. M. Why are women so vulnerable to anxiety, trauma-related and stress-related disorders? The potential role of sex hormones. Lancet Psychiatry 4, 73–82 (2017).

    PubMed  Google Scholar 

  337. O’Neil, A., Scovelle, A. J., Milner, A. J. & Kavanagh, A. Gender/sex as a social determinant of cardiovascular risk. Circulation 137, 854–864 (2018).

    PubMed  Google Scholar 

  338. Haimov-Kochman, R. & Berger, I. Cognitive functions of regularly cycling women may differ throughout the month, depending on sex hormone status; a possible explanation to conflicting results of studies of ADHD in females. Front. Hum. Neurosci. 8, 191 (2014).

    PubMed  PubMed Central  Google Scholar 

  339. Manoli, D. S. & Tollkuhn, J. Gene regulatory mechanisms underlying sex differences in brain development and psychiatric disease. Ann. N. Y. Acad. Sci. 1420, 26–45 (2018).

    PubMed  PubMed Central  Google Scholar 

  340. Albin, R. L. Tourette syndrome as a disorder of the social decision making network. Front. Psychiatry 10, 742 (2019).

    PubMed  PubMed Central  Google Scholar 

  341. Williams, O. O. F., Coppolino, M., George, S. R. & Perreault, M. L. Sex differences in dopamine receptors and relevance to neuropsychiatric disorders. Brain Sci. 11, 1199 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  342. Wickens, M. M., Bangasser, D. A. & Briand, L. A. Sex differences in psychiatric disease: a focus on the glutamate system. Front. Mol. Neurosci. 11, 197 (2018).

    PubMed  PubMed Central  Google Scholar 

  343. Bottema-Beutel, K., Kapp, S. K., Lester, J. N., Sasson, N. J. & Hand, B. N. Avoiding ableist language: suggestions for autism researchers. Autism Adulthood 3, 18–29 (2020).

    Google Scholar 

  344. Botha, M., Hanlon, J. & Williams, G. L. Does language matter? Identity-first versus person-first language use in autism research: a response to Vivanti. J. Autism Dev. Disord. https://doi.org/10.1007/s10803-020-04858-w (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  345. Gernsbacher, M. A. Editorial perspective: the use of person-first language in scholarly writing may accentuate stigma. J. Child Psychol. Psychiatry 58, 859–861 (2017).

    PubMed  PubMed Central  Google Scholar 

  346. Gillespie-Lynch, K. et al. in Disability Alliances and Allies Vol. 12 (eds Carey, A. C., Ostrove, J. M. & Fannon, T.) 189–223 (Emerald, 2020).

  347. Donaldson, A. L., Krejcha, K. & McMillin, A. A strengths-based approach to autism: neurodiversity and partnering with the autism community. Perspect. ASHA Spec. Interest. Groups 2, 56–68 (2017).

    Google Scholar 

  348. Constantino, C. D. What can stutterers learn from the neurodiversity movement? Semin. Speech Lang. 39, 382–396 (2018).

    PubMed  Google Scholar 

  349. Kenny, L. et al. Which terms should be used to describe autism? Perspectives from the UK autism community. Autism 20, 442–462 (2016).

    PubMed  Google Scholar 

  350. Bury, S. M., Jellett, R., Spoor, J. R. & Hedley, D. “It Defines Who I Am” or “It’s Something I Have”: what language do [Autistic] Australian adults [on the autism spectrum] prefer? J. Autism Dev. Disord. https://doi.org/10.1007/s10803-020-04425-3 (2020).

    Article  Google Scholar 

  351. Robison, J. E. Talking about autism – thoughts for researchers. Autism Res. 12, 1004–1006 (2019).

    PubMed  Google Scholar 

  352. Best, K. L., Mortenson, W. B., Lauziere-Fitzgerald, Z. & Smith, E. M. Language matters! The long-standing debate between identity-first language and person first language. Assist. Technol. 34, 127–128 (2022).

    PubMed  Google Scholar 

  353. Keating, C. T. et al. Autism-related language preferences of English-speaking individuals across the globe: a mixed methods investigation. Autism Res. https://doi.org/10.1002/aur.2864 (2022).

    Article  PubMed  Google Scholar 

  354. Buijsman, R., Begeer, S. & Scheeren, A. M. ‘Autistic person’ or ‘person with autism’? Person-first language preference in Dutch adults with autism and parents. Autism https://doi.org/10.1177/13623613221117914 (2022).

    Article  PubMed  Google Scholar 

  355. Dwyer, P. Stigma, incommensurability, or both? Pathology-first, person-first, and identity-first language and the challenges of discourse in divided autism communities. J. Dev. Behav. Pediatr. 43, 111–113 (2022).

    PubMed  Google Scholar 

  356. Chiniara, L. N., Bonifacio, H. J. & Palmert, M. R. Characteristics of adolescents referred to a gender clinic: are youth seen now different from those in initial reports? Horm. Res. Paediatr. 89, 434–441 (2018).

    CAS  PubMed  Google Scholar 

  357. de Graaf, N. M., Carmichael, P., Steensma, T. D. & Zucker, K. J. Evidence for a change in the sex ratio of children referred for gender dysphoria: data from the Gender Identity Development Service in London (2000–2017). J. Sex. Med. 15, 1381–1383 (2018).

    PubMed  Google Scholar 

  358. Hisle-Gorman, E. et al. Gender dysphoria in children with autism spectrum disorder. LGBT Health 6, 95–100 (2019).

    PubMed  Google Scholar 

  359. Strang, J. F. et al. Increased gender variance in autism spectrum disorders and attention deficit hyperactivity disorder. Arch. Sex. Behav. 43, 1525–1533 (2014).

    PubMed  Google Scholar 

  360. May, T., Pang, K. & Williams, K. J. Gender variance in children and adolescents with autism spectrum disorder from the National Database for Autism Research. Int. J. Transgend. 18, 7–15 (2017).

    Google Scholar 

  361. Brunissen, L., Rapoport, E., Chawarska, K. & Adesman, A. Sex differences in gender-diverse expressions and identities among youth with autism spectrum disorder. Autism Res. 14, 143–155 (2021).

    PubMed  Google Scholar 

  362. Corbett, B. A. et al. Greater gender diversity among autistic children by self-report and parent-report. Autism https://doi.org/10.1177/13623613221085337 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  363. Dewinter, J., De Graaf, H. & Begeer, S. Sexual orientation, gender identity, and romantic relationships in adolescents and adults with autism spectrum disorder. J. Autism Dev. Disord. 47, 2927–2934 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  364. Chang, J. C., Lai, M. C., Tai, Y. M. & Gau, S. S. Mental health correlates and potential childhood predictors for the wish to be of the opposite sex in young autistic adults. Autism 26, 146–159 (2022).

    PubMed  Google Scholar 

  365. Warrier, V. et al. Elevated rates of autism, other neurodevelopmental and psychiatric diagnoses, and autistic traits in transgender and gender-diverse individuals. Nat. Commun. 11, 3959 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  366. Thrower, E., Bretherton, I., Pang, K. C., Zajac, J. D. & Cheung, A. S. Prevalence of autism spectrum disorder and attention-deficit hyperactivity disorder amongst individuals with gender dysphoria: a systematic review. J. Autism Dev. Disord. 50, 695–706 (2020).

    PubMed  Google Scholar 

  367. Nunes-Moreno, M. et al. Behavioral health diagnoses in youth with gender dysphoria compared with controls: a PEDSnet study. J. Pediatr. 241, 147–153.e1 (2022).

    PubMed  Google Scholar 

  368. Hines, M. Human gender development. Neurosci. Biobehav. Rev. 118, 89–96 (2020).

    PubMed  Google Scholar 

  369. Strang, J. F. et al. Initial clinical guidelines for co-occurring autism spectrum disorder and gender dysphoria or incongruence in adolescents. J. Clin. Child Adolesc. Psychol. 47, 105–115 (2018).

    PubMed  Google Scholar 

  370. Strang, J. F. et al. A clinical program for transgender and gender-diverse neurodiverse/autistic adolescents developed through community-based participatory design. J. Clin. Child Adolesc. Psychol. 50, 730–745 (2021).

    PubMed  Google Scholar 

  371. Ueda, K., Kim, S., Greene, D. J. & Black, K. J. Correlates and clinical implications of tic suppressibility. Curr. Dev. Disord. Rep. 8, 112–120 (2021).

    PubMed  PubMed Central  Google Scholar 

  372. Livingston, L. A., Shah, P. & Happé, F. Compensatory strategies below the behavioural surface in autism: a qualitative study. Lancet Psychiatry 6, 766–777 (2019).

    PubMed  PubMed Central  Google Scholar 

  373. Hobson, H. M. & Lee, A. Camouflaging in developmental language disorder: the views of speech and language pathologists and parents. Commun. Disord. Q. https://doi.org/10.1177/15257401221120937 (2022).

    Article  Google Scholar 

  374. Bernardin, C. J., Mason, E., Lewis, T. & Kanne, S. “You must become a chameleon to survive”: adolescent experiences of camouflaging. J. Autism Dev. Disord. 51, 4422–4435 (2021).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank E.-L. Säätelä and A. Vikingson, Karolinska Institutet Library, for expertise and assistance in the systematic literature search. For this review, J.N. was supported by Riksbankens Jubileumsfonds as a Pro-Futura Scientia fellow; P.B.M. was supported by DFG grant 456967546 and VW IDENTIFIED; Z.J.W. was supported by National Institute on Deafness and Other Communication Disorders grant F30-DC019510 and National Institute of General Medical Sciences grant T32-GM007347; and M.-C.L. was supported by the Academic Scholars Award from the Department of Psychiatry, University of Toronto, and the Canadian Institutes of Health Research Sex and Gender Science Chair (GSB 171373).

Author information

Authors and Affiliations

Authors

Contributions

S.B., J.N., P.B.M., L.G., and M.-C.L. conceptualized and designed the review, based on a systematic literature search led by S.B. These authors divided the focus of their contributions: S.B. (Introduction, Neurodevelopmental conditions, Epidemiology, Behavioural phenotypes, Access and response to interventions, Immunology, Gut–brain axis and microbiome, and Conclusions and future directions), J.N. (Brain biology), P.B.M. (Behavioural phenotypes), L.G. (Genomics, and Sex hormones), M.-C.L. (Sex and gender constructs, Behavioural phenotypes, Access and response to interventions, Conclusions and future directions, boxes, and integration across sections). Z.J.W. particularly examined the work applying community-informed knowledge and neurodiversity-affirmative perspectives. All authors contributed to the writing of the manuscript and revised it critically for important intellectual content. All authors approved the version to be published, and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work was appropriately investigated and resolved.

Corresponding authors

Correspondence to Sven Bölte or Meng-Chuan Lai.

Ethics declarations

Competing interests

The authors declare no direct conflict of interest related to this article. S.B. discloses that he has in the last 3 years acted as an author, consultant or lecturer for Medice and Roche. He receives royalties for textbooks and diagnostic tools from Hogrefe, Kohlhammer and UTB, and editorial honorarium from SAGE Publications. S.B. is a shareholder in NeuroSupportSolutions International and SB Education/Psychological Consulting. P.B.M. has received royalties for textbooks from Springer and Urban & Fischer and editorial honorarium from Elsevier. Z.J.W. has received consulting fees from Autism Speaks, the May Institute, and Roche; he also serves on the Autistic Researchers Review Board of the Autism Intervention Research Network for Physical Health (AIR-P). L.G. has acted as a consultant to Kingdom Therapeutics. M.-C.L. has received editorial honorarium from SAGE Publications.

Peer review

Peer review information

Nature Reviews Neurology thanks Stewart Mostofsky, who co-reviewed with Laura Rice; Christine Wu Nordahl, Donna Werling and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Gender diversity

The variations of gender identity and expression in the human populations that may or may not be aligned with those stereotypically linked to a person’s sex assigned at birth.

Gender-minority individual

A person whose gender identity is different from their gender and sex assigned at birth; for instance, someone who identifies as transgender or non-binary.

Genomic imprinting

Parent-of-origin-specific allelic expression of genes whereby only one copy of a gene is expressed while the other copy is suppressed; both maternally and paternally inherited genes can be subject to genomic imprinting.

Impression management

The ubiquitous human tendency to present favourable impressions of oneself in front of others during social interactions, such that one can achieve interpersonal or pragmatic rewards.

Lateralization

The tendency for selective neural or cognitive processes to be more strongly represented in or specialized to one brain hemisphere.

Liabilities

The sum of genetic and environmental factors that contribute to the development of a multifactorial phenotype; the genetic liability threshold model proposes that there is a continuous liability distribution within a population for a binary trait outcome and the distribution has a threshold that divides the population into two (that is, those with and those without the trait).

Morphosyntactic

An alternative term for ‘grammar’; grammar includes morphology and syntax, where morphology is about words and their formation, and syntax is about sentences and their formation.

Mosaicism

In genetics, mosaicism refers to the situation where an individual or organism has more than one genetic lineage within their cells, which can arise secondary to genetic mutation (including sex chromosomes) in the zygote; regarding neurophenotypes, mosaicism refers to the idea that the degree of typical ‘maleness’/‘femaleness’ of specific features in the brain of an individual is not internally consistent.

Profound autism

A new administrative term proposed by The Lancet Commission on the future of care and clinical research in autism to describe autistic individuals with high support needs (that is, requiring 24-h access to an adult who can care for them if concerns arise, being unable to be left completely alone in a residence, and not being able to take care of basic daily adaptive needs), often owing to substantial intellectual disability, very limited language, or both73.

Sex assigned at birth

The sex label (also termed ‘sex at birth’ or ‘sex designated at birth’) recorded at a person’s birth (for example, on a person’s birth certificate), typically given based on a child’s reproductive system and related physical characteristics (for example, genital anatomy).

Sex chromosome aneuploidies

The presence of additional sex chromosome(s) (X or Y) beyond the normal complement, associated with neurogenetic conditions; for example, X0 (Turner syndrome), XXY (Klinefelter syndrome), XXX (trisomy X, triple X syndrome), XYY (XYY syndrome, Jacobs syndrome).

Transdiagnostic methods

Approaches that reduce adherence to the conventional categorical diagnostic nosology or replace it with new frameworks that characterize medical, psychiatric and neurodevelopmental conditions in terms of relevant trait dimensions instead of discrete categories21.

X chromosome inactivation

The random silencing of one copy of the X chromosome per cell in individuals with XX chromosomes to compensate for dosage effects.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bölte, S., Neufeld, J., Marschik, P.B. et al. Sex and gender in neurodevelopmental conditions. Nat Rev Neurol 19, 136–159 (2023). https://doi.org/10.1038/s41582-023-00774-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00774-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing