Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Maximizing treatment efficacy through patient stratification in neuropathic pain trials

This article has been updated

Abstract

Treatment of neuropathic pain remains inadequate despite the elucidation of multiple pathophysiological mechanisms and the development of promising therapeutic compounds. The lack of success in translating knowledge into clinical practice has discouraged pharmaceutical companies from investing in pain medicine; however, new patient stratification approaches could help bridge the translation gap and develop individualized therapeutic approaches. As we highlight in this article, subgrouping of patients according to sensory profiles and other baseline characteristics could aid the prediction of treatment success. Furthermore, novel outcome measures have been developed for patients with neuropathic pain. The extent to which sensory profiles and outcome measures can be employed in routine clinical practice and clinical trials and across distinct neuropathic pain aetiologies is yet to be determined. Improvements in animal models, drawing on our knowledge of human pain, and robust public–private partnerships will be needed to pave the way to innovative and effective pain medicine in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stratification approaches along the drug development pipeline.
Fig. 2: Subgrouping of patients with painful peripheral neuropathy.

Similar content being viewed by others

Change history

  • 12 December 2022

    In the version of this article initially published, the incorrect journal (J. Pain) was listed for ref. 134, which has now been corrected (Pain Rep.) in the HTML and PDF versions of the article.

References

  1. Colloca, L. et al. Neuropathic pain. Nat. Rev. Dis. Prim. 3, 17002 (2017).

    Article  Google Scholar 

  2. Alsaloum, M., Higerd, G. P., Effraim, P. R. & Waxman, S. G. Status of peripheral sodium channel blockers for non-addictive pain treatment. Nat. Rev. Neurol. 16, 689–705 (2020).

    Article  CAS  Google Scholar 

  3. Finnerup, N. B. et al. Neuropathic pain clinical trials: factors associated with decreases in estimated drug efficacy. Pain 159, 2339–2346 (2018).

    Article  CAS  Google Scholar 

  4. Mbowe, O. B., Gewandter, J. S., Turk, D. C., Dworkin, R. H. & McDermott, M. P. Are there really only 2 kinds of people in the world? Evaluating the distribution of change from baseline in pain clinical trials. Pain 161, 195–201 (2020).

    Article  Google Scholar 

  5. Attal, N., Bouhassira, D. & Baron, R. Diagnosis and assessment of neuropathic pain through questionnaires. Lancet Neurol. 17, 456–466 (2018).

    Article  Google Scholar 

  6. Pascal, M. M. V. et al. DOLORisk: study protocol for a multi-centre observational study to understand the risk factors and determinants of neuropathic pain. Wellcome Open Res. 3, 63 (2018).

    Article  Google Scholar 

  7. Corder, G. et al. An amygdalar neural ensemble that encodes the unpleasantness of pain. Science 363, 276–281 (2019).

    Article  CAS  Google Scholar 

  8. Daou, I. et al. Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J. Neurosci. 33, 18631–18640 (2013).

    Article  CAS  Google Scholar 

  9. Soliman, N., Rice, A. S. C. & Vollert, J. A practical guide to preclinical systematic review and meta-analysis. Pain 161, 1949–1954 (2020).

    Article  Google Scholar 

  10. Rice, A. S. C. et al. Transparency in the reporting of in vivo pre-clinical pain research: the relevance and implications of the ARRIVE (animal research: reporting in vivo experiments) guidelines. Scand. J. Pain 4, 58–62 (2013).

    Article  Google Scholar 

  11. Knopp, K. L. et al. Experimental design and reporting standards for improving the internal validity of pre-clinical studies in the field of pain: consensus of the IMI-Europain consortium. Scand. J. Pain 7, 58–70 (2015).

    Article  CAS  Google Scholar 

  12. Decosterd, I. & Woolf, C. J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149–158 (2000).

    Article  Google Scholar 

  13. Dickenson, A. H. & Patel, R. Translational issues in precision medicine in neuropathic pain. Can. J. Pain 4, 30–38 (2020).

    Article  Google Scholar 

  14. Field, M. J. et al. Identification of the α2-δ-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc. Natl Acad. Sci. USA 103, 17537–17542 (2006).

    Article  CAS  Google Scholar 

  15. Patel, R. & Dickenson, A. H. Neuronal hyperexcitability in the ventral posterior thalamus of neuropathic rats: modality selective effects of pregabalin. J. Neurophysiol. 116, 159–170 (2016).

    Article  CAS  Google Scholar 

  16. Demant, D. T. et al. The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, double-blind, placebo-controlled phenotype-stratified study. Pain 155, 2263–2273 (2014).

    Article  CAS  Google Scholar 

  17. Patel, R., Kucharczyk, M., Montagut-Bordas, C., Lockwood, S. & Dickenson, A. H. Neuropathy following spinal nerve injury shares features with the irritable nociceptor phenotype: a back-translational study of oxcarbazepine. Eur. J. Pain 23, 183–197 (2019).

    Article  CAS  Google Scholar 

  18. McDonnell, A. et al. Efficacy of the Nav1.7 blocker PF-05089771 in a randomised, placebo-controlled, double-blind clinical study in subjects with painful diabetic peripheral neuropathy. Pain 159, 1465–1476 (2018).

    Article  CAS  Google Scholar 

  19. Cao, L. et al. Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia. Sci. Transl. Med. 8, 335ra56 (2016).

    Article  Google Scholar 

  20. Goodwin, G., McMurray, S., Stevens, E. B., Denk, F. & McMahon, S. B. Examination of the contribution of Nav1.7 to axonal propagation in nociceptors. Pain 163, e869–e881 (2022).

    Article  CAS  Google Scholar 

  21. Kraus, R. L. et al. Nav1.7 target modulation and efficacy can be measured in nonhuman primate assays. Sci. Transl. Med. 13, eaay1050 (2021).

    Article  CAS  Google Scholar 

  22. Gewandter, J. S. et al. Predicting treatment response with sensory phenotyping in post-traumatic neuropathic pain. Pain. Med. 23, 1726–1732 (2022).

    Article  Google Scholar 

  23. Fisher, A. S., Lanigan, M. T., Upton, N. & Lione, L. A. Preclinical neuropathic pain assessment; the importance of translatability and bidirectional research. Front. Pharmacol. 11, 614990 (2020).

    Article  CAS  Google Scholar 

  24. Hunt, J., Knazovicky, D., Lascelles, B. D. X. & Murrell, J. Quantitative sensory testing in dogs with painful disease: a window to pain mechanisms? Vet. J. 243, 33–41 (2019).

    Article  Google Scholar 

  25. Edvinsson, L. CGRP and migraine: from bench to bedside. Rev. Neurol. 177, 785–790 (2021).

    Article  CAS  Google Scholar 

  26. Wise, B. L., Seidel, M. F. & Lane, N. E. The evolution of nerve growth factor inhibition in clinical medicine. Nat. Rev. Rheumatol. 17, 34–46 (2021).

    Article  Google Scholar 

  27. Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).

    Article  CAS  Google Scholar 

  28. Calvo, M. et al. The genetics of neuropathic pain from model organisms to clinical application. Neuron 104, 637–653 (2019).

    Article  CAS  Google Scholar 

  29. Zorina-Lichtenwalter, K., Parisien, M. & Diatchenko, L. Genetic studies of human neuropathic pain conditions: a review. Pain 159, 583–594 (2018).

    Article  CAS  Google Scholar 

  30. Sun, B. B. et al. Genetic associations of protein-coding variants in human disease. Nature 603, 95–102 (2022).

    Article  CAS  Google Scholar 

  31. Burand, A. J. & Stucky, C. L. Fabry disease pain: patient and preclinical parallels. Pain 162, 1305–1321 (2021).

    Article  CAS  Google Scholar 

  32. Asiri, M. M. H., Engelsman, S., Eijkelkamp, N. & Höppener, J. W. M. Amyloid proteins and peripheral neuropathy. Cells 9, E1553 (2020).

    Article  Google Scholar 

  33. Adams, D., Koike, H., Slama, M. & Coelho, T. Hereditary transthyretin amyloidosis: a model of medical progress for a fatal disease. Nat. Rev. Neurol. 15, 387–404 (2019).

    Article  CAS  Google Scholar 

  34. Houlden, H. et al. Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type 1 (HSAN I). Brain 129, 411–425 (2006).

    Article  Google Scholar 

  35. Kok, K. et al. Fabry disease: molecular basis, pathophysiology, diagnostics and potential therapeutic directions. Biomolecules 11, 271 (2021).

    Article  CAS  Google Scholar 

  36. Sachau, J., Kersebaum, D., Baron, R. & Dickenson, A. H. Unusual pain disorders–what can be learned from them? J. Pain Res. 13, 3539–3554 (2020).

    Article  Google Scholar 

  37. Fridman, V. et al. Randomized trial of l-serine in patients with hereditary sensory and autonomic neuropathy type 1. Neurology 92, e359–e370 (2019).

    Article  CAS  Google Scholar 

  38. Bennett, D. L., Clark, A. J., Huang, J., Waxman, S. G. & Dib-Hajj, S. D. The role of voltage-gated sodium channels in pain signaling. Physiol. Rev. 99, 1079–1151 (2019).

    Article  CAS  Google Scholar 

  39. Shiers, S. I. et al. Convergence of peptidergic and non-peptidergic protein markers in the human dorsal root ganglion and spinal dorsal horn. J. Comp. Neurol. 529, 2771–2788 (2021).

    CAS  Google Scholar 

  40. Tavares-Ferreira, D. et al. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci. Transl. Med. 14, eabj8186 (2022).

    Article  CAS  Google Scholar 

  41. Cox, J. J. et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894–898 (2006).

    Article  CAS  Google Scholar 

  42. Yang, Y. et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J. Med. Genet. 41, 171–174 (2004).

    Article  CAS  Google Scholar 

  43. Dib-Hajj, S. D. et al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 128, 1847–1854 (2005).

    Article  CAS  Google Scholar 

  44. Fertleman, C. R. et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52, 767–774 (2006).

    Article  CAS  Google Scholar 

  45. Devigili, G. et al. Diagnostic criteria for small fibre neuropathy in clinical practice and research. Brain 142, 3728–3736 (2019).

    Article  Google Scholar 

  46. Hoeijmakers, J. G., Faber, C. G., Lauria, G., Merkies, I. S. & Waxman, S. G. Small-fibre neuropathies – advances in diagnosis, pathophysiology and management. Nat. Rev. Neurol. 8, 369–379 (2012).

    Article  CAS  Google Scholar 

  47. Faber, C. G. et al. Gain of function Naν1.7 mutations in idiopathic small fiber neuropathy. Ann. Neurol. 71, 26–39 (2012).

    Article  CAS  Google Scholar 

  48. Huang, J. et al. Sodium channel NaV1.9 mutations associated with insensitivity to pain dampen neuronal excitability. J. Clin. Invest. 127, 2805–2814 (2017).

    Article  Google Scholar 

  49. Leipold, E. et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat. Genet. 45, 1399–1404 (2013).

    Article  CAS  Google Scholar 

  50. Kremeyer, B. et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66, 671–680 (2010).

    Article  CAS  Google Scholar 

  51. Blesneac, I. et al. Rare NaV1.7 variants associated with painful diabetic peripheral neuropathy. Pain 159, 469–480 (2018).

    Article  CAS  Google Scholar 

  52. Li, Q. S. et al. SCN9A variants may be implicated in neuropathic pain associated with diabetic peripheral neuropathy and pain severity. Clin. J. Pain 31, 976–982 (2015).

    Article  CAS  Google Scholar 

  53. Reimann, F. et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc. Natl Acad. Sci. USA 107, 5148–5153 (2010).

    Article  CAS  Google Scholar 

  54. Alsaloum, M. et al. A gain-of-function sodium channel β2-subunit mutation in painful diabetic neuropathy. Mol. Pain. 15, 1744806919849802 (2019).

    Article  CAS  Google Scholar 

  55. Alsaloum, M. et al. A novel gain-of-function sodium channel β2 subunit mutation in idiopathic small fiber neuropathy. J. Neurophysiol. 126, 827–839 (2021).

    Article  CAS  Google Scholar 

  56. Binder, A. et al. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients. PLoS ONE 6, e17387 (2011).

    Article  CAS  Google Scholar 

  57. Veluchamy, A., Hébert, H. L., Meng, W., Palmer, C. N. A. & Smith, B. H. Systematic review and meta-analysis of genetic risk factors for neuropathic pain. Pain 159, 825–848 (2018).

    Article  CAS  Google Scholar 

  58. Hearn, L., Derry, S. & Moore, R. A. Lacosamide for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD009318.pub2 (2012).

    Article  Google Scholar 

  59. de Greef, B. T. A. et al. Lacosamide in patients with Nav1.7 mutations-related small fibre neuropathy: a randomized controlled trial. Brain 142, 263–275 (2019).

    Article  Google Scholar 

  60. Labau, J. I. R. et al. Differential effect of lacosamide on Nav1.7 variants from responsive and non-responsive patients with small fibre neuropathy. Brain 143, 771–782 (2020).

    Article  Google Scholar 

  61. Yang, Y. et al. Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Na(V)1.7 mutant channel. Nat. Commun. 3, 1186 (2012).

    Article  Google Scholar 

  62. Geha, P. et al. Pharmacotherapy for pain in a family with inherited erythromelalgia guided by genomic analysis and functional profiling. JAMA Neurol. 73, 659–667 (2016).

    Article  Google Scholar 

  63. Han, C. et al. The novel activity of carbamazepine as an activation modulator extends from NaV1.7 mutations to the NaV1.8-S242T mutant channel from a patient with painful diabetic neuropathy. Mol. Pharmacol. 94, 1256–1269 (2018).

    Article  CAS  Google Scholar 

  64. Costigan, M., Scholz, J. & Woolf, C. J. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 32, 1–32 (2009).

    Article  CAS  Google Scholar 

  65. Gold, M. S. & Gebhart, G. F. Nociceptor sensitization in pain pathogenesis. Nat. Med. 16, 1248–1257 (2010).

    Article  CAS  Google Scholar 

  66. Finnerup, N. B. et al. Neuropathic pain: an updated grading system for research and clinical practice. Pain 157, 1599–1606 (2016).

    Article  CAS  Google Scholar 

  67. Wainger, B. J. et al. Effect of ezogabine on cortical and spinal motor neuron excitability in amyotrophic lateral sclerosis: a randomized clinical trial. JAMA Neurol. 78, 186–196 (2021).

    Article  Google Scholar 

  68. Misawa, S. et al. Neuropathic pain is associated with increased nodal persistent Na(+) currents in human diabetic neuropathy. J. Peripher. Nerv. Syst. 14, 279–284 (2009).

    Article  CAS  Google Scholar 

  69. Serra, J. et al. Hyperexcitable C nociceptors in fibromyalgia. Ann. Neurol. 75, 196–208 (2014).

    Article  CAS  Google Scholar 

  70. Serra, J. et al. Effects of a T-type calcium channel blocker, ABT-639, on spontaneous activity in C-nociceptors in patients with painful diabetic neuropathy: a randomized controlled trial. Pain 156, 2175–2183 (2015).

    Article  CAS  Google Scholar 

  71. McDermott, L. A. et al. Defining the functional role of NaV1.7 in human nociception. Neuron 101, 905–919.e8 (2019).

    Article  CAS  Google Scholar 

  72. Chambers, S. M. et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 30, 715–720 (2012).

    Article  CAS  Google Scholar 

  73. Mis, M. A. et al. Resilience to pain: a peripheral component identified using induced pluripotent stem cells and dynamic clamp. J. Neurosci. 39, 382–392 (2019).

    Article  CAS  Google Scholar 

  74. Yuan, J.-H. et al. KCNQ variants and pain modulation: a missense variant in Kv7.3 contributes to pain resilience. Brain Commun. 3, fcab212 (2021).

    Article  Google Scholar 

  75. Meents, J. E. et al. The role of Nav1.7 in human nociceptors: insights from human induced pluripotent stem cell-derived sensory neurons of erythromelalgia patients. Pain 160, 1327–1341 (2019).

    Article  CAS  Google Scholar 

  76. Pettingill, P. et al. A causal role for TRESK loss of function in migraine mechanisms. Brain 142, 3852–3867 (2019).

    Article  Google Scholar 

  77. Middleton, S. J. et al. Studying human nociceptors: from fundamentals to clinic. Brain 144, 1312–1335 (2021).

    Article  Google Scholar 

  78. MacDonald, D. I. et al. A central mechanism of analgesia in mice and humans lacking the sodium channel NaV1.7. Neuron 109, 1497–1512.e6 (2021).

    Article  CAS  Google Scholar 

  79. Namer, B. et al. Pain relief in a neuropathy patient by lacosamide: proof of principle of clinical translation from patient-specific iPS cell-derived nociceptors. EBioMedicine 39, 401–408 (2019).

    Article  Google Scholar 

  80. Strimbu, K. & Tavel, J. A. What are biomarkers? Curr. Opin. Hiv. AIDS 5, 463–466 (2010).

    Article  Google Scholar 

  81. Preische, O. et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat. Med. 25, 277–283 (2019).

    Article  CAS  Google Scholar 

  82. Varhaug, K. N., Torkildsen, Ø., Myhr, K.-M. & Vedeler, C. A. Neurofilament light chain as a biomarker in multiple sclerosis. Front. Neurol. 10, 338 (2019).

    Article  Google Scholar 

  83. Sandelius, Å. et al. Plasma neurofilament light chain concentration in the inherited peripheral neuropathies. Neurology 90, e518–e524 (2018).

    Article  CAS  Google Scholar 

  84. Kim, S.-H. et al. Serum neurofilament light chain levels as a biomarker of neuroaxonal injury and severity of oxaliplatin-induced peripheral neuropathy. Sci. Rep. 10, 7995 (2020).

    Article  CAS  Google Scholar 

  85. Morgenstern, J. et al. Neuron-specific biomarkers predict hypo- and hyperalgesia in individuals with diabetic peripheral neuropathy. Diabetologia 64, 2843–2855 (2021).

    Article  CAS  Google Scholar 

  86. Celikbilek, A. et al. Elevated neurofilament light chain (NFL) mRNA levels in prediabetic peripheral neuropathy. Mol. Biol. Rep. 41, 4017–4022 (2014).

    Article  CAS  Google Scholar 

  87. Iyengar, S., Johnson, K. W., Ossipov, M. H. & Aurora, S. K. CGRP and the trigeminal system in migraine. Headache 59, 659–681 (2019).

    Article  Google Scholar 

  88. Sommer, C., Leinders, M. & Üçeyler, N. Inflammation in the pathophysiology of neuropathic pain. Pain 159, 595–602 (2018).

    Article  CAS  Google Scholar 

  89. Sandy-Hindmarch, O. et al. Systemic inflammatory markers in neuropathic pain, nerve injury, and recovery. Pain 163, 526–537 (2022).

    Article  CAS  Google Scholar 

  90. Ajit, S. K. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors 12, 3359–3369 (2012).

    Article  CAS  Google Scholar 

  91. Orlova, I. A. et al. MicroRNA modulation in complex regional pain syndrome. J. Transl. Med. 9, 195 (2011).

    Article  CAS  Google Scholar 

  92. McDonald, M. K. et al. Functional significance of macrophage-derived exosomes in inflammation and pain. Pain 155, 1527–1539 (2014).

    Article  CAS  Google Scholar 

  93. Kalpachidou, T., Kummer, K. K. & Kress, M. Non-coding RNAs in neuropathic pain. Neuronal Signal. 4, NS20190099 (2020).

    Article  CAS  Google Scholar 

  94. Yu, W., Zhao, G.-Q., Cao, R.-J., Zhu, Z.-H. & Li, K. LncRNA NONRATT021972 was associated with neuropathic pain scoring in patients with type 2 diabetes. Behav. Neurol. 2017, 2941297 (2017).

    Article  Google Scholar 

  95. Luo, L. et al. Microarray analysis of long noncoding RNAs in female diabetic peripheral neuropathy patients. Cell Physiol. Biochem. 46, 1209–1217 (2018).

    Article  CAS  Google Scholar 

  96. Shenoda, B. B. et al. miR-34a-mediated regulation of XIST in female cells under inflammation. J. Pain Res. 11, 935–945 (2018).

    Article  CAS  Google Scholar 

  97. Wang, L., Luo, T., Bao, Z., Li, Y. & Bu, W. Intrathecal circHIPK3 shRNA alleviates neuropathic pain in diabetic rats. Biochem. Biophys. Res. Commun. 505, 644–650 (2018).

    Article  CAS  Google Scholar 

  98. Tracey, I., Woolf, C. J. & Andrews, N. A. Composite pain biomarker signatures for objective assessment and effective treatment. Neuron 101, 783–800 (2019).

    Article  CAS  Google Scholar 

  99. Xu, A. et al. Convergent neural representations of experimentally-induced acute pain in healthy volunteers: a large-scale fMRI meta-analysis. Neurosci. Biobehav. Rev. 112, 300–323 (2020).

    Article  Google Scholar 

  100. Mackey, S., Greely, H. T. & Martucci, K. T. Neuroimaging-based pain biomarkers: definitions, clinical and research applications, and evaluation frameworks to achieve personalized pain medicine. Pain. Rep. 4, e762 (2019).

    Article  Google Scholar 

  101. Wanigasekera, V. et al. Disambiguating pharmacological mechanisms from placebo in neuropathic pain using functional neuroimaging. Br. J. Anaesth. 120, 299–307 (2018).

    Article  CAS  Google Scholar 

  102. Wanigasekera, V., Mezue, M., Andersson, J., Kong, Y. & Tracey, I. Disambiguating pharmacodynamic efficacy from behavior with neuroimaging: implications for analgesic drug development. Anesthesiology 124, 159–168 (2016).

    Article  CAS  Google Scholar 

  103. Soni, A. et al. Central sensitization in knee osteoarthritis: relating presurgical brainstem neuroimaging and PainDETECT-based patient stratification to arthroplasty outcome. Arthritis Rheumatol. 71, 550–560 (2019).

    Article  Google Scholar 

  104. Pud, D. et al. Can personality traits and gender predict the response to morphine? An experimental cold pain study. Eur. J. Pain 10, 103–112 (2006).

    Article  CAS  Google Scholar 

  105. Wasan, A. D. et al. Psychiatric comorbidity is associated prospectively with diminished opioid analgesia and increased opioid misuse in patients with chronic low back pain. Anesthesiology 123, 861–872 (2015).

    Article  CAS  Google Scholar 

  106. Jamison, R. N. et al. Relationship of negative affect and outcome of an opioid therapy trial among low back pain patients. Pain. Pract. 13, 173–181 (2013).

    Article  Google Scholar 

  107. Marchettini, P. et al. Are there different predictors of analgesic response between antidepressants and anticonvulsants in painful diabetic neuropathy? Eur. J. Pain 20, 472–482 (2016).

    Article  CAS  Google Scholar 

  108. Smith, E. M. L. et al. Predictors of duloxetine response in patients with oxaliplatin-induced painful chemotherapy-induced peripheral neuropathy (CIPN): a secondary analysis of randomised controlled trial–CALGB/alliance 170601. Eur. J. Cancer Care https://doi.org/10.1111/ecc.12421 (2015).

    Article  Google Scholar 

  109. Kern, A., Kramm, C., Witt, C. M. & Barth, J. The influence of personality traits on the placebo/nocebo response: a systematic review. J. Psychosom. Res. 128, 109866 (2020).

    Article  Google Scholar 

  110. Raputova, J. et al. Sensory phenotype and risk factors for painful diabetic neuropathy: a cross-sectional observational study. Pain 158, 2340–2353 (2017).

    Article  Google Scholar 

  111. Miller, R. M. & Kaiser, R. S. Psychological characteristics of chronic pain: a review of current evidence and assessment tools to enhance treatment. Curr. Pain. Headache Rep. 22, 22 (2018).

    Article  Google Scholar 

  112. Pisanu, C. et al. Sex differences in the response to opioids for pain relief: a systematic review and meta-analysis. Pharmacol. Res. 148, 104447 (2019).

    Article  CAS  Google Scholar 

  113. Hurley, R. W. & Adams, M. C. B. Sex, gender, and pain: an overview of a complex field. Anesth. Analg. 107, 309–317 (2008).

    Article  Google Scholar 

  114. Boussageon, R. et al. How do they add up? The interaction between the placebo and treatment effect: a systematic review. Br. J. Clin. Pharmacol. 88, 3638–3656 (2022).

    Article  Google Scholar 

  115. Vase, L., Riley, J. L. & Price, D. D. A comparison of placebo effects in clinical analgesic trials versus studies of placebo analgesia. Pain 99, 443–452 (2002).

    Article  Google Scholar 

  116. Vase, L. & Wartolowska, K. Pain, placebo, and test of treatment efficacy: a narrative review. Br. J. Anaesth. 123, e254–e262 (2019).

    Article  Google Scholar 

  117. Enck, P., Bingel, U., Schedlowski, M. & Rief, W. The placebo response in medicine: minimize, maximize or personalize? Nat. Rev. Drug Discov. 12, 191–204 (2013).

    Article  CAS  Google Scholar 

  118. Baron, R., Förster, M. & Binder, A. Subgrouping of patients with neuropathic pain according to pain-related sensory abnormalities: a first step to a stratified treatment approach. Lancet Neurol. 11, 999–1005 (2012).

    Article  Google Scholar 

  119. Rolke, R. et al. Quantitative sensory testing in the German Research Network on neuropathic pain (DFNS): standardized protocol and reference values. Pain 123, 231–243 (2006).

    Article  CAS  Google Scholar 

  120. Baron, R. et al. Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain 158, 261–272 (2017).

    Article  Google Scholar 

  121. Vollert, J. et al. Stratifying patients with peripheral neuropathic pain based on sensory profiles: algorithm and sample size recommendations. Pain 158, 1446–1455 (2017).

    Article  Google Scholar 

  122. Jain, S. M. et al. Randomized, double-blind, placebo-controlled trial of ISC 17536, an oral inhibitor of transient receptor potential ankyrin 1, in patients with painful diabetic peripheral neuropathy: impact of preserved small nerve fiber function. Pain 163, e738–e747 (2022).

    Article  CAS  Google Scholar 

  123. Attal, N. et al. Safety and efficacy of repeated injections of botulinum toxin A in peripheral neuropathic pain (BOTNEP): a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 15, 555–565 (2016).

    Article  CAS  Google Scholar 

  124. European Medicines Agency. Guideline on the clinical development of medicinal products for the treatment of pain. Committee for Medicinal Products for Human Use. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-development-medicinal-products-intended-treatment-pain-first-version_en.pdf (2016).

  125. Yarnitsky, D., Granot, M., Nahman-Averbuch, H., Khamaisi, M. & Granovsky, Y. Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain 153, 1193–1198 (2012).

    Article  CAS  Google Scholar 

  126. Kennedy, D. L., Kemp, H. I., Ridout, D., Yarnitsky, D. & Rice, A. S. C. Reliability of conditioned pain modulation: a systematic review. Pain 157, 2410–2419 (2016).

    Article  Google Scholar 

  127. Bouhassira, D. et al. Development and validation of the neuropathic pain symptom inventory. Pain 108, 248–257 (2004).

    Article  Google Scholar 

  128. Otto, J. C., Gierthmühlen, J., Kirchhofer, V., Borzikowsky, C. & Baron, R. Validation of the questionnaire for symptom assessment in pain disorders for back pain patients (Q-SAP). Eur. J. Pain 25, 513–528 (2021).

    Article  Google Scholar 

  129. Tölle, T. R. et al. painPREDICT: first interim data from the development of a new patient-reported pain questionnaire to predict treatment response using sensory symptom profiles. Curr. Med. Res. Opin. 35, 1177–1185 (2019).

    Article  Google Scholar 

  130. Bouhassira, D. et al. Stratification of patients based on the neuropathic pain symptom inventory: development and validation of a new algorithm. Pain 162, 1038–1046 (2021).

    Article  Google Scholar 

  131. Vollert, J. et al. The need for previous knowledge does not render quantitative sensory testing a ‘failure’ but part of a larger picture of the relationship between nociception and pain. Pain 162, 1273–1274 (2021).

    Article  Google Scholar 

  132. Reimer, M. et al. Sensory bedside testing: a simple stratification approach for sensory phenotyping. Pain. Rep. 5, e820 (2020).

    Article  Google Scholar 

  133. Reimer, M., Sachau, J., Forstenpointner, J. & Baron, R. Bedside testing for precision pain medicine. Curr. Opin. Support. Palliat. Care 15, 116–124 (2021).

    Article  Google Scholar 

  134. Sachau, J. et al. Test-retest reliability of a simple bedside-quantitative sensory testing battery for chronic neuropathic pain. Pain Rep., in press.

  135. Otto, J. C. et al. A novel algorithm to identify predictors of treatment response: tapentadol monotherapy or tapentadol/pregabalin combination therapy in chronic low back pain? Front. Neurol. 10, 979 (2019).

    Article  Google Scholar 

  136. Reimer, M. et al. Prediction of response to tapentadol in chronic low back pain. Eur. J. Pain 21, 322–333 (2017).

    Article  CAS  Google Scholar 

  137. Wesolowska-Andersen, A. et al. Four groups of type 2 diabetes contribute to the etiological and clinical heterogeneity in newly diagnosed individuals: an IMI DIRECT study. Cell Rep. Med. 3, 100477 (2022).

    Article  Google Scholar 

  138. Scholz, J. et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. Pain 160, 53–59 (2019).

    Article  Google Scholar 

  139. Treede, R.-D. et al. A classification of chronic pain for ICD-11. Pain 156, 1003–1007 (2015).

    Article  Google Scholar 

  140. Kosek, E. et al. Chronic nociplastic pain affecting the musculoskeletal system: clinical criteria and grading system. Pain 162, 2629–2634 (2021).

    Article  Google Scholar 

  141. Turk, D. C. et al. Core outcome domains for chronic pain clinical trials: IMMPACT recommendations. Pain 106, 337–345 (2003).

    Article  Google Scholar 

  142. Patel, K. V. et al. Clinical outcome assessment in clinical trials of chronic pain treatments. Pain. Rep. 6, e784 (2021).

    Article  Google Scholar 

  143. Sachau, J. et al. Patient reported outcome measures in chronic neuropathic pain clinical trials–a systematic literature review. J. Pain https://doi.org/10.1016/j.jpain.2022.09.003 (2022).

    Article  Google Scholar 

  144. Gewandter, J. S. et al. Composite outcomes for pain clinical trials: considerations for design and interpretation. Pain 162, 1899–1905 (2021).

    Article  Google Scholar 

  145. Renthal, W. et al. Human cells and networks of pain: transforming pain target identification and therapeutic development. Neuron 109, 1426–1429 (2021).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ralf Baron.

Ethics declarations

Competing interests

R.B. has received R.B. has received research funding from EU Projects Europain (115007), DOLORisk (633491), IMI Paincare (777500), the German Federal Ministry of Education and Research (BMBF): Verbundprojekt: Frühdetektion von Schmerzchronifizierung (NoChro) (13GW0338C), German Research Network on Neuropathic Pain (01EM0903), Pfizer, Grünenthal, Mundi Pharma, Alnylam, Zambon, Bayer, Sanofi Aventis. He has been a speaker for Pfizer, Sanofi Aventis, Grünenthal, Mundipharma, Lilly, Desitin, Teva, Bayer, MSD, Seqirus, Novartis, TAD, Eva, Takeda, Ology, Ever, Amicus, Novo Nordisk, Chiesi, Stada, Hexal, Viatris. He has acted as a consultant for Pfizer, Sanofi Aventis, Grünenthal, Lilly, Novartis, Bristol-Myers Squibb, Biogenidec, AstraZeneca, Daiichi Sankyo, Glenmark, Seqirus, Teva, Genentech, Mundipharma, Galapagos, Kyowa Kirin, Vertex, Biotest, Celgene, Desitin, Regeneron, Theranexus, Abbott, Bayer, Akcea, Asahi Kasei, AbbVie, Air Liquide, Alnylam, Lateral, Hexal, Angelini, Janssen, SIMR, Confo, Merz, Neumentum, Hoffmann-La Roche, AlgoTherapeutix, Nanobiotix, AmacaThera. M.C. is a councillor at the International Society for the Study of Pain (IASP), a board member of the Neuropathic Pain Special Interest Group of IASP and a board member of the Neuropathic Pain Consortium (SIG of Peripheral Nerve Society). D.L.B. has acted as a consultant on behalf of Oxford Innovation for Amgen, Bristows, LatigoBio, GSK, Ionis, Lilly, Olipass, Orion, Regeneron and Theranexus over the past 2 years. He has received research funding from Lilly and AstraZeneca. He is an inventor for patent application ‘A method for the treatment or prevention of pain or excessive neuronal activity or epilepsy’ (application no. US16/337,428). He is a member of the Medical Reseach Council Neuroscience and Mental Health Board for which he receives reimbursement. He is an executive member of the Neuropathic Pain Special Interest Group of IASP. S.D.D.-H. has consulted with Ionis and Alnylam Pharmaceuticals over the past 2 years and is a board member of the Neuropathic Pain Special Interest Group of IASP. A.H.D. declares no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks L. Asan, who co-reviewed with U. Bingel; M. Schmelz; I. Gilron; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

IMI-Europain: https://www.imi.europa.eu/projects-results/project-factsheets/europain

Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT): http://www.immpact.org

Innovative Medicines Initiative (IMI)-PainCare Consortium: https://www.imi-paincare.eu

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baron, R., Dickenson, A.H., Calvo, M. et al. Maximizing treatment efficacy through patient stratification in neuropathic pain trials. Nat Rev Neurol 19, 53–64 (2023). https://doi.org/10.1038/s41582-022-00741-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-022-00741-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing