Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prospects for gene replacement therapies in amyotrophic lateral sclerosis

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease characterized by the progressive loss of upper and lower motor neurons. ALS causes death, usually within 2–5 years of diagnosis. Riluzole, the only drug currently approved in Europe for the treatment of this condition, offers only a modest benefit, increasing survival by 3 months on average. Recent advances in our understanding of causative or disease-modifying genetic variants and in the development of genetic therapy strategies present exciting new therapeutic opportunities for ALS. In addition, the approval of adeno-associated virus-mediated delivery of functional copies of the SMN1 gene to treat spinal muscular atrophy represents an important therapeutic milestone and demonstrates the potential of gene replacement therapies for motor neuron disorders. In this Review, we describe the current landscape of genetic therapies in ALS, highlighting achievements and critical challenges. In particular, we discuss opportunities for gene replacement therapy in subgroups of people with ALS, and we describe loss-of-function mutations that are known to contribute to the pathophysiology of ALS and could represent novel targets for gene replacement therapies.

Key points

  • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease for which no effective disease-modifying therapy is currently available; emerging evidence suggests genetic therapy as an attractive new therapeutic strategy for this disease.

  • Genetic therapy can be classified into silencing, editing or replacement approaches, depending on whether the aim is to reduce the expression of toxic mutant proteins, introduce genomic modifications or provide functional copies of a dysfunctional gene.

  • Adeno-associated viruses (AAVs) are considered the vehicle of choice for the delivery of genetic materials. AAV9 is particularly attractive for neurological applications, as it can penetrate the blood–brain barrier and effectively deliver its cargo to both dividing and non-dividing cells.

  • Challenges that hinder the clinical application of genetic therapies in ALS include the multifactorial and oligogenic nature of the disease and the problem of efficiently and simultaneously targeting both motor neurons and glial cells. Nevertheless, some preclinical and clinical studies are currently testing gene therapy strategies for this disease, mostly focusing on silencing of toxic gene mutations.

  • Accumulating in vitro and in vivo evidence suggests loss of function as the mechanism underlying the effects of mutations in five ALS-associated genes (TBK1, OPTN, NEK1, FIG4 and ANG), and restoring the functions of these genes through replacement strategies could represent a promising therapeutic opportunity.

  • In the future, precision medicine approaches that target specific pathophysiological mechanisms in each affected individual can be envisaged.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Genetic therapy strategies.
Fig. 2: Potential targets for gene replacement therapies for ALS.

References

  1. Hardiman, O. et al. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Prim. 3, 17071 (2017).

    Article  Google Scholar 

  2. Van Damme, P., Robberecht, W. & Van Den Bosch, L. Modelling amyotrophic lateral sclerosis: progress and possibilities. Dis. Model. Mech. 10, 537–549 (2017).

    Article  Google Scholar 

  3. Nagoshi, N., Nakashima, H. & Fehlings, M. G. Riluzole as a neuroprotective drug for spinal cord injury: from bench to bedside. Molecules 20, 7775–7789 (2015).

    Article  CAS  Google Scholar 

  4. Fang, T. et al. Stage at which riluzole treatment prolongs survival in patients with amyotrophic lateral sclerosis: a retrospective analysis of data from a dose-ranging study. Lancet Neurol. 17, 416–422 (2018).

    Article  CAS  Google Scholar 

  5. Edaravone (MCI-186) ALS 19 Study Group. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 16, 505–512 (2017).

    Article  Google Scholar 

  6. King, A. E., Woodhouse, A., Kirkcaldie, M. T. & Vickers, J. C. Excitotoxicity in ALS: overstimulation, or overreaction? Exp. Neurol. 275, 162–171 (2016).

    Article  CAS  Google Scholar 

  7. Benson, B. C., Shaw, P. J., Azzouz, M., Highley, J. R. & Hautbergue, G. M. Proteinopathies as hallmarks of impaired gene expression, proteostasis and mitochondrial function in amyotrophic lateral sclerosis. Front. Neurosci. 15, 783624 (2021).

    Article  Google Scholar 

  8. Smith, E. F., Shaw, P. J. & De Vos, K. J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett. 710, 132933 (2019).

    Article  Google Scholar 

  9. Barber, S. C. & Shaw, P. J. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free. Radic. Biol. Med. 48, 629–641 (2010).

    Article  CAS  Google Scholar 

  10. Liu, J. & Wang, F. Role of neuroinflammation in amyotrophic lateral sclerosis: cellular mechanisms and therapeutic implications. Front. Immunol. 8, 1005 (2017).

    Article  Google Scholar 

  11. Butti, Z. & Patten, S. A. RNA dysregulation in amyotrophic lateral sclerosis. Front. Genet. 9, 712 (2018).

    Article  CAS  Google Scholar 

  12. Al-Chalabi, A. et al. Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurol. 15, 1182–1194 (2016).

    Article  Google Scholar 

  13. Andersen, P. M. & Al-Chalabi, A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat. Rev. Neurol. 7, 603–615 (2011).

    Article  CAS  Google Scholar 

  14. Mejzini, R. et al. ALS genetics, mechanisms, and therapeutics: where are we now? Front. Neurosci. 13, 1310 (2019).

    Article  Google Scholar 

  15. Ranganathan, R. et al. Multifaceted genes in amyotrophic lateral sclerosis-frontotemporal dementia. Front. Neurosci. 14, 684 (2020).

    Article  Google Scholar 

  16. Deng, H., Gao, K. & Jankovic, J. The role of FUS gene variants in neurodegenerative diseases. Nat. Rev. Neurol. 10, 337–348 (2014).

    Article  CAS  Google Scholar 

  17. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    Article  CAS  Google Scholar 

  18. Al-Zaidy, S. et al. Health outcomes in spinal muscular atrophy type 1 following AVXS-101 gene replacement therapy. Pediatr. Pulmonol. 54, 179–185 (2019).

    Article  Google Scholar 

  19. Hoy, S. M. Onasemnogene abeparvovec: first global approval. Drugs 79, 1255–1262 (2019).

    Article  CAS  Google Scholar 

  20. High, K. A. & Roncarolo, M. G. Gene therapy. N. Engl. J. Med. 381, 455–464 (2019).

    Article  CAS  Google Scholar 

  21. Tang, R. & Xu, Z. Gene therapy: a double-edged sword with great powers. Mol. Cell Biochem. 474, 73–81 (2020).

    Article  CAS  Google Scholar 

  22. Amado, D. A. & Davidson, B. L. Gene therapy for ALS: a review. Mol. Ther. 29, 3345–3358 (2021).

    Article  CAS  Google Scholar 

  23. Adams, D., Koike, H., Slama, M. & Coelho, T. Hereditary transthyretin amyloidosis: a model of medical progress for a fatal disease. Nat. Rev. Neurol. 15, 387–404 (2019).

    Article  CAS  Google Scholar 

  24. Keam, S. J. Inotersen: first global approval. Drugs 78, 1371–1376 (2018).

    Article  CAS  Google Scholar 

  25. Mercuri, E., Pera, M. C., Scoto, M., Finkel, R. & Muntoni, F. Spinal muscular atrophy – insights and challenges in the treatment era. Nat. Rev. Neurol. 16, 706–715 (2020).

    Article  CAS  Google Scholar 

  26. Li, Q. Nusinersen as a therapeutic agent for spinal muscular atrophy. Yonsei Med. J. 61, 273–283 (2020).

    Article  CAS  Google Scholar 

  27. Jablonka, S., Hennlein, L. & Sendtner, M. Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Neurol. Res. Pract. 4, 2 (2022).

    Article  Google Scholar 

  28. Uddin, F., Rudin, C. M. & Sen, T. CRISPR gene therapy: applications, limitations, and implications for the future. Front. Oncol. 10, 1387 (2020).

    Article  Google Scholar 

  29. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  Google Scholar 

  30. Brenner, D., Ludolph, A. C. & Weishaupt, J. H. Gene specific therapies – the next therapeutic milestone in neurology. Neurol. Res. Pract. 2, 25 (2020).

    Article  Google Scholar 

  31. Xu, Y. C. & Guo, Y. L. Less is more, natural loss-of-function mutation is a strategy for adaptation. Plant. Commun. 1, 100103 (2020).

    Article  Google Scholar 

  32. Deverman, B. E., Ravina, B. M., Bankiewicz, K. S., Paul, S. M. & Sah, D. W. Y. Gene therapy for neurological disorders: progress and prospects. Nat. Rev. Drug. Discov. 17, 767 (2018).

    Article  CAS  Google Scholar 

  33. Ingusci, S., Verlengia, G., Soukupova, M., Zucchini, S. & Simonato, M. Gene therapy tools for brain diseases. Front. Pharmacol. 10, 724 (2019).

    Article  CAS  Google Scholar 

  34. Naso, M. F., Tomkowicz, B., Perry, W. L. & Strohl, W. R. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 31, 317–334 (2017).

    Article  CAS  Google Scholar 

  35. Lykken, E. A., Shyng, C., Edwards, R. J., Rozenberg, A. & Gray, S. J. Recent progress and considerations for AAV gene therapies targeting the central nervous system. J. Neurodev. Disord. 10, 16 (2018).

    Article  Google Scholar 

  36. Cearley, C. N. & Wolfe, J. H. Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol. Ther. 13, 528–537 (2006).

    Article  CAS  Google Scholar 

  37. Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

    Article  CAS  Google Scholar 

  38. Gray, S. J. et al. Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol. Ther. 19, 1058–1069 (2011).

    Article  CAS  Google Scholar 

  39. Hudry, E. & Vandenberghe, L. H. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron 101, 839–862 (2019).

    Article  CAS  Google Scholar 

  40. Gessler, D. J., Tai, P. W. L., Li, J. & Gao, G. Intravenous infusion of AAV for widespread gene delivery to the nervous system. Methods Mol. Biol. 1950, 143–163 (2019).

    Article  CAS  Google Scholar 

  41. Colella, P., Ronzitti, G. & Mingozzi, F. Emerging issues in AAV-mediated in vivo gene therapy. Mol. Ther. Methods Clin. Dev. 8, 87–104 (2018).

    Article  CAS  Google Scholar 

  42. Domenger, C. & Grimm, D. Next-generation AAV vectors – do not judge a virus (only) by its cover. Hum. Mol. Genet. 28, R3–R14 (2019).

    Article  CAS  Google Scholar 

  43. Powell, S. K., Rivera-Soto, R. & Gray, S. J. Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy. Discov. Med. 19, 49–57 (2015).

    Google Scholar 

  44. Gray, S. J. et al. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum. Gene Ther. 22, 1143–1153 (2011).

    Article  CAS  Google Scholar 

  45. Fu, H. et al. Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain. Mol. Ther. 8, 911–917 (2003).

    Article  CAS  Google Scholar 

  46. Inagaki, K. et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol. Ther. 14, 45–53 (2006).

    Article  CAS  Google Scholar 

  47. Xu, R. et al. Quantitative comparison of expression with adeno-associated virus (AAV-2) brain-specific gene cassettes. Gene Ther. 8, 1323–1332 (2001).

    Article  CAS  Google Scholar 

  48. Nieuwenhuis, B. et al. Optimization of adeno-associated viral vector-mediated transduction of the corticospinal tract: comparison of four promoters. Gene Ther. 28, 56–74 (2021).

    Article  CAS  Google Scholar 

  49. Lukashchuk, V., Lewis, K. E., Coldicott, I., Grierson, A. J. & Azzouz, M. AAV9-mediated central nervous system-targeted gene delivery via cisterna magna route in mice. Mol. Ther. Methods Clin. Dev. 3, 15055 (2016).

    Article  Google Scholar 

  50. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    Article  CAS  Google Scholar 

  51. Jackson, K. L., Dayton, R. D., Deverman, B. E. & Klein, R. L. Better targeting, better efficiency for wide-scale neuronal transduction with the synapsin promoter and AAV-PHP.B. Front. Mol. Neurosci. 9, 116 (2016).

    Google Scholar 

  52. McCarty, D. M. Self-complementary AAV vectors; advances and applications. Mol. Ther. 16, 1648–1656 (2008).

    Article  CAS  Google Scholar 

  53. McCarty, D. M., Monahan, P. E. & Samulski, R. J. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 8, 1248–1254 (2001).

    Article  CAS  Google Scholar 

  54. High-dose AAV gene therapy deaths. Nat. Biotechnol. 38, 910 (2020).

  55. Philippidis, A. Fourth boy dies in clinical trial of Astellas’ AT132. Hum. Gene Ther. 32, 1008–1010 (2021).

    Article  CAS  Google Scholar 

  56. Boutin, S. et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum. Gene Ther. 21, 704–712 (2010).

    Article  CAS  Google Scholar 

  57. Calcedo, R., Vandenberghe, L. H., Gao, G., Lin, J. & Wilson, J. M. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J. Infect. Dis. 199, 381–390 (2009).

    Article  Google Scholar 

  58. Kruzik, A. et al. Prevalence of anti-adeno-associated virus immune responses in international cohorts of healthy donors. Mol. Ther. Methods Clin. Dev. 14, 126–133 (2019).

    Article  CAS  Google Scholar 

  59. Weber, T. Anti-AAV antibodies in AAV gene therapy: current challenges and possible solutions. Front. Immunol. 12, 658399 (2021).

    Article  CAS  Google Scholar 

  60. Calcedo, R. et al. Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin. Vaccin. Immunol. 18, 1586–1588 (2011).

    Article  CAS  Google Scholar 

  61. Herzog, R. W. Complexity of immune responses to AAV transgene products – example of factor IX. Cell Immunol. 342, 103658 (2019).

    Article  Google Scholar 

  62. Mingozzi, F. & High, K. A. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122, 23–36 (2013).

    Article  CAS  Google Scholar 

  63. Chowdhury, E. A. et al. Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Adv. Drug. Deliv. Rev. 170, 214–237 (2021).

    Article  CAS  Google Scholar 

  64. Vincents, B., von Pawel-Rammingen, U., Bjorck, L. & Abrahamson, M. Enzymatic characterization of the streptococcal endopeptidase, IdeS, reveals that it is a cysteine protease with strict specificity for IgG cleavage due to exosite binding. Biochemistry 43, 15540–15549 (2004).

    Article  CAS  Google Scholar 

  65. Elmore, Z. C., Oh, D. K., Simon, K. E., Fanous, M. M. & Asokan, A. Rescuing AAV gene transfer from neutralizing antibodies with an IgG-degrading enzyme. JCI Insight 5, e139881 (2020).

    Article  Google Scholar 

  66. Leborgne, C. et al. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat. Med. 26, 1096–1101 (2020).

    Article  CAS  Google Scholar 

  67. Ros-Gañán, I. et al. Optimising the IgG-degrading enzyme treatment regimen for enhanced adeno-associated virus transduction in the presence of neutralising antibodies. Clin. Transl. Immunol. 11, e1375 (2022).

    Article  Google Scholar 

  68. Srejovic, I. et al. Galectin-3: roles in neurodevelopment, neuroinflammation, and behavior. Biomolecules 10, 798 (2020).

    Article  CAS  Google Scholar 

  69. Denard, J. et al. Human galectin 3 binding protein interacts with recombinant adeno-associated virus type 6. J. Virol. 86, 6620–6631 (2012).

    Article  CAS  Google Scholar 

  70. Denard, J. et al. AAV-8 and AAV-9 vectors cooperate with serum proteins differently than AAV-1 and AAV-6. Mol. Ther. Methods Clin. Dev. 10, 291–302 (2018).

    Article  CAS  Google Scholar 

  71. Cappella, M., Ciotti, C., Cohen-Tannoudji, M. & Biferi, M. G. Gene therapy for ALS – a perspective. Int. J. Mol. Sci. 20, 4388 (2019).

    Article  CAS  Google Scholar 

  72. Scarrott, J. M., Herranz-Martín, S., Alrafiah, A. R., Shaw, P. J. & Azzouz, M. Current developments in gene therapy for amyotrophic lateral sclerosis. Expert. Opin. Biol. Ther. 15, 935–947 (2015).

    Article  CAS  Google Scholar 

  73. McCampbell, A. et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J. Clin. Invest. 128, 3558–3567 (2018).

    Article  Google Scholar 

  74. Miller, T. et al. Phase 1-2 trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 383, 109–119 (2020).

    Article  CAS  Google Scholar 

  75. Miller, T. M. et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 387, 1099–1110 (2022).

    Article  CAS  Google Scholar 

  76. Arnold, C. Tailored treatment for ALS poised to move ahead. Nat. Med. https://doi.org/10.1038/d41591-019-00013-w (2019).

    Article  Google Scholar 

  77. Biogen. Biogen and Ionis announce topline phase 1 study results of investigational drug in C9orf72 amyotrophic lateral sclerosis. Biogen https://investors.biogen.com/news-releases/news-release-details/biogen-and-ionis-announce-topline-phase-1-study-results (2022).

  78. Pena, S. A. et al. Gene therapy for neurological disorders: challenges and recent advancements. J. Drug. Target. 28, 111–128 (2020).

    Article  CAS  Google Scholar 

  79. Tora, M. S., Keifer, O. P., Lamanna, J. J. & Boulis, N. M. The challenges of developing a gene therapy for amyotrophic lateral sclerosis. Expert. Rev. Neurother. 17, 323–325 (2017).

    Article  CAS  Google Scholar 

  80. Tang, X. et al. Divergence, convergence, and therapeutic implications: a cell biology perspective of C9ORF72-ALS/FTD. Mol. Neurodegener. 15, 34 (2020).

    Article  Google Scholar 

  81. Hautbergue, G. M., Cleary, J. D., Guo, S. & Ranum, L. P. W. Therapeutic strategies for C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia. Curr. Opin. Neurol. 34, 748–755 (2021).

    Article  Google Scholar 

  82. Lee, E. B., Lee, V. M. & Trojanowski, J. Q. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 13, 38–50 (2011).

    Article  Google Scholar 

  83. An, H. et al. ALS-linked FUS mutations confer loss and gain of function in the nucleus by promoting excessive formation of dysfunctional paraspeckles. Acta Neuropathol. Commun. 7, 7 (2019).

    Article  Google Scholar 

  84. Weskamp, K. & Barmada, S. J. TDP43 and RNA instability in amyotrophic lateral sclerosis. Brain Res. 1693, 67–74 (2018).

    Article  CAS  Google Scholar 

  85. Wood, A., Gurfinkel, Y., Polain, N., Lamont, W. & Lyn Rea, S. Molecular mechanisms underlying TDP-43 pathology in cellular and animal models of ALS and FTLD. Int. J. Mol. Sci. 22, 4705 (2021).

    Article  CAS  Google Scholar 

  86. Benkler, C., Barhum, Y., Ben-Zur, T. & Offen, D. Multifactorial gene therapy enhancing the glutamate uptake system and reducing oxidative stress delays symptom onset and prolongs survival in the SOD1-G93A ALS mouse model. J. Mol. Neurosci. 58, 46–58 (2016).

    Article  CAS  Google Scholar 

  87. Rosenblum, L. T. & Trotti, D. EAAT2 and the molecular signature of amyotrophic lateral sclerosis. Adv. Neurobiol. 16, 117–136 (2017).

    Article  Google Scholar 

  88. Goyal, N. A. et al. Addressing heterogeneity in amyotrophic lateral sclerosis clinical trials. Muscle Nerve 62, 156–166 (2020).

    Article  Google Scholar 

  89. Bendotti, C. et al. Focus on the heterogeneity of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 485–495 (2020).

    Article  CAS  Google Scholar 

  90. Yang, Q., Jiao, B. & Shen, L. The development of C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia disorders. Front. Genet. 11, 562758 (2020).

    Article  CAS  Google Scholar 

  91. Smeyers, J., Banchi, E. G. & Latouche, M. C9ORF72: what it is, what it does, and why it matters. Front. Cell Neurosci. 15, 661447 (2021).

    Article  CAS  Google Scholar 

  92. Prasad, A., Bharathi, V., Sivalingam, V., Girdhar, A. & Patel, B. K. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front. Mol. Neurosci. 12, 25 (2019).

    Article  CAS  Google Scholar 

  93. Suk, T. R. & Rousseaux, M. W. C. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol. Neurodegener. 15, 45 (2020).

    Article  CAS  Google Scholar 

  94. Cirulli, E. T. et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436–1441 (2015).

    Article  CAS  Google Scholar 

  95. Freischmidt, A. et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18, 631–636 (2015).

    Article  CAS  Google Scholar 

  96. Zhou, R., Zhang, Q. & Xu, P. TBK1, a central kinase in innate immune sensing of nucleic acids and beyond. Acta Biochim. Biophys. Sin. 52, 757–767 (2020).

    Article  CAS  Google Scholar 

  97. Herhaus, L. TBK1 (TANK-binding kinase 1)-mediated regulation of autophagy in health and disease. Matrix Biol. 100–101, 84–98 (2021).

    Article  Google Scholar 

  98. Perry, A. K., Chow, E. K., Goodnough, J. B., Yeh, W. C. & Cheng, G. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J. Exp. Med. 199, 1651–1658 (2004).

    Article  CAS  Google Scholar 

  99. Zhao, W. Negative regulation of TBK1-mediated antiviral immunity. FEBS Lett. 587, 542–548 (2013).

    Article  CAS  Google Scholar 

  100. Miyahira, A. K., Shahangian, A., Hwang, S., Sun, R. & Cheng, G. TANK-binding kinase-1 plays an important role during in vitro and in vivo type I IFN responses to DNA virus infections. J. Immunol. 182, 2248–2257 (2009).

    Article  CAS  Google Scholar 

  101. Oakes, J. A., Davies, M. C. & Collins, M. O. TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol. Brain 10, 5 (2017).

    Article  Google Scholar 

  102. Pomerantz, J. L. & Baltimore, D. NF-κB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18, 6694–6704 (1999).

    Article  CAS  Google Scholar 

  103. Jin, J. et al. The kinase TBK1 controls IgA class switching by negatively regulating noncanonical NF-κB signaling. Nat. Immunol. 13, 1101–1109 (2012).

    Article  CAS  Google Scholar 

  104. Zhao, P. et al. TBK1 at the crossroads of inflammation and energy homeostasis in adipose tissue. Cell 172, 731–743.e12 (2018).

    Article  CAS  Google Scholar 

  105. Heo, J. M., Ordureau, A., Paulo, J. A., Rinehart, J. & Harper, J. W. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7–20 (2015).

    Article  CAS  Google Scholar 

  106. Vicencio, E. et al. Implications of selective autophagy dysfunction for ALS pathology. Cells 9, 381 (2020).

    Article  CAS  Google Scholar 

  107. Tsai, P. C. et al. Mutational analysis of TBK1 in Taiwanese patients with amyotrophic lateral sclerosis. Neurobiol. Aging 40, 191.e11–191.e16 (2016).

    Article  CAS  Google Scholar 

  108. Williams, K. L. et al. Novel TBK1 truncating mutation in a familial amyotrophic lateral sclerosis patient of Chinese origin. Neurobiol. Aging 36, 3334.e1–3334.e5 (2015).

    Article  CAS  Google Scholar 

  109. Shu, S. et al. Screening of the TBK1 gene in familial and sporadic amyotrophic lateral sclerosis patients of Chinese origin. Amyotroph. Lateral Scler. Frontotemporal Degener. 17, 605–607 (2016).

    Article  CAS  Google Scholar 

  110. Pozzi, L. et al. TBK1 mutations in Italian patients with amyotrophic lateral sclerosis: genetic and functional characterisation. J. Neurol. Neurosurg. Psychiatry 88, 869–875 (2017).

    Article  Google Scholar 

  111. de Majo, M. et al. ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function. Neurobiol. Aging 71, 266.e1–266.e10 (2018).

    Article  Google Scholar 

  112. Weinreich, M. et al. Neuropathological characterization of a novel TANK binding kinase (TBK1) gene loss of function mutation associated with amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol. 46, 279–291 (2020).

    Article  CAS  Google Scholar 

  113. Ye, J. et al. Effects of ALS-associated TANK binding kinase 1 mutations on protein-protein interactions and kinase activity. Proc. Natl Acad. Sci. USA 116, 24517–24526 (2019).

    Article  CAS  Google Scholar 

  114. Gijselinck, I. et al. Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology 85, 2116–2125 (2015).

    Article  CAS  Google Scholar 

  115. Pottier, C. et al. Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol. 130, 77–92 (2015).

    Article  CAS  Google Scholar 

  116. van der Zee, J. et al. TBK1 mutation spectrum in an extended European patient cohort with frontotemporal dementia and amyotrophic lateral sclerosis. Hum. Mutat. 38, 297–309 (2017).

    Article  Google Scholar 

  117. Foster, A. D. et al. ALS-associated TBK1 variant p.G175S is defective in phosphorylation of p62 and impacts TBK1-mediated signalling and TDP-43 autophagic degradation. Mol. Cell Neurosci. 108, 103539 (2020).

    Article  CAS  Google Scholar 

  118. Harding, O. et al. ALS- and FTD-associated missense mutations in TBK1 differentially disrupt mitophagy. Proc. Natl Acad. Sci. USA 118, e2025053118 (2021).

    Article  CAS  Google Scholar 

  119. Bonnard, M. et al. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-κB-dependent gene transcription. EMBO J. 19, 4976–4985 (2000).

    Article  CAS  Google Scholar 

  120. Brenner, D. et al. Heterozygous Tbk1 loss has opposing effects in early and late stages of ALS in mice. J. Exp. Med. 216, 267–278 (2019).

    Article  CAS  Google Scholar 

  121. Gerbino, V. et al. The loss of TBK1 kinase activity in motor neurons or in all cell types differentially impacts ALS disease progression in SOD1 mice. Neuron 106, 789–805.e5 (2020).

    Article  CAS  Google Scholar 

  122. Bruno, C. et al. Haploinsufficiency of TANK-binding kinase 1 prepones age-associated neuroinflammatory changes without causing motor neuron degeneration in aged mice. Brain Commun. 2, fcaa133 (2020).

    Article  Google Scholar 

  123. Duan, W. et al. Deletion of Tbk1 disrupts autophagy and reproduces behavioral and locomotor symptoms of FTD-ALS in mice. Aging 11, 2457–2476 (2019).

    Article  CAS  Google Scholar 

  124. Ying, H. & Yue, B. Y. Optineurin: the autophagy connection. Exp. Eye Res. 144, 73–80 (2016).

    Article  CAS  Google Scholar 

  125. Bansal, M., Swarup, G. & Balasubramanian, D. Functional analysis of optineurin and some of its disease-associated mutants. IUBMB Life 67, 120–128 (2015).

    Article  CAS  Google Scholar 

  126. Sippl, C., Zeilbeck, L. F., Fuchshofer, R. & Tamm, E. R. Optineurin associates with the podocyte Golgi complex to maintain its structure. Cell Tissue Res. 358, 567–583 (2014).

    Article  CAS  Google Scholar 

  127. Sahlender, D. A. et al. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J. Cell Biol. 169, 285–295 (2005).

    Article  CAS  Google Scholar 

  128. Park, B. C., Shen, X., Samaraweera, M. & Yue, B. Y. Studies of optineurin, a glaucoma gene: Golgi fragmentation and cell death from overexpression of wild-type and mutant optineurin in two ocular cell types. Am. J. Pathol. 169, 1976–1989 (2006).

    Article  CAS  Google Scholar 

  129. Fifita, J. A. et al. A novel amyotrophic lateral sclerosis mutation in OPTN induces ER stress and Golgi fragmentation in vitro. Amyotroph. Lateral Scler. Frontotemporal Degener. 18, 126–133 (2017).

    Article  CAS  Google Scholar 

  130. Feng, S. M. et al. Novel mutation in optineurin causing aggressive ALS+/-frontotemporal dementia. Ann. Clin. Transl. Neurol. 6, 2377–2383 (2019).

    Article  CAS  Google Scholar 

  131. Korac, J. et al. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J. Cell Sci. 126, 580–592 (2013).

    Article  CAS  Google Scholar 

  132. McCall, A. L. et al. Respiratory pathology in the Optn−/− mouse model of amyotrophic lateral sclerosis. Respir. Physiol. Neurobiol. 282, 103525 (2020).

    Article  CAS  Google Scholar 

  133. Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223–226 (2010).

    Article  CAS  Google Scholar 

  134. Tümer, Z. et al. Novel heterozygous nonsense mutation of the OPTN gene segregating in a Danish family with ALS. Neurobiol. Aging 33, 208.e1–208.e5 (2012).

    Article  Google Scholar 

  135. Goldstein, O. et al. OPTN 691_692insAG is a founder mutation causing recessive ALS and increased risk in heterozygotes. Neurology 86, 446–453 (2016).

    Article  CAS  Google Scholar 

  136. Gotkine, M. et al. A recessive S174X mutation in optineurin causes amyotrophic lateral sclerosis through a loss of function via allele-specific nonsense-mediated decay. Neurobiol. Aging 106, 1–6 (2021).

    Article  Google Scholar 

  137. Farhan, S. M. K., Gendron, T. F., Petrucelli, L., Hegele, R. A. & Strong, M. J. OPTN p.Met468Arg and ATXN2 intermediate length polyQ extension in families with C9orf72 mediated amyotrophic lateral sclerosis and frontotemporal dementia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 177, 75–85 (2018).

    Article  CAS  Google Scholar 

  138. Millecamps, S. et al. Screening of OPTN in French familial amyotrophic lateral sclerosis. Neurobiol. Aging 32, 557.e11–557.e13 (2011).

    Article  Google Scholar 

  139. Kamada, M. et al. Clinicopathologic features of autosomal recessive amyotrophic lateral sclerosis associated with optineurin mutation. Neuropathology 34, 64–70 (2014).

    Article  CAS  Google Scholar 

  140. Shen, W. C., Li, H. Y., Chen, G. C., Chern, Y. & Tu, P. H. Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism. Autophagy 11, 685–700 (2015).

    Article  CAS  Google Scholar 

  141. Sundaramoorthy, V. et al. Defects in optineurin- and myosin VI-mediated cellular trafficking in amyotrophic lateral sclerosis. Hum. Mol. Genet. 24, 3830–3846 (2015).

    Article  CAS  Google Scholar 

  142. Evans, C. S. & Holzbaur, E. L. Degradation of engulfed mitochondria is rate-limiting in optineurin-mediated mitophagy in neurons. Elife 9, e50260 (2020).

    Article  CAS  Google Scholar 

  143. Moore, A. S. & Holzbaur, E. L. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc. Natl Acad. Sci. USA 113, E3349–E3358 (2016).

    Article  CAS  Google Scholar 

  144. Nakazawa, S. et al. Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat. Commun. 7, 12547 (2016).

    Article  CAS  Google Scholar 

  145. Akizuki, M. et al. Optineurin suppression causes neuronal cell death via NF-κB pathway. J. Neurochem. 126, 699–704 (2013).

    Article  CAS  Google Scholar 

  146. Surpili, M. J., Delben, T. M. & Kobarg, J. Identification of proteins that interact with the central coiled-coil region of the human protein kinase NEK1. Biochemistry 42, 15369–15376 (2003).

    Article  CAS  Google Scholar 

  147. Melo-Hanchuk, T. D. et al. NEK1 kinase domain structure and its dynamic protein interactome after exposure to cisplatin. Sci. Rep. 7, 5445 (2017).

    Article  Google Scholar 

  148. Nguyen, H. P. et al. NEK1 genetic variability in a Belgian cohort of ALS and ALS-FTD patients. Neurobiol. Aging 61, 255.e1–255.e7 (2018).

    Article  CAS  Google Scholar 

  149. Fry, A. M., O’Regan, L., Sabir, S. R. & Bayliss, R. Cell cycle regulation by the NEK family of protein kinases. J. Cell Sci. 125, 4423–4433 (2012).

    CAS  Google Scholar 

  150. Chen, Y., Craigen, W. J. & Riley, D. J. Nek1 regulates cell death and mitochondrial membrane permeability through phosphorylation of VDAC1. Cell Cycle 8, 257–267 (2009).

    Article  CAS  Google Scholar 

  151. Chen, Y., Gaczynska, M., Osmulski, P., Polci, R. & Riley, D. J. Phosphorylation by Nek1 regulates opening and closing of voltage dependent anion channel 1. Biochem. Biophys. Res. Commun. 394, 798–803 (2010).

    Article  CAS  Google Scholar 

  152. Brenner, D. et al. NEK1 mutations in familial amyotrophic lateral sclerosis. Brain 139, e28 (2016).

    Article  Google Scholar 

  153. Lattante, S. et al. Novel variants and cellular studies on patients’ primary fibroblasts support a role for NEK1 missense variants in ALS pathogenesis. Hum. Mol. Genet. 30, 65–71 (2021).

    Article  CAS  Google Scholar 

  154. Higelin, J. et al. NEK1 loss-of-function mutation induces DNA damage accumulation in ALS patient-derived motoneurons. Stem Cell Res. 30, 150–162 (2018).

    Article  CAS  Google Scholar 

  155. Mah, L. J., El-Osta, A. & Karagiannis, T. C. gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24, 679–686 (2010).

    Article  CAS  Google Scholar 

  156. Nicholson, G. et al. Distinctive genetic and clinical features of CMT4J: a severe neuropathy caused by mutations in the PI(3,5)P2 phosphatase FIG4. Brain 134, 1959–1971 (2011).

    Article  Google Scholar 

  157. Marat, A. L. & Haucke, V. Phosphatidylinositol 3-phosphates – at the interface between cell signalling and membrane traffic. EMBO J. 35, 561–579 (2016).

    Article  CAS  Google Scholar 

  158. Chow, C. Y. et al. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am. J. Hum. Genet. 84, 85–88 (2009).

    Article  CAS  Google Scholar 

  159. Osmanovic, A. et al. FIG4 variants in central European patients with amyotrophic lateral sclerosis: a whole-exome and targeted sequencing study. Eur. J. Hum. Genet. 25, 324–331 (2017).

    Article  CAS  Google Scholar 

  160. Duex, J. E., Nau, J. J., Kauffman, E. J. & Weisman, L. S. Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot. Cell 5, 723–731 (2006).

    Article  CAS  Google Scholar 

  161. Chow, C. Y. et al. Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448, 68–72 (2007).

    Article  CAS  Google Scholar 

  162. Lenk, G. M. et al. Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet. 7, e1002104 (2011).

    Article  CAS  Google Scholar 

  163. Bharadwaj, R., Cunningham, K. M., Zhang, K. & Lloyd, T. E. FIG4 regulates lysosome membrane homeostasis independent of phosphatase function. Hum. Mol. Genet. 25, 681–692 (2016).

    Article  CAS  Google Scholar 

  164. Katona, I. et al. Distinct pathogenic processes between Fig4-deficient motor and sensory neurons. Eur. J. Neurosci. 33, 1401–1410 (2011).

    Article  Google Scholar 

  165. Zhang, X. et al. Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain 131, 1990–2001 (2008).

    Article  Google Scholar 

  166. Ferguson, C. J., Lenk, G. M. & Meisler, M. H. Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum. Mol. Genet. 18, 4868–4878 (2009).

    Article  CAS  Google Scholar 

  167. Kyotani, A. et al. Knockdown of the Drosophila FIG4 induces deficient locomotive behavior, shortening of motor neuron, axonal targeting aberration, reduction of life span and defects in eye development. Exp. Neurol. 277, 86–95 (2016).

    Article  CAS  Google Scholar 

  168. Presa, M. et al. AAV9-mediated FIG4 delivery prolongs life span in Charcot-Marie-Tooth disease type 4J mouse model. J. Clin. Invest. 131, e137159 (2021).

    Article  CAS  Google Scholar 

  169. Kishimoto, K., Liu, S., Tsuji, T., Olson, K. A. & Hu, G. F. Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene 24, 445–456 (2005).

    Article  CAS  Google Scholar 

  170. Sheng, J. & Xu, Z. Three decades of research on angiogenin: a review and perspective. Acta Biochim. Biophys. Sin. 48, 399–410 (2016).

    Article  CAS  Google Scholar 

  171. Lee, S. H., Kim, K. W., Min, K. M., Chang, S. I. & Kim, J. C. Angiogenin reduces immune inflammation via inhibition of TANK-binding kinase 1 expression in human corneal fibroblast cells. Mediat. Inflamm. 2014, 861435 (2014).

    Article  Google Scholar 

  172. Fu, H. et al. Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett. 583, 437–442 (2009).

    Article  CAS  Google Scholar 

  173. Yamasaki, S., Ivanov, P., Hu, G. F. & Anderson, P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell Biol. 185, 35–42 (2009).

    Article  CAS  Google Scholar 

  174. Wu, D. et al. Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann. Neurol. 62, 609–617 (2007).

    Article  CAS  Google Scholar 

  175. Crabtree, B. et al. Characterization of human angiogenin variants implicated in amyotrophic lateral sclerosis. Biochemistry 46, 11810–11818 (2007).

    Article  CAS  Google Scholar 

  176. Thiyagarajan, N., Ferguson, R., Subramanian, V. & Acharya, K. R. Structural and molecular insights into the mechanism of action of human angiogenin-ALS variants in neurons. Nat. Commun. 3, 1121 (2012).

    Article  Google Scholar 

  177. Padhi, A. K., Kumar, H., Vasaikar, S. V., Jayaram, B. & Gomes, J. Mechanisms of loss of functions of human angiogenin variants implicated in amyotrophic lateral sclerosis. PLoS One 7, e32479 (2012).

    Article  CAS  Google Scholar 

  178. Padhi, A. K., Jayaram, B. & Gomes, J. Prediction of functional loss of human angiogenin mutants associated with ALS by molecular dynamics simulations. Sci. Rep. 3, 1225 (2013).

    Article  Google Scholar 

  179. Subramanian, V. & Feng, Y. A new role for angiogenin in neurite growth and pathfinding: implications for amyotrophic lateral sclerosis. Hum. Mol. Genet. 16, 1445–1453 (2007).

    Article  CAS  Google Scholar 

  180. Subramanian, V., Crabtree, B. & Acharya, K. R. Human angiogenin is a neuroprotective factor and amyotrophic lateral sclerosis associated angiogenin variants affect neurite extension/pathfinding and survival of motor neurons. Hum. Mol. Genet. 17, 130–149 (2008).

    Article  CAS  Google Scholar 

  181. Kieran, D. et al. Control of motoneuron survival by angiogenin. J. Neurosci. 28, 14056–14061 (2008).

    Article  CAS  Google Scholar 

  182. Skorupa, A. et al. Motoneurons secrete angiogenin to induce RNA cleavage in astroglia. J. Neurosci. 32, 5024–5038 (2012).

    Article  CAS  Google Scholar 

  183. Hoang, T. T., Johnson, D. A., Raines, R. T. & Johnson, J. A. Angiogenin activates the astrocytic Nrf2/antioxidant-response element pathway and thereby protects murine neurons from oxidative stress. J. Biol. Chem. 294, 15095–15103 (2019).

    Article  CAS  Google Scholar 

  184. Kishikawa, H., Wu, D. & Hu, G. F. Targeting angiogenin in therapy of amyotrophic lateral sclerosis. Expert. Opin. Ther. Targets 12, 1229–1242 (2008).

    Article  CAS  Google Scholar 

  185. Aluri, K. C., Salisbury, J. P., Prehn, J. H. M. & Agar, J. N. Loss of angiogenin function is related to earlier ALS onset and a paradoxical increase in ALS duration. Sci. Rep. 10, 3715 (2020).

    Article  CAS  Google Scholar 

  186. Balakrishnan, B. & Jayandharan, G. R. Basic biology of adeno-associated virus (AAV) vectors used in gene therapy. Curr. Gene Ther. 14, 86–100 (2014).

    Article  CAS  Google Scholar 

  187. Sonntag, F., Schmidt, K. & Kleinschmidt, J. A. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc. Natl Acad. Sci. USA 107, 10220–10225 (2010).

    Article  CAS  Google Scholar 

  188. Yan, Z., Zak, R., Zhang, Y. & Engelhardt, J. F. Inverted terminal repeat sequences are important for intermolecular recombination and circularization of adeno-associated virus genomes. J. Virol. 79, 364–379 (2005).

    Article  CAS  Google Scholar 

  189. Choi, V. W., McCarty, D. M. & Samulski, R. J. Host cell DNA repair pathways in adeno-associated viral genome processing. J. Virol. 80, 10346–10356 (2006).

    Article  CAS  Google Scholar 

  190. Wang, L. J. et al. Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis. J. Neurosci. 22, 6920–6928 (2002).

    Article  CAS  Google Scholar 

  191. Mòdol-Caballero, G. et al. Specific expression of glial-derived neurotrophic factor in muscles as gene therapy strategy for amyotrophic lateral sclerosis. Neurotherapeutics 18, 1113–1126 (2021).

    Article  Google Scholar 

  192. Baloh, R. H. et al. Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial. Nat. Med. 28, 1813–1822 (2022).

    Article  CAS  Google Scholar 

  193. Kaspar, B. K., Lladó, J., Sherkat, N., Rothstein, J. D. & Gage, F. H. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301, 839–842 (2003).

    Article  CAS  Google Scholar 

  194. Lin, H. et al. Intramuscular delivery of scAAV9-hIGF1 prolongs survival in the hSOD1 G93A ALS mouse model via upregulation of D-amino acid oxidase. Mol. Neurobiol. 55, 682–695 (2018).

    Article  CAS  Google Scholar 

  195. Wang, W. et al. Systemic administration of scAAV9-IGF1 extends survival in SOD1G93A ALS mice via inhibiting p38 MAPK and the JNK-mediated apoptosis pathway. Brain Res. Bull. 139, 203–210 (2018).

    Article  CAS  Google Scholar 

  196. Cudkowicz, M. E. et al. A randomized placebo-controlled phase 3 study of mesenchymal stem cells induced to secrete high levels of neurotrophic factors in amyotrophic lateral sclerosis. Muscle Nerve 65, 291–302 (2022).

    Article  CAS  Google Scholar 

  197. Gothelf, Y., Abramov, N., Harel, A. & Offen, D. Safety of repeated transplantations of neurotrophic factors-secreting human mesenchymal stromal stem cells. Clin. Transl. Med. 3, 21 (2014).

    Article  Google Scholar 

  198. Petrou, P. et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol. 73, 337–344 (2016).

    Article  Google Scholar 

  199. Brenner, D. et al. Hot-spot KIF5A mutations cause familial ALS. Brain 141, 688–697 (2018).

    Article  Google Scholar 

  200. Nicolas, A. et al. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 97, 1268–1283.e6 (2018).

    Article  CAS  Google Scholar 

  201. Campbell, P. D. et al. Unique function of kinesin Kif5A in localization of mitochondria in axons. J. Neurosci. 34, 14717–14732 (2014).

    Article  Google Scholar 

  202. Nakano, J., Chiba, K. & Niwa, S. An ALS-associated KIF5A mutant forms oligomers and aggregates and induces neuronal toxicity. Genes. Cell 27, 421–435 (2022).

    Article  CAS  Google Scholar 

  203. Baron, D. M. et al. ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function. Cell Rep. 39, 110598 (2022).

    Article  CAS  Google Scholar 

  204. Pant, D. C. et al. ALS-linked KIF5A ΔExon27 mutant causes neuronal toxicity through gain-of-function. EMBO Rep. 23, e54234 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I.G. is supported by a SITraN postdoctoral fellowship. P.J.S. is supported as a National Institute for Health and Care Research (NIHR) Senior Investigator (NF-SI-0617-10077), by the NIHR Sheffield Biomedical Research Centre (IS-BRC-1215-20017). P.J.S. and M.A. are supported by the EU Innovative Medicines Initiative Accelerating Research and Development for Advanced Therapies (IMI ARDAT 945473) and a Medical Research Council (MRC) LifeArc award (MR/V030140/1). M.A. is further sponsored by the European Research Council (ERC Advanced Award 294745), an MRC Award (MR/G1001492), CureAP4, EU Joint Programme — Neurodegenerative Disease Research (MR/V000470/1) and Alzheimer’s Research UK. P.J.S. and J.K. are supported by the Motor Neurone Disease Association (AMBRoSIA 972-797 and NECTAR 974-797).

Author information

Authors and Affiliations

Authors

Contributions

I.G. and P.J.S. researched data for the article. I.G., J.K., M.A. and P.J.S. contributed substantially to discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Pamela J. Shaw.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks M. Sendtner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ALS type 11: https://www.ncbi.nlm.nih.gov/medgen/393399

Ensembl: https://www.ensembl.org/index.html

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giovannelli, I., Higginbottom, A., Kirby, J. et al. Prospects for gene replacement therapies in amyotrophic lateral sclerosis. Nat Rev Neurol 19, 39–52 (2023). https://doi.org/10.1038/s41582-022-00751-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-022-00751-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing