Abstract
Multiple sclerosis (MS) is a neuroimmunological disorder of the CNS with a strong heritable component. The genetic architecture of MS susceptibility is well understood in populations of European ancestry. However, the extent to which this architecture explains MS susceptibility in populations of non-European ancestry remains unclear. In this Perspective article, we outline the scientific arguments for studying MS genetics in ancestrally diverse populations. We argue that this approach is likely to yield insights that could benefit individuals with MS from all ancestral groups. We explore the logistical and theoretical challenges that have held back this field to date and conclude that, despite these challenges, inclusion of participants of non-European ancestry in MS genetics studies will ultimately be of value to all patients with MS worldwide.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Potentially toxic elements in the brains of people with multiple sclerosis
Scientific Reports Open Access 12 January 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Bentley, A. R., Callier, S. L. & Rotimi, C. N. Evaluating the promise of inclusion of African ancestry populations in genomics. NPJ Genom. Med. 5, 5 (2020).
Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).
Morales, J. et al. A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. Genome Biol. 19, 21 (2018).
Landry, L. G., Ali, N., Williams, D. R., Rehm, H. L. & Bonham, V. L. Lack of diversity in genomic databases is a barrier to translating precision medicine research into practice. Health Aff. 37, 780–785 (2018).
Hindorff, L. A. et al. Prioritizing diversity in human genomics research. Nat. Rev. Genet. 19, 175–185 (2018).
Ben-Eghan, C. et al. Don’t ignore genetic data from minority populations. Nature 585, 184–186 (2020).
International Multiple Sclerosis Genetics Consortium (IMSGC) Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013).
International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019).
Isobe, N. et al. An ImmunoChip study of multiple sclerosis risk in African Americans. Brain 138, 1518–1530 (2015).
Isobe, N. et al. Genetic risk variants in African Americans with multiple sclerosis. Neurology 81, 219–227 (2013).
Pandit, L. et al. Evaluation of the established non-MHC multiple sclerosis loci in an Indian population. Mult. Scler. 17, 139–143 (2011).
Pandit, L. et al. HLA associations in South Asian multiple sclerosis. Mult. Scler. 22, 19–24 (2016).
Oksenberg, J. R. et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am. J. Hum. Genet. 74, 160–167 (2004).
Reich, D. et al. A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nat. Genet. 37, 1113–1118 (2005).
Nakatsuka, N. et al. Two genetic variants explain the association of European ancestry with multiple sclerosis risk in African-Americans. Sci. Rep. 10, 16902 (2020).
Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 1080 (2019).
Duncan, L. et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun. 10, 3328 (2019).
Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).
Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).
Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 51, 1670–1678 (2019).
Mahajan, A. et al. Trans-ethnic fine mapping highlights kidney-function genes linked to salt sensitivity. Am. J. Hum. Genet. 99, 636–646 (2016).
Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).
Chen, M.-H. et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell 182, 1198–1213.e14 (2020).
Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 600, 675–679 (2021).
Laufer, V. A. et al. Genetic influences on susceptibility to rheumatoid arthritis in African-Americans. Hum. Mol. Genet. 28, 858–874 (2019).
Robertson, C. C. et al. Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes. Nat. Genet. 53, 962–971 (2021).
Onengut-Gumuscu, S. et al. Type 1 diabetes risk in African-ancestry participants and utility of an ancestry-specific genetic risk score. Diabetes Care 42, 406–415 (2019).
Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).
Somineni, H. K. et al. Whole-genome sequencing of African Americans implicates differential genetic architecture in inflammatory bowel disease. Am. J. Hum. Genet. 108, 431–445 (2021).
GBD 2016 Multiple Sclerosis Collaborators. Global, regional, and national burden of multiple sclerosis 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 269–285 (2019).
Koch-Henriksen, N. & Sørensen, P. S. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 9, 520–532 (2010).
Lee, J. D. et al. Incidence of multiple sclerosis and related disorders in Asian populations of British Columbia. Can. J. Neurol. Sci. 42, 235–241 (2015).
Wallin, M. T. et al. The Gulf War era multiple sclerosis cohort: age and incidence rates by race, sex and service. Brain 135, 1778–1785 (2012).
Langer-Gould, A., Brara, S. M., Beaber, B. E. & Zhang, J. L. Incidence of multiple sclerosis in multiple racial and ethnic groups. Neurology 80, 1734–1739 (2013).
Dobson, R. et al. Ethnic and socioeconomic associations with multiple sclerosis risk. Ann. Neurol. 87, 599–608 (2020).
Langer-Gould, A. M., Gonzales, E. G., Smith, J. B., Li, B. H. & Nelson, L. M. Racial and ethnic disparities in multiple sclerosis prevalence. Neurology 98, e1818–e1827 (2022).
Munk Nielsen, N. et al. Multiple sclerosis among first- and second-generation immigrants in Denmark: a population-based cohort study. Brain 142, 1587–1597 (2019).
Ahlgren, C., Odén, A. & Lycke, J. A nationwide survey of the prevalence of multiple sclerosis in immigrant populations of Sweden. Mult. Scler. 18, 1099–1107 (2012).
Sawcer, S. et al. A high-density screen for linkage in multiple sclerosis. Am. J. Hum. Genet. 77, 454–467 (2005).
Jersild, C., Svejgaard, A. & Fog, T. HL-A antigens and multiple sclerosis. Lancet 1, 1240–1241 (1972).
Moutsianas, L. et al. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat. Genet. 47, 1107–1113 (2015).
Jokubaitis, V. G. et al. Not all roads lead to the immune system: the genetic basis of multiple sclerosis severity implicates central nervous system and mitochondrial involvement. Preprint at medRxiv https://doi.org/10.1101/2022.02.04.22270362 (2022).
Vandebergh, M. et al. Genetic variation in WNT9B increases relapse hazard in multiple sclerosis. Ann. Neurol. 89, 884–894 (2021).
Dendrou, C. A., Petersen, J., Rossjohn, J. & Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 18, 325–339 (2018).
Hollenbach, J. A. & Oksenberg, J. R. The immunogenetics of multiple sclerosis: a comprehensive review. J. Autoimmun. 64, 13–25 (2015).
Yoshimura, S. et al. Genetic and infectious profiles of Japanese multiple sclerosis patients. PLoS ONE 7, e48592 (2012).
Saruhan-Direskeneli, G. et al. HLA-DR and -DQ associations with multiple sclerosis in Turkey. Hum. Immunol. 55, 59–65 (1997).
Alvarado-de la Barrera, C. et al. HLA class II genotypes in Mexican Mestizos with familial and nonfamilial multiple sclerosis. Neurology 55, 1897–1900 (2000).
Brassat, D. et al. The HLA locus and multiple sclerosis in Sicily. Neurology 64, 361–363 (2005).
Nakamura, Y. et al. Latitude and HLA-DRB1*04:05 independently influence disease severity in Japanese multiple sclerosis: a cross-sectional study. J. Neuroinflamm. 13, 239 (2016).
Watanabe, M. et al. HLA genotype-clinical phenotype correlations in multiple sclerosis and neuromyelitis optica spectrum disorders based on Japan MS/NMOSD Biobank data. Sci. Rep. 11, 607 (2021).
Amirzargar, A. et al. HLA class II (DRB1, DQA1 and DQB1) associated genetic susceptibility in Iranian multiple sclerosis (MS) patients. Eur. J. Immunogenet. 25, 297–301 (1998).
Brum, D. G., Barreira, A. A., Louzada-Junior, P., Mendes-Junior, C. T. & Donadi, E. A. Association of the HLA-DRB1*15 allele group and the DRB1*1501 and DRB1*1503 alleles with multiple sclerosis in White and Mulatto samples from Brazil. J. Neuroimmunol. 189, 118–124 (2007).
Quelvennec, E. et al. Genetic and functional studies in multiple sclerosis patients from Martinique attest for a specific and direct role of the HLA-DR locus in the syndrome. Tissue Antigens 61, 166–171 (2003).
Khankhanian, P. et al. Genetic contribution to multiple sclerosis risk among Ashkenazi Jews. BMC Med. Genet. 16, 55 (2015).
Kwon, O. J. et al. HLA class II susceptibility to multiple sclerosis among Ashkenazi and non-Ashkenazi Jews. Arch. Neurol. 56, 555–560 (1999).
Marrosu, M. G. et al. Dissection of the HLA association with multiple sclerosis in the founder isolated population of Sardinia. Hum. Mol. Genet. 10, 2907–2916 (2001).
Goodin, D. S., Oksenberg, J. R., Douillard, V., Gourraud, P.-A. & Vince, N. Genetic susceptibility to multiple sclerosis in African Americans. PLoS ONE 16, e0254945 (2021).
Chi, C. et al. Admixture mapping reveals evidence of differential multiple sclerosis risk by genetic ancestry. PLoS Genet. 15, e1007808 (2019).
Rivera, V. M. Multiple sclerosis in Latin Americans: genetic aspects. Curr. Neurol. Neurosci. Rep. 17, 57 (2017).
Vinoy, N., Sheeja, N., Kumar, S. & Biswas, L. Class II HLA (DRB1, & DQB1) alleles and IL7R (rs6897932) variants and the risk for multiple sclerosis in Kerala, India. Mult. Scler. Relat. Disord. 50, 102848 (2021).
International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).
Matsuki, K., Carl Grumet, F., Lin, X., Gelb, M. & Gueilleminault, C. DQ (rather than DR) gene marks susceptibility to narcolepsy. Lancet 339, 1052 (1992).
Okada, Y. et al. Contribution of a non-classical HLA gene, HLA-DOA, to the risk of rheumatoid arthritis. Am. J. Hum. Genet. 99, 366–374 (2016).
Naito, T. et al. A deep learning method for HLA imputation and trans-ethnic MHC fine-mapping of type 1 diabetes. Nat. Commun. 12, 1639 (2021).
Patsopoulos, N. A. et al. Fine-mapping the genetic association of the major histocompatibility complex in multiple sclerosis: HLA and non-HLA effects. PLoS Genet. 9, e1003926 (2013).
Luo, Y. et al. A high-resolution HLA reference panel capturing global population diversity enables multi-ancestry fine-mapping in HIV host response. Nat. Genet. 53, 1504–1516 (2021).
Beecham, A. H. et al. The genetic diversity of multiple sclerosis risk among Hispanic and African American populations living in the United States. Mult. Scler. 26, 1329–1339 (2019).
Johnson, B. A. et al. Multiple sclerosis susceptibility alleles in African Americans. Genes Immun. 11, 343–350 (2010).
Hilven, K. & Goris, A. Genetic burden mirrors epidemiology of multiple sclerosis. Mult. Scler. 21, 1353–1354 (2015).
Hadjigeorgiou, G. M. et al. Replication study of GWAS risk loci in Greek multiple sclerosis patients. Neurol. Sci. 40, 253–260 (2019).
Pandit, L. et al. European multiple sclerosis risk variants in the south Asian population. Mult. Scler. 22, 1536–1540 (2016).
Kira, J., Matsushita, T., Sato, S. & Yamamoto, K. A genome-wide association study (GWAS) in the Japanese population reveals novel genetic risk factors for multiple sclerosis and neuromyelitis optica. J. Neurol. Sci. 357, e308 (2015).
Weissbrod, O. et al. Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores. Nat. Genet. 54, 450–458 (2022).
Cortes, A. & Brown, M. A. Promise and pitfalls of the immunochip. Arthritis Res. Ther. 13, 101 (2011).
Beecham, A. H. & McCauley, J. L. Fine-mapping array design for multi-ethnic studies of multiple sclerosis. Genes 10, 903 (2019).
Jokubaitis, V. G., Zhou, Y., Butzkueven, H. & Taylor, B. V. Genotype and phenotype in multiple sclerosis–potential for disease course prediction? Curr. Treat. Options Neurol. 20, 18 (2018).
International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium 2. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).
Zhou, Y. et al. Genetic variation in the gene LRP2 increases relapse risk in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 88, 864–868 (2017).
Barnett, I. J., Lee, S. & Lin, X. Detecting rare variant effects using extreme phenotype sampling in sequencing association studies. Genet. Epidemiol. 37, 142–151 (2013).
Padmanabhan, S. et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 6, e1001177 (2010).
Berndt, S. I. et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet. 45, 501–512 (2013).
Emond, M. J. et al. Exome sequencing of extreme phenotypes identifies DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Nat. Genet. 44, 886–889 (2012).
Boora, G. K. et al. Testing of candidate single nucleotide variants associated with paclitaxel neuropathy in the trial NCCTG N08C1 (Alliance). Cancer Med. 5, 631–639 (2016).
Crouch, D. J. M. et al. Genetics of the human face: identification of large-effect single gene variants. Proc. Natl Acad. Sci. USA 115, E676–E685 (2018).
Weinstock-Guttman, B. et al. Multiple sclerosis characteristics in African American patients in the New York State Multiple Sclerosis Consortium. Mult. Scler. 9, 293–298 (2003).
Ventura, R. E., Antezana, A. O., Bacon, T. & Kister, I. Hispanic Americans and African Americans with multiple sclerosis have more severe disease course than Caucasian Americans. Mult. Scler. 23, 1554–1557 (2017).
Gray-Roncal, K. et al. Association of disease severity and socioeconomic status in Black and White Americans with multiple sclerosis. Neurology https://doi.org/10.1212/WNL.0000000000012362 (2021).
Hadjixenofontos, A. et al. Clinical expression of multiple sclerosis in Hispanic whites of primarily Caribbean ancestry. Neuroepidemiology 44, 262–268 (2015).
Amezcua, L., Lund, B. T., Weiner, L. P. & Islam, T. Multiple sclerosis in Hispanics: a study of clinical disease expression. Mult. Scler. 17, 1010–1016 (2011).
Amezcua, L. et al. Native ancestry is associated with optic neuritis and age of onset in Hispanics with multiple sclerosis. Ann. Clin. Transl. Neurol. 5, 1362–1371 (2018).
Caldito, N. G. et al. Brain and retinal atrophy in African-Americans versus Caucasian-Americans with multiple sclerosis: a longitudinal study. Brain 141, 3115–3129 (2018).
Kimbrough, D. J. et al. Retinal damage and vision loss in African American multiple sclerosis patients. Ann. Neurol. 77, 228–236 (2015).
Howard, J. et al. MRI correlates of disability in African-Americans with multiple sclerosis. PLoS ONE 7, e43061 (2012).
Kister, I. et al. Rapid disease course in African Americans with multiple sclerosis. Neurology 75, 217–223 (2010).
Khan, O. et al. Multiple sclerosis in US minority populations: clinical practice insights. Neurol. Clin. Pract. 5, 132–142 (2015).
Cree, B. A. C. et al. Clinical characteristics of African Americans vs Caucasian Americans with multiple sclerosis. Neurology 63, 2039–2045 (2004).
Naismith, R. T., Trinkaus, K. & Cross, A. H. Phenotype and prognosis in African-Americans with multiple sclerosis: a retrospective chart review. Mult. Scler. 12, 775–781 (2006).
Kister, I., Bacon, T. & Cutter, G. R. How multiple sclerosis symptoms vary by age, sex, and race/ethnicity. Neurol. Clin. Pract. 11, 335–341 (2021).
Jamal, I. et al. Multiple sclerosis in Kenya: demographic and clinical characteristics of a registry cohort. Mult. Scler. J. Exp. Transl. Clin. 7, 20552173211022784 (2021).
Sanna, S. et al. Variants within the immunoregulatory CBLB gene are associated with multiple sclerosis. Nat. Genet. 42, 495–497 (2010).
Orrù, V. et al. Genetic variants regulating immune cell levels in health and disease. Cell 155, 242–256 (2013).
Sidore, C. et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat. Genet. 47, 1272–1281 (2015).
Steri, M. et al. Overexpression of the cytokine BAFF and autoimmunity risk. N. Engl. J. Med. 376, 1615–1626 (2017).
Shriner, D. Overview of admixture mapping. Curr. Protoc. Hum. Genet. https://doi.org/10.1002/0471142905.hg0123s76 (2013).
Romanelli, R. J. et al. Multiple sclerosis in a multi-ethnic population from Northern California: a retrospective analysis, 2010–2016. BMC Neurol. 20, 163 (2020).
Caliskan, M., Brown, C. D. & Maranville, J. C. A catalog of GWAS fine-mapping efforts in autoimmune disease. Am. J. Hum. Genet. 108, 549–563 (2021).
Wang, Y. et al. Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations. Nat. Commun. 11, 3865 (2020).
Li, Y. R. & Keating, B. J. Trans-ethnic genome-wide association studies: advantages and challenges of mapping in diverse populations. Genome Med. 6, 91 (2014).
International Multiple Sclerosis Genetics Consortium. A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nat. Commun. 10, 2236 (2019).
Jacobs, B. M. et al. Gene-environment interactions in multiple sclerosis: a UK Biobank Study. Neurol. Neuroimmunol. Neuroinflamm. https://doi.org/10.1212/NXI.0000000000001007 (2021).
Privé, F. et al. Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. Am. J. Hum. Genet. 109, 373 (2022).
Márquez-Luna, C., Loh, P.-R., South Asian Type 2 Diabetes (SAT2D) Consortium, SIGMA Type 2 Diabetes Consortium & Price, A. R. Multiethnic polygenic risk scores improve risk prediction in diverse populations. Genet. Epidemiol. 41, 811–823 (2017).
Amariuta, T. et al. Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements. Nat. Genet. 52, 1346–1354 (2020).
Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017).
Harroud, A. et al. Childhood obesity and multiple sclerosis: a Mendelian randomization study. Mult. Scler. 27, 2150–2158 (2021).
Jacobs, B. M., Noyce, A. J., Giovannoni, G. & Dobson, R. BMI and low vitamin D are causal factors for multiple sclerosis: a Mendelian randomization study. Neurol. Neuroimmunol. Neuroinflamm 7, e662 (2020).
Vandebergh, M. & Goris, A. Smoking and multiple sclerosis risk: a Mendelian randomization study. J. Neurol. 267, 3083–3091 (2020).
Mitchell, R. E. et al. Little evidence for an effect of smoking on multiple sclerosis risk: A Mendelian randomization study. PLOS Biol. 18, e3000973 (2020).
Harroud, A. et al. Effect of age at puberty on risk of multiple sclerosis: a Mendelian randomization study. Neurology 92, e1803–e1810 (2019).
Fatumo, S. et al. Metabolic traits and stroke risk in individuals of African ancestry: Mendelian randomization analysis. Stroke 52, 2680–2684 (2021).
Finer, S. et al. Cohort profile: East London Genes & Health (ELGH), a community-based population genomics and health study in British Bangladeshi and British Pakistani people. Int. J. Epidemiol. 49, 20–21i (2020).
All of Us Research Program Investigators. The “All of Us” Research Program. N. Engl. J. Med. 381, 668–676 (2019).
Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics 12, 246 (2011).
Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet. 93, 278–288 (2013).
Atkinson, E. G. et al. Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nat. Genet. 53, 195–204 (2021).
Brown, B. C., Ye, C. J., Price, A. L., Zaitlen, N. & Asian Genetic Epidemiology Network Type 2 Diabetes Consortium. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet. 99, 76–88 (2016).
Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 573–580 (2022).
Huang, Q. Q. et al. Transferability of genetic loci and polygenic scores for cardiometabolic traits in British Pakistani and Bangladeshi individuals. Nat. Commun. 13, 4664 (2022).
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature 590, 290–299 (2021).
Kraft, S. A. et al. Beyond consent: building trusting relationships with diverse populations in precision medicine research. Am. J. Bioeth. 18, 3–20 (2018).
Nuriddin, A., Mooney, G. & White, A. I. R. Reckoning with histories of medical racism and violence in the USA. Lancet 396, 949–951 (2020).
Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018).
Acknowledgements
The authors thank S. Sawcer, University of Cambridge, UK, for helpful comments on an early draft of the manuscript. B.M.J. is supported by an MRC Clinical Research Training Fellowship (grant reference MR/V028766/1).
Author information
Authors and Affiliations
Contributions
B.M.J. researched data for the article. B.M.J., G.G., A.J.N., H.R.M. and R.D. wrote the article. All authors made substantial contributions to discussion of the content and reviewed and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Neurology thanks L. Amezcua; N. Isobe; J. McCauley, who co-reviewed with A. Beecham; M. Williams and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jacobs, B.M., Peter, M., Giovannoni, G. et al. Towards a global view of multiple sclerosis genetics. Nat Rev Neurol 18, 613–623 (2022). https://doi.org/10.1038/s41582-022-00704-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41582-022-00704-y
This article is cited by
-
Potentially toxic elements in the brains of people with multiple sclerosis
Scientific Reports (2023)
-
Social determinants of health in multiple sclerosis
Nature Reviews Neurology (2022)