Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of the gut microbiota in multiple sclerosis

Abstract

During the past decade, research has revealed that the vast community of micro-organisms that inhabit the gut — known as the gut microbiota — is intricately linked to human health and disease, partly as a result of its influence on systemic immune responses. Accumulating evidence demonstrates that these effects on immune function are important in neuroinflammatory diseases, such as multiple sclerosis (MS), and that modulation of the microbiome could be therapeutically beneficial in these conditions. In this Review, we examine the influence that the gut microbiota have on immune function via modulation of serotonin production in the gut and through complex interactions with components of the immune system, such as T cells and B cells. We then present evidence from studies in mice and humans that these effects of the gut microbiota on the immune system are important in the development and course of MS. We also consider how strategies for manipulating the composition of the gut microbiota could be used to influence disease-related immune dysfunction and form the basis of a new class of therapeutics. The strategies discussed include the use of probiotics, supplementation with bacterial metabolites, transplantation of faecal matter or defined microbial communities, and dietary intervention. Carefully designed studies with large human cohorts will be required to gain a full understanding of the microbiome changes involved in MS and to develop therapeutic strategies that target these changes.

Key points

  • The colony of bacteria that inhabit the gut — known as the gut microbiota — varies in composition according to genetic factors and, more importantly, envorinmental influences, particularly diet.

  • The composition of the gut microbiota influences the production of serotonin in the gut, which in turn influences serotonin-mediated regulation of systemic immune function.

  • Gut microbiota are also involved in complex interactions with the gut and immune cells in the small intestine and the colon, thereby influencing immune responses in the periphery and the central nervous system.

  • Abundant evidence indicates that the gut microbiota has a role in multiple sclerosis (MS) through its influence on immune function.

  • Therapeutic strategies that target the microbiota — including dietary interventions, probiotics, short-chain fatty acids and faecal microbial transplantation — seem promising for the treatment of MS, but further work is needed to assess their effectiveness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The gut microbiota contributes to the modulation of neuroinflammation.
Fig. 2: Recirculation of IgA-producing-plasma cells in MS.

Similar content being viewed by others

References

  1. Cryan, J. F. et al. The microbiota–gut–brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ochoa-Reparaz, J. et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J. Immunol. 183, 6041–6050 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Mahr, B. & Wekerle, T. Murine models of transplantation tolerance through mixed chimerism: advances and roadblocks. Clin. Exp. Immunol. 189, 181–189 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Honda, K. & Littman, D. R. The microbiota in adaptive immune homeostasis and disease. Nature 535, 75–84 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Cekanaviciute, E. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1711235114 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee, Y. K. & Mazmanian, S. K. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330, 1768–1773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ochoa-Reparaz, J. et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 3, 487–495 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut — functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wan, M., Ding, L., Wang, D., Han, J. & Gao, P. Serotonin: a potent immune cell modulator in autoimmune diseases. Front. Immunol. 11, 186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mossner, R. & Lesch, K. P. Role of serotonin in the immune system and in neuroimmune interactions. Brain Behav. Immun. 12, 249–271 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Fiebich, B. L. et al. Expression of 5-HT3A receptors in cells of the immune system. Scand. J. Rheumatol. Suppl. 119, 9–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Jang, S. W. et al. N-acetylserotonin activates TrkB receptor in a circadian rhythm. Proc. Natl Acad. Sci. USA 107, 3876–3881 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farez, M. F. et al. Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell 162, 1338–1352 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gershon, M. D. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 20, 14–21 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stone, T. W. & Darlington, L. G. Endogenous kynurenines as targets for drug discovery and development. Nat. Rev. Drug Discov. 1, 609–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Cote, F. et al. Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc. Natl Acad. Sci. USA 100, 13525–13530 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clarke, G. et al. The microbiome–gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiat. 18, 666–673 (2013).

    Article  CAS  Google Scholar 

  21. Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106, 3698–3703 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reigstad, C. S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raboni, S., Bettati, S. & Mozzarelli, A. Tryptophan synthase: a mine for enzymologists. Cell Mol. Life Sci. 66, 2391–2403 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Israelyan, N. & Margolis, K. G. Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders. Pharmacol. Res. 132, 1–6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bartolomucci, A. et al. Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS ONE https://doi.org/10.1371/journal.pone.0003301 (2008).

    Article  Google Scholar 

  27. Yaghoubfar, R. et al. Modulation of serotonin signaling/metabolism by Akkermansia muciniphila and its extracellular vesicles through the gut–brain axis in mice. Sci. Rep. https://doi.org/10.1038/s41598-020-79171-8 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wen, J. et al. Efficacy of N-acetylserotonin and melatonin in the EAE model of multiple sclerosis. J. NeuroImmune Pharmacol. 11, 763–773 (2016).

    Article  PubMed  Google Scholar 

  29. Sacramento, P. M. et al. Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4+ T-cell subsets in multiple sclerosis patients. Eur. J. Immunol. 48, 1376–1388 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. de las Casas-Engel, M. et al. Serotonin skews human macrophage polarization through HTR2B and HTR7. J. Immunol. 190, 2301–2310 (2013).

    Article  CAS  Google Scholar 

  31. Zeinstra, E. M. et al. 5HT4 agonists inhibit interferon-γ-induced MHC class II and B7 costimulatory molecules expression on cultured astrocytes. J. Neuroimmunol. 179, 191–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Jang, S. W. et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl Acad. Sci. USA 107, 2687–2692 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aminian, A. et al. Tropisetron diminishes demyelination and disease severity in an animal model of multiple sclerosis. Neuroscience 248, 299–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Nakatani, Y. et al. Augmented brain 5-HT crosses the blood-brain barrier through the 5-HT transporter in rat. Eur. J. Neurosci. 27, 2466–2472 (2008).

    Article  PubMed  Google Scholar 

  35. Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J. & Dinan, T. G. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J. Psychiat. Res. 43, 164–174 (2008).

    Article  PubMed  Google Scholar 

  36. Rothhammer, V. & Quintana, F. J. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 19, 184–197 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Geuking, M. B., McCoy, K. D. & Macpherson, A. J. The continuum of intestinal CD4+ T cell adaptations in host–microbial mutualism. Gut Microbes 2, 353–357 (2011).

    Article  PubMed  Google Scholar 

  38. Zelante, T. et al. Impaired calcineurin signaling in myeloid cells results in downregulation of pentraxin-3 and increased susceptibility to aspergillosis. Mucosal Immunol. 10, 470–480 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Yang, Y. et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510, 152–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 108, 4615–4622 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Cosorich, I. et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci. Adv. 3, e1700492 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tan, T. G. et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc. Natl Acad. Sci. USA 113, E8141–E8150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Magarian Blander, J., Longman, R. S., Iliev, I. D., Sonnenberg, G. F. & Artis, D. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 18, 851–860 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jangi, S. et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7, 12015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Geuking, M. B. et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794–806 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8, 80–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Round, J. L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jeon, S. G. et al. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon. PLoS Pathog. 8, e1002714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cebula, A. et al. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature 497, 258–262 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sefik, E. et al. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, H. C. et al. Anti-proliferation effect on human breast cancer cells via inhibition of pRb phosphorylation by taiwanin E isolated from Eleutherococcus trifoliatus. Nat. Prod. Commun. 9, 1303–1306 (2014).

    PubMed  Google Scholar 

  57. Takenaka, M. C., Robson, S. & Quintana, F. J. Regulation of the T cell response by CD39. Trends Immunol. 37, 427–439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ochoa-Reparaz, J. et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J. Immunol. 185, 4101–4108 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, J. et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl Acad. Sci. USA 111, E2703–E2710 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, H. et al. Are there any different effects of Bifidobacterium, Lactobacillus and Streptococcus on intestinal sensation, barrier function and intestinal immunity in PI-IBS mouse model? PLoS ONE 9, e90153 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Fletcher, J. M. et al. CD39+Foxp3+ regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J. Immunol. 183, 7602–7610 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Carnero Contentti, E., Farez, M. F. & Correale, J. Mucosal-associated invariant T cell features and TCR repertoire characteristics during the course of multiple sclerosis. Front. Immunol. 10, 2690 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Napier, R. J., Adams, E. J., Gold, M. C. & Lewinsohn, D. M. The role of mucosal associated invariant T cells in antimicrobial immunity. Front. Immunol. 6, 344 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ben Youssef, G. et al. Ontogeny of human mucosal-associated invariant T cells and related T cell subsets. J. Exp. Med. 215, 459–479 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tastan, C. et al. Tuning of human MAIT cell activation by commensal bacteria species and MR1-dependent T-cell presentation. Mucosal Immunol. 11, 1591–1605 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dias, J., Leeansyah, E. & Sandberg, J. K. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc. Natl Acad. Sci. USA 114, E5434–E5443 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Held, K., Beltran, E., Moser, M., Hohlfeld, R. & Dornmair, K. T-cell receptor repertoire of human peripheral CD161hiTRAV1-2+MAIT cells revealed by next generation sequencing and single cell analysis. Hum. Immunol. 76, 607–614 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Mei, H. E. et al. Blood-borne human plasma cells in steady state are derived from mucosal immune responses. Blood 113, 2461–2469 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Mantis, N. J., Rol, N. & Corthesy, B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 4, 603–611 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zeng, B. et al. ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis. 10, 315 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rojas, O. L. et al. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. Cell 176, 610–624.e618 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Probstel, A. K. et al. Gut microbiota-specific IgA+ B cells traffic to the CNS in active multiple sclerosis. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abc7191 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fitzpatrick, Z. et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 587, 472–476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McPherson, A. C., Pandey, S. P., Bender, M. J. & Meisel, M. Systemic immunoregulatory consequences of gut commensal translocation. Trends Immunol. 42, 137–150 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Johansson, M. E. & Hansson, G. C. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 16, 639–649 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nouri, M., Bredberg, A., Westrom, B. & Lavasani, S. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PLoS ONE 9, e106335 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Coureuil, M., Lecuyer, H., Bourdoulous, S. & Nassif, X. A journey into the brain: insight into how bacterial pathogens cross blood–brain barriers. Nat. Rev. Microbiol. 15, 149–159 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Banerjee, A. et al. Bacterial pili exploit integrin machinery to promote immune activation and efficient blood–brain barrier penetration. Nat. Commun. 2, 462 (2011).

    Article  PubMed  CAS  Google Scholar 

  80. Boveri, M. et al. Highly purified lipoteichoic acid from gram-positive bacteria induces in vitro blood–brain barrier disruption through glia activation: role of pro-inflammatory cytokines and nitric oxide. Neuroscience 137, 1193–1209 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Braniste, T. et al. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles. Beilstein J. Nanotechnol. 7, 1330–1337 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schilderink, R. et al. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G1138–G1146 (2016).

    Article  PubMed  Google Scholar 

  83. Braniste, V. et al. The gut microbiota influences blood–brain barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Zheng, L. et al. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of Claudin-2. J. Immunol. 199, 2976–2984 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).

    Article  PubMed  CAS  Google Scholar 

  87. Nayak, D., Roth, T. L. & McGavern, D. B. Microglia development and function. Annu. Rev. Immunol. 32, 367–402 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Brown, D. G. et al. The microbiota protects from viral-induced neurologic damage through microglia-intrinsic TLR signaling. eLife https://doi.org/10.7554/eLife.47117 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Luck, B. et al. Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function. Sci. Rep. 10, 7737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Goverman, J. et al. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72, 551–560 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Yokote, H. et al. NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am. J. Pathol. 173, 1714–1723 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, Y. & Kasper, L. H. The role of microbiome in central nervous system disorders. Brain Behav. Immun. 38, 1–12 (2014).

    Article  PubMed  CAS  Google Scholar 

  93. Wekerle, H., Flugel, A., Fugger, L., Schett, G. & Serreze, D. Autoimmunity’s next top models. Nat. Med. 18, 66–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mirza, A. & Mao-Draayer, Y. The gut microbiome and microbial translocation in multiple sclerosis. Clin. Immunol. https://doi.org/10.1016/j.clim.2017.03.001 (2017).

    Article  PubMed  Google Scholar 

  97. Probstel, A. K. & Baranzini, S. E. The role of the gut microbiome in multiple sclerosis risk and progression: towards characterization of the “MS microbiome”. Neurotherapeutics 15, 126–134 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Berer, K. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1711233114 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Liu, S. et al. Oral administration of miR-30d from feces of MS patients suppresses MS-like symptoms in mice by expanding Akkermansia muciniphila. Cell Host Microbe 26, 779–794 e778 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bian, X. et al. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front. Microbiol. 10, 2259 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Huck, O. et al. Akkermansia muciniphila reduces Porphyromonas gingivalis-induced inflammation and periodontal bone destruction. J. Clin. Periodontol. 47, 202–212 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Zhu, L. et al. Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe−/− mice. Atherosclerosis 268, 117–126 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Wu, W. et al. Protective effect of Akkermansia muciniphila against immune-mediated liver injury in a mouse model. Front. Microbiol. 8, 1804 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zhou, Q. et al. Gut bacteria Akkermansia is associated with reduced risk of obesity: evidence from the American gut project. Nutr. Metab. 17, 90 (2020).

    Article  CAS  Google Scholar 

  105. Reynders, T. et al. Gut microbiome variation is associated to multiple sclerosis phenotypic subtypes. Ann. Clin. Transl. Neurol. 7, 406–419 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cox, L. M. et al. Gut microbiome in progressive multiple sclerosis. Ann. Neurol. 89, 1195–1211 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Takewaki, D. et al. Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis. Proc. Natl Acad. Sci. USA 117, 22402–22412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Leeming, E. R., Johnson, A. J., Spector, T. D. & Le Roy, C. I. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients https://doi.org/10.3390/nu11122862 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. O’Toole, P. W. Changes in the intestinal microbiota from adulthood through to old age. Clin. Microbiol. Infect. 18, 44–46 (2012).

    Article  PubMed  Google Scholar 

  112. Fransen, F. et al. The impact of gut microbiota on gender-specific differences in immunity. Front. Immunol. https://doi.org/10.3389/fimmu.2017.00754 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gupta, V. K., Paul, S. & Dutta, C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.01162 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dasgupta, S. et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS ONE https://doi.org/10.1371/journal.pone.0171352 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. The iMSMS Consortium. Household paired design reduces variance and increases power in multi-city gut microbiome study in multiple sclerosis. Mult. Scler. https://doi.org/10.1177/1352458520924594 (2020).

    Article  Google Scholar 

  116. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Storoni, M. & Plant, G. T. The therapeutic potential of the ketogenic diet in treating progressive multiple sclerosis. Mult. Scler. Int. 2015, 681289 (2015).

    PubMed  PubMed Central  Google Scholar 

  119. Barone, M. et al. Gut microbiome response to a modern Paleolithic diet in a Western lifestyle context. PLoS ONE 14, e0220619 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wahls, T. L. et al. Impact of the Swank and Wahls elimination dietary interventions on fatigue and quality of life in relapsing-remitting multiple sclerosis: the WAVES randomized parallel-arm clinical trial. Mult. Scler. J. Exp. Transl. Clin. 7, 20552173211035399 (2021).

    PubMed  PubMed Central  Google Scholar 

  121. Mousavi-Shirazi-Fard, Z., Mazloom, Z., Izadi, S. & Fararouei, M. The effects of modified anti-inflammatory diet on fatigue, quality of life, and inflammatory biomarkers in relapsing–remitting multiple sclerosis patients: a randomized clinical trial. Int. J. Neurosci. 131, 657–665 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Frank, J., Gupta, A., Osadchiy, V. & Mayer, E. A. Brain–gut–microbiome interactions and intermittent fasting in obesity. Nutrients https://doi.org/10.3390/nu13020584 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hill, C. et al. Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).

    Article  PubMed  Google Scholar 

  124. Klingensmith, N. J. & Coopersmith, C. M. The gut as the motor of multiple organ dysfunction in critical illness. Crit. Care Clin. 32, 203–212 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Khailova, L., Petrie, B., Baird, C. H., Dominguez Rieg, J. A. & Wischmeyer, P. E. Lactobacillus rhamnosus GG and Bifidobacterium longum attenuate lung injury and inflammatory response in experimental sepsis. PLoS ONE 9, e97861 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Krezalek, M. A., DeFazio, J., Zaborina, O., Zaborin, A. & Alverdy, J. C. The shift of an intestinal “microbiome” to a “pathobiome” governs the course and outcome of sepsis following surgical injury. Shock 45, 475–482 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lavasani, S. et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS ONE 5, e9009 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Ezendam, J. & van Loveren, H. Lactobacillus casei Shirota administered during lactation increases the duration of autoimmunity in rats and enhances lung inflammation in mice. Br. J. Nutr. 99, 83–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Takata, K. et al. The lactic acid bacterium Pediococcus acidilactici suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells. PLoS ONE 6, e27644 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rezende, R. M. et al. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells. J. Autoimmun. 40, 45–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Kouchaki, E. et al. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Clin. Nutr. 36, 1245–1249 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Tankou, S. K. et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann. Neurol. 83, 1147–1161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Suez, J., Zmora, N., Segal, E. & Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 25, 716–729 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Young, L. J., McFarlane, R., Slender, A. L. & Deane, E. M. Histological and immunohistological investigation of the lymphoid tissue in normal and mycobacteria-affected specimens of the Rufous Hare-wallaby (Lagorchestes hirsutus). J. Anat. 202, 315–325 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Li, H. Y. et al. Modulation of gut microbiota, short-chain fatty acid production, and inflammatory cytokine expression in the cecum of porcine deltacoronavirus-infected chicks. Front. Microbiol. 11, 897 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Haase, S., Haghikia, A., Gold, R. & Linker, R. A. Dietary fatty acids and susceptibility to multiple sclerosis. Mult. Scler. 24, 12–16 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Dalile, B., Van Oudenhove, L., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478 (2019).

    Article  PubMed  Google Scholar 

  138. Wang, G. et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc. Natl Acad. Sci. USA 112, 2853–2858 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Haghikia, A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Furusawa, Y. et al. Commensal-microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Segain, J. P. et al. Butyrate inhibits inflammatory responses through NFκB inhibition: implications for Crohn’s disease. Gut 47, 397–403 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Brown, A. J. et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40, 128–139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Park, J., Goergen, C. J., HogenEsch, H. & Kim, C. H. Chronically elevated levels of short-chain fatty acids induce T cell-mediated ureteritis and hydronephrosis. J. Immunol. 196, 2388–2400 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Hong, Y. H. et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, 5092–5099 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Chen, S. et al. Effect of inhibiting the signal of mammalian target of rapamycin on memory T cells. Transpl. Proc. 46, 1642–1648 (2014).

    Article  CAS  Google Scholar 

  148. Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jin, U. H. et al. Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Mol. Pharmacol. 85, 777–788 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Singh, N. P. et al. Dietary indoles suppress delayed-type hypersensitivity by inducing a switch from proinflammatory Th17 cells to anti-inflammatory regulatory T cells through regulation of microRNA. J. Immunol. 196, 1108–1122 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Denison, M. S., Soshilov, A. A., He, G., DeGroot, D. E. & Zhao, B. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol. Sci. 124, 1–22 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Stevens, E. A., Mezrich, J. D. & Bradfield, C. A. The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology 127, 299–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cammarota, G. et al. Randomised clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment. Pharmacol. Ther. 41, 835–843 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Kociolek, L. K. & Gerding, D. N. Breakthroughs in the treatment and prevention of Clostridium difficile infection. Nat. Rev. Gastroenterol. Hepatol. 13, 150–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Singh, R., Nieuwdorp, M., ten Berge, I. J., Bemelman, F. J. & Geerlings, S. E. The potential beneficial role of faecal microbiota transplantation in diseases other than Clostridium difficile infection. Clin. Microbiol. Infect. 20, 1119–1125 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Vendrik, K. E. W. et al. Fecal microbiota transplantation in neurological disorders. Front. Cell Infect. Microbiol. 10, 98 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Stein, R. R. et al. Computer-guided design of optimal microbial consortia for immune system modulation. eLife https://doi.org/10.7554/eLife.30916 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Belbasis, L. & Bellou, V. in Genetic Epidemiology Ch. 1, 1–6 (Springer, 2018).

  161. Sedgwick, P. Bias in observational study designs: cross sectional studies. BMJ 350, h1286–h1286 (2015).

    Article  PubMed  Google Scholar 

  162. Sibbald, B. & Roland, M. Understanding controlled trials: why are randomised controlled trials important? BMJ 316, 201–201 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Beaumont, M. et al. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am. J. Clin. Nutr. 106, 1005–1019 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Vandeputte, D. et al. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 66, 1968–1974 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Moher, D. et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. J. Clin. Epidemiol. 63, e1–e37 (2010).

    Article  PubMed  Google Scholar 

  166. Cryan, J. F., O’Riordan, K. J., Sandhu, K., Peterson, V. & Dinan, T. G. The gut microbiome in neurological disorders. Lancet Neurol. 19, 179–194 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Cantarel, B. L. et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J. Investig. Med. 63, 729–734 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Miyake, S. et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV clusters. PLoS ONE 10, e0137429 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Chen, J. et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. https://doi.org/10.1038/srep28484 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Tremlett, H. et al. Gut microbiota in early pediatric multiple sclerosis: a case-control study. Eur. J. Neurol. 23, 1308–1321 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Ling, Z. et al. Alterations of the fecal microbiota in Chinese patients with multiple sclerosis. Front. Immunol. 11, 590783 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Sergio E. Baranzini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks A. Mangalam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correale, J., Hohlfeld, R. & Baranzini, S.E. The role of the gut microbiota in multiple sclerosis. Nat Rev Neurol 18, 544–558 (2022). https://doi.org/10.1038/s41582-022-00697-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-022-00697-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing