Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The neurovascular unit and systemic biology in stroke — implications for translation and treatment

Subjects

Abstract

Ischaemic stroke is a leading cause of disability and death for which no acute treatments exist beyond recanalization. The development of novel therapies has been repeatedly hindered by translational failures that have changed the way we think about tissue damage after stroke. What was initially a neuron-centric view has been replaced with the concept of the neurovascular unit (NVU), which encompasses neuronal, glial and vascular compartments, and the biphasic nature of neural–glial–vascular signalling. However, it is now clear that the brain is not the private niche it was traditionally thought to be and that the NVU interacts bidirectionally with systemic biology, such as systemic metabolism, the peripheral immune system and the gut microbiota. Furthermore, these interactions are profoundly modified by internal and external factors, such as ageing, temperature and day–night cycles. In this Review, we propose an extension of the concept of the NVU to include its dynamic interactions with systemic biology. We anticipate that this integrated view will lead to the identification of novel mechanisms of stroke pathophysiology, potentially explain previous translational failures, and improve stroke care by identifying new biomarkers of and treatment targets in stroke.

Key points

  • According to the prevailing concept, the neurovascular unit (NVU) comprises multiple cell types from the neuronal, glial and vascular compartments but is functionally confined to cell-to-cell signalling within the CNS.

  • Novel pathways for brain–body communication, such as the glymphatic system and skull microchannels, have been identified, indicating that the brain is not the private compartment it was thought to be.

  • The NVU interacts with systemic biological processes and systems, including systemic metabolism, the peripheral immune system and the gut microbiota.

  • Factors such as age, temperature and the circadian clock not only affect the NVU but also profoundly modify the interactions between the NVU and systemic biology.

  • A conceptual extension of the NVU to include its interactions with systemic biology could provide a more accurate depiction of the biology after stroke.

  • This extended NVU framework might help to explain previous translational failures and improve stroke care by identifying novel biomarkers of and treatment targets in stroke.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Interactions between the neurovascular unit and systemic biology.
Fig. 2: Immunological niches and neuroimmune interfaces in the CNS.
Fig. 3: Microbiome–host crosstalk after stroke.

References

  1. Lo, E. H., Dalkara, T. & Moskowitz, M. A. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 4, 399–415 (2003).

    CAS  PubMed  Google Scholar 

  2. Lo, E. H., Broderick, J. P. & Moskowitz, M. A. tPA and proteolysis in the neurovascular unit. Stroke 35, 354–356 (2004).

    PubMed  Google Scholar 

  3. Hayakawa, K. et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–555 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yemisci, M. et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15, 1031–1037 (2009).

    CAS  PubMed  Google Scholar 

  5. Horng, S. et al. Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J. Clin. Invest. 127, 3136–3151 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Asahi, M. et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J. Neurosci. 21, 7724–7732 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, S. R. et al. Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J. Neurosci. 26, 3491–3495 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao, B. Q. et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat. Med. 12, 441–445 (2006).

    CAS  PubMed  Google Scholar 

  9. Hu, X. et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43, 3063–3070 (2012).

    CAS  PubMed  Google Scholar 

  10. Xing, C., Li, W., Deng, W., Ning, M. & Lo, E. H. A potential gliovascular mechanism for microglial activation: differential phenotypic switching of microglia by endothelium versus astrocytes. J. Neuroinflamm. 15, 143 (2018).

    Google Scholar 

  11. Lo, E. H. A new penumbra: transitioning from injury into repair after stroke. Nat. Med. 14, 497–500 (2008).

    CAS  PubMed  Google Scholar 

  12. Moskowitz, M. A., Lo, E. H. & Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron 67, 181–198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ishikawa, H. et al. Ischemic stroke brain sends indirect cell death signals to the heart. Stroke 44, 3175–3182 (2013).

    PubMed  Google Scholar 

  14. Sposato, L. A. et al. Post-stroke cardiovascular complications and neurogenic cardiac injury: JACC state-of-the-art review. JACC 76, 2768–2785 (2020).

    PubMed  Google Scholar 

  15. Liesz, A. et al. DAMP signaling is a key pathway inducing immune modulation after brain injury. J. Neurosci. 35, 583–598 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Brooks, T. A. et al. Biphasic cytoarchitecture and functional changes in the BBB induced by chronic inflammatory pain. Brain Res. 1120, 172–182 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Carloni, S. et al. Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science 374, 439–448 (2021).

    CAS  PubMed  Google Scholar 

  18. Choi, C. S. et al. Cytotoxic tau released from lung microvascular endothelial cells upon infection with Pseudomonas aeruginosa promotes neuronal tauopathy. J. Biol. Chem. 298, 101482 (2021).

    PubMed  PubMed Central  Google Scholar 

  19. MahmoudianDehkordi, S. et al. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-an emerging role for gut microbiome. Alzheimers Dement. 15, 76–92 (2019).

    PubMed  Google Scholar 

  20. Kumar, S., Selim, M. H. & Caplan, L. R. Medical complications after stroke. Lancet Neurol. 9, 105–118 (2010).

    PubMed  Google Scholar 

  21. Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Traylor, M. et al. Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurol. 20, 351–361 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dichgans, M., Pulit, S. L. & Rosand, J. Stroke genetics: discovery, biology, and clinical applications. Lancet Neurol. 18, 587–599 (2019).

    PubMed  Google Scholar 

  24. Yang, A. C. et al. Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature 583, 425–430 (2020). In this study, extensive labelling and proteome studies provided compelling evidence for the extent of physiological blood–brain transport and its change with age.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Xing, C. et al. in The Vasculome: From Many, One (ed. Galis, Z. S.) 427–438 (Elsevier, 2022).

  26. Krueger, M. et al. Blood-brain barrier breakdown involves four distinct stages of vascular damage in various models of experimental focal cerebral ischemia. J. Cereb. Blood Flow Metab. 35, 292–303 (2015).

    CAS  PubMed  Google Scholar 

  27. Jickling, G. C. et al. Hemorrhagic transformation after ischemic stroke in animals and humans. J. Cereb. Blood Flow Metab. 34, 185–199 (2014).

    CAS  PubMed  Google Scholar 

  28. Gershon, M. D. & Margolis, K. G. The gut, its microbiome, and the brain: connections and communications. J. Clin. Invest. 131, e143768 (2021).

    CAS  PubMed Central  Google Scholar 

  29. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).

    PubMed  PubMed Central  Google Scholar 

  30. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rasmussen, M. K., Mestre, H. & Nedergaard, M. The glymphatic pathway in neurological disorders. Lancet Neurol. 17, 1016–1024 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Herisson, F. et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Partridge, L., Deelen, J. & Slagboom, P. E. Facing up to the global challenges of ageing. Nature 561, 45–56 (2018).

    CAS  PubMed  Google Scholar 

  34. Belsky, D. W. et al. Quantification of biological aging in young adults. Proc. Natl Acad. Sci. USA 112, E4104–E4110 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chahal, H. S. & Drake, W. M. The endocrine system and ageing. J. Pathol. 211, 173–180 (2007).

    CAS  PubMed  Google Scholar 

  36. Lakatta, E. G. & Levy, D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part II: the aging heart in health: links to heart disease. Circulation 107, 346–354 (2003).

    PubMed  Google Scholar 

  37. Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581 (2019).

    PubMed  Google Scholar 

  38. Campisi, J. et al. From discoveries in ageing research to therapeutics for healthy ageing. Nature 571, 183–192 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mattson, M. P. & Magnus, T. Ageing and neuronal vulnerability. Nat. Rev. Neurosci. 7, 278–294 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma, J., Ma, Y., Shuaib, A. & Winship, I. R. Impaired collateral flow in pial arterioles of aged rats during ischemic stroke. Transl. Stroke Res. 11, 243–253 (2020).

    CAS  PubMed  Google Scholar 

  41. Ungvari, Z., Tarantini, S., Donato, A. J., Galvan, V. & Csiszar, A. Mechanisms of vascular aging. Circ. Res. 123, 849–867 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kress, B. T. et al. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76, 845–861 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, Q., Ineichen, B. V., Detmar, M. & Proulx, S. T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8, 1434 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Banks, W. A., Reed, M. J., Logsdon, A. F., Rhea, E. M. & Erickson, M. A. Healthy aging and the blood-brain barrier. Nat. Aging 1, 243–254 (2021).

    PubMed  PubMed Central  Google Scholar 

  45. Segarra, M., Aburto, M. R. & Acker-Palmer, A. Blood-brain barrier dynamics to maintain brain homeostasis. Trends Neurosci. 44, 393–405 (2021).

    CAS  PubMed  Google Scholar 

  46. Wollenweber, F. A. et al. Functional outcome following stroke thrombectomy in clinical practice. Stroke 50, 2500–2506 (2019).

    PubMed  Google Scholar 

  47. GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 439–458 (2019).

    Google Scholar 

  48. Boehme, A. K., Esenwa, C. & Elkind, M. S. V. Stroke risk factors, genetics, and prevention. Circ. Res. 120, 472–495 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ainslie, P. N. et al. Early morning impairment in cerebral autoregulation and cerebrovascular CO2 reactivity in healthy humans: relation to endothelial function. Exp. Physiol. 92, 769–777 (2007).

    PubMed  Google Scholar 

  50. Schaeffer, S. & Iadecola, C. Revisiting the neurovascular unit. Nat. Neurosci. 24, 1198–1209 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Brown, L. S. et al. Pericytes and neurovascular function in the healthy and diseased brain. Front. Cell. Neurosci. 13, 282 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Santisteban, M. M. et al. Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension. Hypertension 76, 795–807 (2020).

    CAS  PubMed  Google Scholar 

  53. Ungvari, Z. et al. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat. Rev. Nephrol. 17, 639–654 (2021).

    PubMed  PubMed Central  Google Scholar 

  54. Leonardi-Bee, J., Bath, P. M., Phillips, S. J., Sandercock, P. A. & Group, I. S. T. C. Blood pressure and clinical outcomes in the International Stroke Trial. Stroke 33, 1315–1320 (2002).

    PubMed  Google Scholar 

  55. Hood, S. & Amir, S. The aging clock: circadian rhythms and later life. J. Clin. Invest. 127, 437–446 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Amorim, J. A. et al. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 18, 243–258 (2022).

    PubMed  PubMed Central  Google Scholar 

  57. Montecino-Rodriguez, E., Berent-Maoz, B. & Dorshkind, K. Causes, consequences, and reversal of immune system aging. J. Clin. Invest. 123, 958–965 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nikolich-Zugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

    CAS  PubMed  Google Scholar 

  59. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ritzel, R. M. et al. Aging alters the immunological response to ischemic stroke. Acta Neuropathol. 136, 89–110 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Spychala, M. S. et al. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann. Neurol. 84, 23–36 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Marton, A. et al. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat. Rev. Nephrol. 17, 65–77 (2021).

    CAS  PubMed  Google Scholar 

  63. Hyder, F., Rothman, D. L. & Bennett, M. R. Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc. Natl Acad. Sci. USA 110, 3549–3554 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Belanger, M., Allaman, I. & Magistretti, P. J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14, 724–738 (2011).

    CAS  PubMed  Google Scholar 

  65. Zhao, H. et al. Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats. J. Neurosci. 25, 9794–9806 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yenari, M. A. & Han, H. S. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat. Rev. Neurosci. 13, 267–278 (2012).

    CAS  PubMed  Google Scholar 

  67. Hamann, G. F. et al. Mild to moderate hypothermia prevents microvascular basal lamina antigen loss in experimental focal cerebral ischemia. Stroke 35, 764–769 (2004).

    PubMed  Google Scholar 

  68. Baumann, E., Preston, E., Slinn, J. & Stanimirovic, D. Post-ischemic hypothermia attenuates loss of the vascular basement membrane proteins, agrin and SPARC, and the blood-brain barrier disruption after global cerebral ischemia. Brain Res. 1269, 185–197 (2009).

    CAS  PubMed  Google Scholar 

  69. Duz, B., Oztas, E., Erginay, T., Erdogan, E. & Gonul, E. The effect of moderate hypothermia in acute ischemic stroke on pericyte migration: an ultrastructural study. Cryobiology 55, 279–284 (2007).

    PubMed  Google Scholar 

  70. Huang, Z. G., Xue, D., Preston, E., Karbalai, H. & Buchan, A. M. Biphasic opening of the blood-brain barrier following transient focal ischemia: effects of hypothermia. Can. J. Neurol. Sci. 26, 298–304 (1999).

    CAS  PubMed  Google Scholar 

  71. van der Worp, H. B., Sena, E. S., Donnan, G. A., Howells, D. W. & Macleod, M. R. Hypothermia in animal models of acute ischaemic stroke: a systematic review and meta-analysis. Brain J. Neurol. 130, 3063–3074 (2007).

    Google Scholar 

  72. van der Worp, H. B. et al. Therapeutic hypothermia for acute ischaemic stroke. Results of a European multicentre, randomised, phase III clinical trial. Eur. Stroke J. 4, 254–262 (2019).

    PubMed  PubMed Central  Google Scholar 

  73. Obermeyer, Z., Samra, J. K. & Mullainathan, S. Individual differences in normal body temperature: longitudinal big data analysis of patient records. BMJ 359, j5468 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Reith, J. et al. Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome. Lancet 347, 422–425 (1996).

    CAS  PubMed  Google Scholar 

  75. Tagin, M. A., Woolcott, C. G., Vincer, M. J., Whyte, R. K. & Stinson, D. A. Hypothermia for neonatal hypoxic ischemic encephalopathy: an updated systematic review and meta-analysis. Arch. Pediatr. Adolesc. Med. 166, 558–566 (2012).

    PubMed  Google Scholar 

  76. Engelman, R. et al. The Society of Thoracic Surgeons, The Society of Cardiovascular Anesthesiologists, and The American Society of ExtraCorporeal Technology: clinical practice guidelines for cardiopulmonary bypass–temperature management during cardiopulmonary bypass. Ann. Thorac. Surg. 100, 748–757 (2015).

    PubMed  Google Scholar 

  77. Nolan, J. P. et al. Therapeutic hypothermia after cardiac arrest: an advisory statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation. Circulation 108, 118–121 (2003).

    CAS  PubMed  Google Scholar 

  78. Terpstra, A. H. Differences between humans and mice in efficacy of the body fat lowering effect of conjugated linoleic acid: role of metabolic rate. J. Nutr. 131, 2067–2068 (2001).

    CAS  PubMed  Google Scholar 

  79. Baracos, V. E., Whitmore, W. T. & Gale, R. The metabolic cost of fever. Can. J. Physiol. Pharmacol. 65, 1248–1254 (1987).

    CAS  PubMed  Google Scholar 

  80. Lyden, P. Selective cerebral cooling for acute ischemic stroke. J. Cereb. Blood Flow Metab. 40, 1365–1367 (2020).

    PubMed  PubMed Central  Google Scholar 

  81. Fuller, P. M., Gooley, J. J. & Saper, C. B. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J. Biol. Rhythms 21, 482–493 (2006).

    CAS  PubMed  Google Scholar 

  82. Dyar, K. A. et al. Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell 174, 1571–1585.e11 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Geiger, S. S., Fagundes, C. T. & Siegel, R. M. Chrono-immunology: progress and challenges in understanding links between the circadian and immune systems. Immunology 146, 349–358 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Roenneberg, T. & Merrow, M. The circadian clock and human health. Curr. Biol. 26, R432–R443 (2016). This review links circadian clocks to human health and introduces key terms of circadian biology.

    CAS  PubMed  Google Scholar 

  85. Smolensky, M. H., Hermida, R. C. & Portaluppi, F. Circadian mechanisms of 24-hour blood pressure regulation and patterning. Sleep. Med. Rev. 33, 4–16 (2017).

    PubMed  Google Scholar 

  86. Scheer, F. A. & Shea, S. A. Human circadian system causes a morning peak in prothrombotic plasminogen activator inhibitor-1 (PAI-1) independent of the sleep/wake cycle. Blood 123, 590–593 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179 (2017).

    CAS  PubMed  Google Scholar 

  88. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Rabinovich-Nikitin, I., Lieberman, B., Martino, T. A. & Kirshenbaum, L. A. Circadian-regulated cell death in cardiovascular diseases. Circulation 139, 965–980 (2019).

    CAS  PubMed  Google Scholar 

  90. Musiek, E. S. et al. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J. Clin. Invest. 123, 5389–5400 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kondratova, A. A. & Kondratov, R. V. The circadian clock and pathology of the ageing brain. Nat. Rev. Neurosci. 13, 325–335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Schmitt, K. et al. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab. 27, 657–666.e5 (2018).

    CAS  PubMed  Google Scholar 

  93. Cavey, M., Collins, B., Bertet, C. & Blau, J. Circadian rhythms in neuronal activity propagate through output circuits. Nat. Neurosci. 19, 587–595 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chi-Castaneda, D. & Ortega, A. Circadian regulation of glutamate transporters. Front. Endocrinol. 9, 340 (2018).

    Google Scholar 

  95. Lang, N. et al. Circadian modulation of GABA-mediated cortical inhibition. Cereb. Cortex 21, 2299–2306 (2011).

    PubMed  Google Scholar 

  96. Womac, A. D., Burkeen, J. F., Neuendorff, N., Earnest, D. J. & Zoran, M. J. Circadian rhythms of extracellular ATP accumulation in suprachiasmatic nucleus cells and cultured astrocytes. Eur. J. Neurosci. 30, 869–876 (2009).

    PubMed  PubMed Central  Google Scholar 

  97. Marpegan, L. et al. Circadian regulation of ATP release in astrocytes. J. Neurosci. 31, 8342–8350 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Brancaccio, M., Patton, A. P., Chesham, J. E., Maywood, E. S. & Hastings, M. H. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 93, 1420–1435.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Brancaccio, M. et al. Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science 363, 187–192 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bellesi, M. et al. Effects of sleep and wake on oligodendrocytes and their precursors. J. Neurosci. 33, 14288–14300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Durgan, D. J., Crossland, R. F. & Bryan, R. M. Jr. The rat cerebral vasculature exhibits time-of-day-dependent oscillations in circadian clock genes and vascular function that are attenuated following obstructive sleep apnea. J. Cereb. Blood Flow Metab. 37, 2806–2819 (2017).

    PubMed  Google Scholar 

  102. Anea, C. B. et al. Increased superoxide and endothelial NO synthase uncoupling in blood vessels of Bmal1-knockout mice. Circ. Res. 111, 1157–1165 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, S. L., Yue, Z., Arnold, D. M., Artiushin, G. & Sehgal, A. A circadian clock in the blood-brain barrier regulates xenobiotic efflux. Cell 173, 130–139.e10 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Nakazato, R. et al. Disruption of Bmal1 impairs blood-brain barrier integrity via pericyte dysfunction. J. Neurosci. 37, 10052–10062 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pulido, R. S. et al. Neuronal activity regulates blood-brain barrier efflux transport through endothelial circadian genes. Neuron 108, 937–952.e7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    CAS  PubMed  Google Scholar 

  107. Nilsson, C. et al. Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am. J. Physiol. 262, R20–R24 (1992).

    CAS  PubMed  Google Scholar 

  108. Hablitz, L. M. et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun. 11, 4411 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lo, E. H. et al. Circadian biology and stroke. Stroke 52, 2180–2190 (2021).

    CAS  PubMed  Google Scholar 

  110. Wiebking, N., Maronde, E. & Rami, A. Increased neuronal injury in clock gene Per-1 deficient-mice after cerebral ischemia. Curr. Neurovasc. Res. 10, 112–125 (2013).

    CAS  PubMed  Google Scholar 

  111. Magnone, M. C. et al. The mammalian circadian clock gene per2 modulates cell death in response to oxidative stress. Front. Neurol. 5, 289 (2014).

    PubMed  Google Scholar 

  112. Lananna, B. V. et al. Cell-autonomous regulation of astrocyte activation by the circadian clock protein BMAL1. Cell Rep. 25, 1–9.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Mullenders, J., Fabius, A. W., Madiredjo, M., Bernards, R. & Beijersbergen, R. L. A large scale shRNA barcode screen identifies the circadian clock component ARNTL as putative regulator of the p53 tumor suppressor pathway. PLoS ONE 4, e4798 (2009).

    PubMed  PubMed Central  Google Scholar 

  114. Esposito, E. et al. Potential circadian effects on translational failure for neuroprotection. Nature 582, 395–398 (2020). This study systematically investigated whether the efficacy of neuroprotective strategies depends on zeitgeber time and offers pathophysiological explanations for the identified differences.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Beker, M. C. et al. Time-of-day dependent neuronal injury after ischemic stroke: implication of circadian clock transcriptional factor Bmal1 and survival kinase AKT. Mol. Neurobiol. 55, 2565–2576 (2018).

    CAS  PubMed  Google Scholar 

  116. Reidler, P. et al. Circadian rhythm of ischaemic core progression in human stroke. J. Neurol. Neurosurg. Psychiatry, https://doi.org/10.1136/jnnp-2021-326072 (2021).

    Article  PubMed  Google Scholar 

  117. Ryu, W. S. et al. Association of ischemic stroke onset time with presenting severity, acute progression, and long-term outcome: a cohort study. PLoS Med. 19, e1003910 (2022).

    PubMed  PubMed Central  Google Scholar 

  118. Lorenzano, S. et al. Within-day and weekly variations of thrombolysis in acute ischemic stroke: results from Safe Implementation of Treatments in Stroke–International Stroke Thrombolysis Register. Stroke 45, 176–184 (2014).

    PubMed  Google Scholar 

  119. Hajdu, S. D. et al. Association of time of day when endovascular therapy for stroke starts and functional outcome. Neurology 96, e1124–e1136 (2021).

    CAS  PubMed Central  Google Scholar 

  120. Hirota, T. et al. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase. PLoS Biol. 8, e1000559 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Preiser, J. C., Ichai, C., Orban, J. C. & Groeneveld, A. B. Metabolic response to the stress of critical illness. Br. J. Anaesth. 113, 945–954 (2014).

    CAS  PubMed  Google Scholar 

  122. Porter, C. et al. The metabolic stress response to burn trauma: current understanding and therapies. Lancet 388, 1417–1426 (2016).

    PubMed  PubMed Central  Google Scholar 

  123. Skafida, A. et al. In-hospital dynamics of glucose, blood pressure and temperature predict outcome in patients with acute ischaemic stroke. Eur. Stroke J. 3, 174–184 (2018).

    PubMed  PubMed Central  Google Scholar 

  124. Oesch, L., Tatlisumak, T., Arnold, M. & Sarikaya, H. Obesity paradox in stroke–myth or reality? A systematic review. PLoS ONE 12, e0171334 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Jonsson, A. C., Lindgren, I., Norrving, B. & Lindgren, A. Weight loss after stroke: a population-based study from the Lund Stroke Register. Stroke 39, 918–923 (2008).

    PubMed  Google Scholar 

  126. Kim, Y. et al. Prognostic importance of weight change on short-term functional outcome in acute ischemic stroke. Int. J. Stroke 10, 62–68 (2015).

    PubMed  Google Scholar 

  127. Uyttenboogaart, M. et al. Moderate hyperglycaemia is associated with favourable outcome in acute lacunar stroke. Brain 130, 1626–1630 (2007).

    PubMed  Google Scholar 

  128. Capes, S. E., Hunt, D., Malmberg, K., Pathak, P. & Gerstein, H. C. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke 32, 2426–2432 (2001).

    CAS  PubMed  Google Scholar 

  129. Davalos, A. et al. Effect of malnutrition after acute stroke on clinical outcome. Stroke 27, 1028–1032 (1996).

    CAS  PubMed  Google Scholar 

  130. Chalela, J. A., Haymore, J., Schellinger, P. D., Kang, D. W. & Warach, S. Acute stroke patients are being underfed: a nitrogen balance study. Neurocrit. Care 1, 331–334 (2004).

    PubMed  Google Scholar 

  131. Springer, J. et al. Catabolic signaling and muscle wasting after acute ischemic stroke in mice: indication for a stroke-specific sarcopenia. Stroke 45, 3675–3683 (2014).

    CAS  PubMed  Google Scholar 

  132. Luitse, M. J., Biessels, G. J., Rutten, G. E. & Kappelle, L. J. Diabetes, hyperglycaemia, and acute ischaemic stroke. Lancet Neurol. 11, 261–271 (2012). An excellent review that disentangles the effects of diabetes and hyperglycaemia on stroke outcome.

    PubMed  Google Scholar 

  133. Soty, M., Gautier-Stein, A., Rajas, F. & Mithieux, G. Gut-brain glucose signaling in energy homeostasis. Cell Metab. 25, 1231–1242 (2017).

    CAS  PubMed  Google Scholar 

  134. Magistretti, P. J. & Allaman, I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 86, 883–901 (2015).

    CAS  PubMed  Google Scholar 

  135. Jais, A. et al. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165, 882–895 (2016).

    CAS  PubMed  Google Scholar 

  136. Herrero-Mendez, A. et al. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat. Cell Biol. 11, 747–752 (2009).

    CAS  PubMed  Google Scholar 

  137. Yip, J., Geng, X., Shen, J. & Ding, Y. Cerebral gluconeogenesis and diseases. Front. Pharmacol. 7, 521 (2016).

    PubMed  Google Scholar 

  138. Poe, G. R. et al. Locus coeruleus: a new look at the blue spot. Nat. Rev. Neurosci. 21, 644–659 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Gibson, C. L., Murphy, A. N. & Murphy, S. P. Stroke outcome in the ketogenic state–a systematic review of the animal data. J. Neurochem. 123, 52–57 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Puchalska, P. & Crawford, P. A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25, 262–284 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Shimazu, T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2013).

    CAS  PubMed  Google Scholar 

  142. Kimura, I. et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl Acad. Sci. USA 108, 8030–8035 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Rahman, M. et al. The beta-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat. Commun. 5, 3944 (2014).

    CAS  PubMed  Google Scholar 

  144. Youm, Y. H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 169, 361–371 (2017).

    CAS  PubMed  Google Scholar 

  146. Chong, Z. Z., Yao, Q. & Li, H. H. The rationale of targeting mammalian target of rapamycin for ischemic stroke. Cell Signal 25, 1598–1607 (2013).

    CAS  PubMed  Google Scholar 

  147. DeYoung, M. P., Horak, P., Sofer, A., Sgroi, D. & Ellisen, L. W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 22, 239–251 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Papadakis, M. et al. Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy. Nat. Med. 19, 351–357 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Hadley, G. et al. Rapamycin in ischemic stroke: old drug, new tricks? J. Cereb. Blood Flow Metab. 39, 20–35 (2019).

    CAS  PubMed  Google Scholar 

  150. Wang, C. et al. Targeting the mTOR signaling network for Alzheimer’s disease therapy. Mol. Neurobiol. 49, 120–135 (2014).

    CAS  PubMed  Google Scholar 

  151. Sharkey, J. & Butcher, S. P. Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia. Nature 371, 336–339 (1994).

    CAS  PubMed  Google Scholar 

  152. Chi, O. Z. et al. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia. Neuroscience 316, 321–327 (2016).

    CAS  PubMed  Google Scholar 

  153. Chauhan, A., Sharma, U., Jagannathan, N. R., Reeta, K. H. & Gupta, Y. K. Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats. Behav. Brain Res. 225, 603–609 (2011).

    CAS  PubMed  Google Scholar 

  154. Beard, D. J. et al. The effect of rapamycin treatment on cerebral ischemia: a systematic review and meta-analysis of animal model studies. Int. J. Stroke 14, 137–145 (2019).

    PubMed  Google Scholar 

  155. Goossens, C. et al. Adipose tissue protects against sepsis-induced muscle weakness in mice: from lipolysis to ketones. Crit. Care 23, 236 (2019).

    PubMed  PubMed Central  Google Scholar 

  156. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Pepping, J. K., Freeman, L. R., Gupta, S., Keller, J. N. & Bruce-Keller, A. J. NOX2 deficiency attenuates markers of adiposopathy and brain injury induced by high-fat diet. Am. J. Physiol. Endocrinol. Metab. 304, E392–E404 (2013).

    CAS  PubMed  Google Scholar 

  158. Takechi, R., Pallebage-Gamarallage, M. M., Lam, V., Giles, C. & Mamo, J. C. Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood-brain barrier function in wild-type mice. J. Neuroinflamm. 10, 73 (2013).

    CAS  Google Scholar 

  159. Haley, M. J. et al. Acute high-fat feeding leads to disruptions in glucose homeostasis and worsens stroke outcome. J. Cereb. Blood Flow Metab. 39, 1026–1037 (2019).

    CAS  PubMed  Google Scholar 

  160. Wu, M. H. et al. Obesity exacerbates rat cerebral ischemic injury through enhancing ischemic adiponectin-containing neuronal apoptosis. Mol. Neurobiol. 53, 3702–3713 (2016).

    CAS  PubMed  Google Scholar 

  161. Peterson, T. C. et al. Obesity drives delayed infarct expansion, inflammation, and distinct gene networks in a mouse stroke model. Transl. Stroke Res. 12, 331–346 (2021).

    CAS  PubMed  Google Scholar 

  162. Guo, D. H. et al. Beige adipocytes mediate the neuroprotective and anti-inflammatory effects of subcutaneous fat in obese mice. Nat. Commun. 12, 4623 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Liu, Z. et al. Adiposity and outcome after ischemic stroke: obesity paradox for mortality and obesity parabola for favorable functional outcomes. Stroke 52, 144–151 (2021).

    PubMed  Google Scholar 

  164. McCay, C. M., Maynard, L. A., Sperling, G. & Barnes, L. L. Retarded growth, life span, ultimate body size and age changes in the albino rat after feeding diets restricted in calories. Nutr. Rev. 18, 1–13 (1939).

    CAS  Google Scholar 

  165. Mattison, J. A. et al. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8, 14063 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Gabande-Rodriguez, E., Gomez de Las Heras, M. M. & Mittelbrunn, M. Control of inflammation by calorie restriction mimetics: on the crossroad of autophagy and mitochondria. Cells 9, 82 (2019).

    PubMed Central  Google Scholar 

  167. Duregon, E., Pomatto-Watson, L., Bernier, M., Price, N. L. & de Cabo, R. Intermittent fasting: from calories to time restriction. Geroscience 43, 1083–1092 (2021).

    PubMed  PubMed Central  Google Scholar 

  168. Mattson, M. P., Longo, V. D. & Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 39, 46–58 (2017).

    PubMed  Google Scholar 

  169. FOOD Trial Collaboration. Poor nutritional status on admission predicts poor outcomes after stroke: observational data from the FOOD trial. Stroke 34, 1450–1456 (2003).

    Google Scholar 

  170. Scherbakov, N., Dirnagl, U. & Doehner, W. Body weight after stroke: lessons from the obesity paradox. Stroke 42, 3646–3650 (2011).

    PubMed  Google Scholar 

  171. Lourbopoulos, A. et al. Inadequate food and water intake determine mortality following stroke in mice. J. Cereb. Blood Flow Metab. 37, 2084–2097 (2017).

    PubMed  Google Scholar 

  172. Dennis, M. S., Lewis, S. C., Warlow, C. & Collaboration, F. T. Routine oral nutritional supplementation for stroke patients in hospital (FOOD): a multicentre randomised controlled trial. Lancet 365, 755–763 (2005).

    CAS  PubMed  Google Scholar 

  173. Faraco, G. et al. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature 574, 686–690 (2019). An outstanding example of how a dietary component can be mechanistically linked to outcomes at the NVU.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Shi, K. et al. Global brain inflammation in stroke. Lancet Neurol. 18, 1058–1066 (2019).

    PubMed  Google Scholar 

  175. Iadecola, C. & Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796–808 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang, S. R., Phan, T. G. & Sobey, C. G. Targeting the immune system for ischemic stroke. Trends Pharmacol. Sci. 42, 96–105 (2021).

    CAS  PubMed  Google Scholar 

  177. Iadecola, C., Buckwalter, M. S. & Anrather, J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J. Clin. Invest. 130, 2777–2788 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Carson, M. J., Doose, J. M., Melchior, B., Schmid, C. D. & Ploix, C. C. CNS immune privilege: hiding in plain sight. Immunol. Rev. 213, 48–65 (2006).

    PubMed  PubMed Central  Google Scholar 

  179. Croese, T., Castellani, G. & Schwartz, M. Immune cell compartmentalization for brain surveillance and protection. Nat. Immunol. 22, 1083–1092 (2021).

    CAS  PubMed  Google Scholar 

  180. Kierdorf, K., Masuda, T., Jordao, M. J. C. & Prinz, M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat. Rev. Neurosci. 20, 547–562 (2019).

    CAS  PubMed  Google Scholar 

  181. Wilson, E. H., Weninger, W. & Hunter, C. A. Trafficking of immune cells in the central nervous system. J. Clin. Invest. 120, 1368–1379 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Mastorakos, P. & McGavern, D. The anatomy and immunology of vasculature in the central nervous system. Sci. Immunol. 4, eaav0492 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016.e27 (2021). One of the key studies in which novel neuroimmune interfaces were identified.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

    CAS  PubMed  Google Scholar 

  185. Mogensen, F. L., Delle, C. & Nedergaard, M. The Glymphatic System (En)during Inflammation. Int. J. Mol. Sci. 22, 7491 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Borlongan, C. V. Bone marrow stem cell mobilization in stroke: a ‘bonehead’ may be good after all! Leukemia 25, 1674–1686 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Denes, A. et al. Experimental stroke-induced changes in the bone marrow reveal complex regulation of leukocyte responses. J. Cereb. Blood Flow. Metab. 31, 1036–1050 (2011).

    CAS  PubMed  Google Scholar 

  188. Pulous, F. E. et al. Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nat Neurosci. 25, 567–576 (2022).

    CAS  PubMed  Google Scholar 

  189. Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 373, eabf7844 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Brioschi, S. et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 373, eabf9277 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Kolabas, Z. I. et al. Multi-omics and 3D-imaging reveal bone heterogeneity and unique calvaria cells in neuroinflammation. bioRxiv https://doi.org/10.1101/2021.12.24.473988 (2021).

    Article  Google Scholar 

  192. Lucas, D., Battista, M., Shi, P. A., Isola, L. & Frenette, P. S. Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 3, 364–366 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Mendez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P. S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452, 442–447 (2008).

    CAS  PubMed  Google Scholar 

  194. Natoli, G. & Ostuni, R. Adaptation and memory in immune responses. Nat. Immunol. 20, 783–792 (2019).

    CAS  PubMed  Google Scholar 

  195. Ng, L. G., Ostuni, R. & Hidalgo, A. Heterogeneity of neutrophils. Nat. Rev. Immunol. 19, 255–265 (2019).

    CAS  PubMed  Google Scholar 

  196. Casanova-Acebes, M. et al. Neutrophils instruct homeostatic and pathological states in naive tissues. J. Exp. Med. 215, 2778–2795 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297.e18 (2020).

    CAS  PubMed  Google Scholar 

  198. Cuartero, M. I. et al. N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARγ agonist rosiglitazone. Stroke 44, 3498–3508 (2013).

    CAS  PubMed  Google Scholar 

  199. Garcia-Culebras, A. et al. Role of TLR4 (Toll-like receptor 4) in N1/N2 neutrophil programming after stroke. Stroke 50, 2922–2932 (2019).

    CAS  PubMed  Google Scholar 

  200. Cai, W. et al. Functional dynamics of neutrophils after ischemic stroke. Transl. Stroke Res. 11, 108–121 (2020).

    PubMed  Google Scholar 

  201. Sas, A. R. et al. A new neutrophil subset promotes CNS neuron survival and axon regeneration. Nat. Immunol. 21, 1496–1505 (2020).

    PubMed  PubMed Central  Google Scholar 

  202. Roy-O’Reilly, M. A. et al. Aging exacerbates neutrophil pathogenicity in ischemic stroke. Aging 12, 436–461 (2020).

    PubMed  PubMed Central  Google Scholar 

  203. Camilleri, M. Gastrointestinal motility disorders in neurologic disease. J. Clin. Invest. 131, e143771 (2021).

    CAS  PubMed Central  Google Scholar 

  204. Benakis, C. et al. The microbiome-gut-brain axis in acute and chronic brain diseases. Curr. Opin. Neurobiol. 61, 1–9 (2020).

    CAS  PubMed  Google Scholar 

  205. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    CAS  PubMed  Google Scholar 

  208. Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153.e14 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Bishehsari, F., Voigt, R. M. & Keshavarzian, A. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nat. Rev. Endocrinol. 16, 731–739 (2020).

    PubMed  PubMed Central  Google Scholar 

  210. Klunemann, M. et al. Bioaccumulation of therapeutic drugs by human gut bacteria. Nature 597, 533–538 (2021).

    PubMed  Google Scholar 

  211. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    CAS  PubMed  Google Scholar 

  212. Blander, J. M., Longman, R. S., Iliev, I. D., Sonnenberg, G. F. & Artis, D. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 18, 851–860 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Benakis, C. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 22, 516–523 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Agirman, G. & Hsiao, E. Y. SnapShot: the microbiota-gut-brain axis. Cell 184, 2524–2524.e1 (2021).

    CAS  PubMed  Google Scholar 

  215. Delgado Jimenez, R. & Benakis, C. The gut ecosystem: a critical player in stroke. Neuromolecular Med. 23, 236–241 (2021).

    CAS  PubMed  Google Scholar 

  216. Schroeder, B. O. & Backhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22, 1079–1089 (2016).

    CAS  PubMed  Google Scholar 

  217. Sampson, T. R. & Mazmanian, S. K. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17, 565–576 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Tang, W. H. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011). This seminal study identified TMAO as a key microbiota-dependent metabolite that triggers cardiovascular disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Farzi, A., Frohlich, E. E. & Holzer, P. Gut microbiota and the neuroendocrine system. Neurotherapeutics 15, 5–22 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Singh, V. et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 36, 7428–7440 (2016). Through a series of transplantation experiments, this study disentangled the bidirectional effects between gut microbiota and the brain after experimental stroke.

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Houlden, A. et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav. Immun. 57, 10–20 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Stanley, D., Moore, R. J. & Wong, C. H. Y. An insight into intestinal mucosal microbiota disruption after stroke. Sci. Rep. 8, 568 (2018).

    PubMed  PubMed Central  Google Scholar 

  224. Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A. & Alm, E. J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8, 1784 (2017).

    PubMed  PubMed Central  Google Scholar 

  225. Singh, V. et al. The gut microbiome primes a cerebroprotective immune response after stroke. J. Cereb. Blood Flow Metab. 38, 1293–1298 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Stanley, D. et al. Translocation and dissemination of commensal bacteria in post-stroke infection. Nat. Med. 22, 1277–1284 (2016).

    CAS  PubMed  Google Scholar 

  227. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Erny, D. et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab. 33, 2260–2276.e7 (2021).

    CAS  PubMed  Google Scholar 

  229. Lee, J. et al. Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice. Circ. Res. 127, 453–465 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Sadler, R. et al. Short-chain fatty acids improve poststroke recovery via immunological mechanisms. J. Neurosci. 40, 1162–1173 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014).

    PubMed  PubMed Central  Google Scholar 

  232. Marques, F. Z., Mackay, C. R. & Kaye, D. M. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat. Rev. Cardiol. 15, 20–32 (2018).

    PubMed  Google Scholar 

  233. Chu, C. et al. The microbiota regulate neuronal function and fear extinction learning. Nature 574, 543–548 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Benakis, C. et al. Distinct commensal bacterial signature in the gut is associated with acute and long-term protection from ischemic stroke. Stroke 51, 1844–1854 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).

    CAS  PubMed  Google Scholar 

  236. Yamashiro, K. et al. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS ONE 12, e0171521 (2017).

    PubMed  PubMed Central  Google Scholar 

  237. Zhu, W. et al. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway. Cell Host Microbe 29, 1199–1208.e5 (2021). This study showed that the metabolites produced by the microbiota are important for stroke outcome and provided an insight into what personalized and targeted approaches for microbiota recolonization could look like.

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Maier, L. et al. Unravelling the collateral damage of antibiotics on gut bacteria. Nature 599, 120–124 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 603, 885–892 (2022).

    CAS  PubMed  Google Scholar 

  240. Hugenholtz, F. & de Vos, W. M. Mouse models for human intestinal microbiota research: a critical evaluation. Cell. Mol. Life Sci. 75, 149–160 (2018).

    CAS  PubMed  Google Scholar 

  241. Nguyen, T. L., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research. Dis. Model. Mech. 8, 1–16 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Nagpal, R. et al. Comparative microbiome signatures and short-chain fatty acids in mouse, rat, non-human primate, and human feces. Front. Microbiol. 9, 2897 (2018).

    PubMed  PubMed Central  Google Scholar 

  243. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    CAS  PubMed  Google Scholar 

  244. Healy, L. M., Yaqubi, M., Ludwin, S. & Antel, J. P. Species differences in immune-mediated CNS tissue injury and repair: a (neuro)inflammatory topic. Glia 68, 811–829 (2020).

    PubMed  Google Scholar 

  245. Becker, K. J. Strain-related differences in the immune response: relevance to human stroke. Transl. Stroke Res. 7, 303–312 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Bosetti, F. et al. Translational stroke research: vision and opportunities. Stroke 48, 2632–2637 (2017).

    PubMed  PubMed Central  Google Scholar 

  247. Cho, S. & Yang, J. What do experimental models teach us about comorbidities in stroke. Stroke 49, 501–507 (2018).

    PubMed  PubMed Central  Google Scholar 

  248. Winter, C. et al. Chrono-pharmacological targeting of the CCL2-CCR2 axis ameliorates atherosclerosis. Cell Metab. 28, 175–182.e5 (2018). Serving as an example for future studies in the context of stroke, this work identified the diurnal rhythm of a driver of myeloid cell recruitment and used this to develop a chrono-pharmacological approach against atherosclerosis.

    CAS  PubMed  Google Scholar 

  249. George, P. M. & Steinberg, G. K. Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments. Neuron 87, 297–309 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Lyden, P. et al. Final results of the RHAPSODY trial: a multi-center, phase 2 trial using a continual reassessment method to determine the safety and tolerability of 3K3A-APC, a recombinant variant of human activated protein C, in combination with tissue plasminogen activator, mechanical thrombectomy or both in moderate to severe acute ischemic stroke. Ann. Neurol. 85, 125–136 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Lyden, P. D. et al. Stroke treatment with PAR-1 agents to decrease hemorrhagic transformation. Front. Neurol. 12, 593582 (2021).

    PubMed  PubMed Central  Google Scholar 

  252. Lyu, Z. et al. A neurovascular-unit-on-a-chip for the evaluation of the restorative potential of stem cell therapies for ischaemic stroke. Nat. Biomed. Eng. 5, 847–863 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Vunjak-Novakovic, G., Ronaldson-Bouchard, K. & Radisic, M. Organs-on-a-chip models for biological research. Cell 184, 4597–4611 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Sorbie, A., Delgado Jimenez, R. & Benakis, C. Increasing transparency and reproducibility in stroke-microbiota research: a toolbox for microbiota analysis. iScience 25, 103998 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).

    CAS  PubMed  Google Scholar 

  258. Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Google Scholar 

  260. Wilmanski, T. et al. Blood metabolome predicts gut microbiome α-diversity in humans. Nat. Biotechnol. 37, 1217–1228 (2019).

    CAS  PubMed  Google Scholar 

  261. Chu, H. et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352, 1116–1120 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Juul, F. E. et al. Fecal microbiota transplantation for primary Clostridium difficile infection. N. Engl. J. Med. 378, 2535–2536 (2018).

    PubMed  Google Scholar 

  263. Chen, R. Y. et al. A microbiota-directed food intervention for undernourished children. N. Engl. J. Med. 384, 1517–1528 (2021).

    PubMed  PubMed Central  Google Scholar 

  264. Gehrig, J. L. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 365, eaau4732 (2019).

    PubMed  PubMed Central  Google Scholar 

  265. Kolarski, D. et al. Reversible modulation of circadian time with chronophotopharmacology. Nat. Commun. 12, 3164 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Heindl, S. et al. Chronic T cell proliferation in brains after stroke could interfere with the efficacy of immunotherapies. J. Exp. Med. 218, e20202411 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Benakis (Institute for Stroke and Dementia Research, University hospital, Ludwig-Maximilians-Universität München, Germany) and M. Merrow (Institute of Medical Psychology, Ludwig-Maximilians-Universität München, Germany) for critical revision of parts of the manuscript. S.T. is supported by a grant from the Corona Foundation. A.M.B. is supported by a visiting fellowship from the Einstein Foundation Berlin. All authors are supported by a grant from the Leducq Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Steffen Tiedt or Eng H. Lo.

Ethics declarations

Competing interests

A.M.B. is a co-founder of Brainomix. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks D. Hermann, D. Michalski, S. Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Circadian rhythms

The ~24 h rhythmic temporal programmes found within almost all cells.

Glymphatic system

The cerebral glial-associated functional homologue of the peripheral lymphatic system that clears waste from the brain.

Perivascular spaces

The passageways surrounding cerebral microvessels that contribute to waste clearance.

Zeitgebers

Regular environmental signals that entrain circadian clocks.

Damage-associated molecular patterns

(DAMPS). The endogenous danger molecules that are released from damaged or dying cells.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tiedt, S., Buchan, A.M., Dichgans, M. et al. The neurovascular unit and systemic biology in stroke — implications for translation and treatment. Nat Rev Neurol 18, 597–612 (2022). https://doi.org/10.1038/s41582-022-00703-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-022-00703-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing