Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The microbiome–gut–brain axis in Parkinson disease — from basic research to the clinic

Abstract

Evidence for a close bidirectional link between the brain and the gut has led to a paradigm shift in neurology, especially in the case of Parkinson disease (PD), in which gastrointestinal dysfunction is a prominent feature. Over the past decade, numerous high-quality preclinical and clinical publications have shed light on the highly complex relationship between the gut and the brain in PD, providing potential for the development of new biomarkers and therapeutics. With the advent of high-throughput sequencing, the role of the gut microbiome has been specifically highlighted. Here, we provide a critical review of the literature on the microbiome–gut–brain axis in PD and present perspectives that will be useful for clinical practice. We begin with an overview of the gut–brain axis in PD, including the potential roles and interrelationships of the vagus nerve, α-synuclein in the enteric nervous system, altered intestinal permeability and inflammation, and gut microbes and their metabolic activities. The sections that follow synthesize the proposed roles of gut-related factors in the development and progression of, in responses to PD treatment, and as therapeutic targets. Finally, we summarize current knowledge gaps and challenges and delineate future directions for the field.

Key points

  • Evidence is accumulating that the gut–brain axis has an important role in Parkinson disease (PD) risk and progression.

  • Key events include: ‘unhealthy’ alterations in gut microbiome structure and/or function; gut inflammation and hyperpermeability; and seeding and propagation of α-synuclein in the enteric nervous system. Ageing has an influence on all of these events.

  • Investigations into gut bacterial composition and activity have been greatly facilitated by ‘omics’ technologies; future progress will require greater collaboration to obtain large, longitudinal datasets and to develop harmonized research protocols.

  • Various gut disorders (including infections, dysbiosis, inflammation and dysmotility), gut interventions and dietary factors have been linked to PD development and progression, and have been shown to influence the response to PD medication.

  • Higher-resolution mechanistic studies are needed to understand the observed associations at the molecular, cellular and systems levels, and will aid the translation of microbiome science into new diagnostic, prognostic and therapeutic approaches.

  • Gut-related factors provide multiple potential targets for biomarker development and interventional strategies that should be explored in well-designed studies; microbiome-directed therapeutics to treat PD manifestations are already emerging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gastrointestinal function and levodopa pharmacokinetics in PD.
Fig. 2: Therapeutic modulation of the gut microbiome in Parkinson disease.
Fig. 3: Current gaps and future directions in PD microbiome research.

Similar content being viewed by others

References

  1. Lim, S. Y. et al. Parkinson’s disease in the Western Pacific region. Lancet Neurol. 18, 865–879 (2019).

    Article  PubMed  Google Scholar 

  2. Bloem, B. R., Okun, M. S. & Klein, C. Parkinson’s disease. Lancet 397, 2284–2303 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Pfeiffer, R. F. Gastrointestinal dysfunction in Parkinson’s disease. Curr. Treat. Options Neurol. 20, 54 (2018).

    Article  PubMed  Google Scholar 

  4. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Cryan, J. F., O’Riordan, K. J., Sandhu, K., Peterson, V. & Dinan, T. G. The gut microbiome in neurological disorders. Lancet Neurol. 19, 179–194 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Fang, P., Kazmi, S. A., Jameson, K. G. & Hsiao, E. Y. The microbiome as a modifier of neurodegenerative disease risk. Cell Host Microbe 28, 201–222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Willyard, C. How gut microbes could drive brain disorders. Nature 590, 22–25 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Tan, A. H. et al. Gut microbial ecosystem in Parkinson disease: new clinicobiological insights from multi-omics. Ann. Neurol. 89, 546–559 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Wakabayashi, K., Takahashi, H., Takeda, S., Ohama, E. & Ikuta, F. Parkinson’s disease: the presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol. 76, 217–221 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  11. Breen, D. P., Halliday, G. M. & Lang, A. E. Gut-brain axis and the spread of α-synuclein pathology: vagal highway or dead end? Mov. Disord. 34, 307–316 (2019).

    Article  PubMed  Google Scholar 

  12. Klingelhoefer, L. & Reichmann, H. Pathogenesis of Parkinson disease — the gut-brain axis and environmental factors. Nat. Rev. Neurol. 11, 625–636 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Horsager, J. et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain 143, 3077–3088 (2020).

    Article  PubMed  Google Scholar 

  14. Adams-Carr, K. L. et al. Constipation preceding Parkinson’s disease: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 87, 710–716 (2016).

    Article  PubMed  Google Scholar 

  15. Scott, G. D., Lim, M. M., Drake, M. G., Woltjer, R. & Quinn, J. F. Onset of skin, gut, and genitourinary prodromal Parkinson’s disease: a study of 1.5 million veterans. Mov. Disord. 36, 2094–2103 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu, B. et al. Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study. Neurology 88, 1996–2002 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Svensson, E. et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann. Neurol. 78, 522–529 (2015).

    Article  PubMed  Google Scholar 

  18. Engelender, S. & Isacson, O. The threshold theory for Parkinson’s disease. Trends Neurosci. 40, 4–14 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Tysnes, O. B. et al. Does vagotomy reduce the risk of Parkinson’s disease? Ann. Neurol. 78, 1011–1012 (2015).

    Article  PubMed  Google Scholar 

  20. Knudsen, K. et al. In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case-control study. Lancet Neurol. 17, 618–628 (2018).

    Article  PubMed  Google Scholar 

  21. Hilton, D. et al. Accumulation of α-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathol. 127, 235–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Shannon, K. M., Keshavarzian, A., Dodiya, H. B., Jakate, S. & Kordower, J. H. Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov. Disord. 27, 716–719 (2012).

    Article  PubMed  Google Scholar 

  23. Stokholm, M. G., Danielsen, E. H., Hamilton-Dutoit, S. J. & Borghammer, P. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann. Neurol. 79, 940–949 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Beach, T. G. et al. Multi-organ distribution of phosphorylated α-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 119, 689–702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tanei, Z. I. et al. Lewy pathology of the esophagus correlates with the progression of Lewy body disease: a Japanese cohort study of autopsy cases. Acta Neuropathol. 141, 25–37 (2021).

    Article  PubMed  Google Scholar 

  26. Beach, T. G. et al. Vagus nerve and stomach synucleinopathy in Parkinson’s disease, incidental Lewy body disease, and normal elderly subjects: evidence against the “body-first” hypothesis. J. Parkinsons Dis. 11, 1833–1843 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Van Den Berge, N. et al. Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats. Acta Neuropathol. 138, 535–550 (2019).

    Article  CAS  Google Scholar 

  28. Killinger, B. & Labrie, V. The appendix in Parkinson’s disease: from vestigial remnant to vital organ? J. Parkinsons Dis. 9, S345–S358 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsukita, K., Sakamaki-Tsukita, H., Tanaka, K., Suenaga, T. & Takahashi, R. Value of in vivo α-synuclein deposits in Parkinson’s disease: a systematic review and meta-analysis. Mov. Disord. 34, 1452–1463 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Annerino, D. M. et al. Parkinson’s disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol. 124, 665–680 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Holmqvist, S. et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 128, 805–820 (2014).

    Article  PubMed  Google Scholar 

  32. Kim, S. et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103, 627–641 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Challis, C. et al. Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat. Neurosci. 23, 327–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Van Den Berge, N. et al. Ageing promotes pathological alpha-synuclein propagation and autonomic dysfunction in wild-type rats. Brain 144, 1853–1868 (2021).

    Article  Google Scholar 

  35. Rota, L. et al. Constipation, deficit in colon contractions and alpha-synuclein inclusions within the colon precede motor abnormalities and neurodegeneration in the central nervous system in a mouse model of alpha-synucleinopathy. Transl. Neurodegener. 8, 5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gries, M. et al. Parkinson mice show functional and molecular changes in the gut long before motoric disease onset. Mol. Neurodegener. 16, 34 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, S. G. et al. Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged fischer 344 rats and Caenorhabditis elegans. Sci. Rep. 6, 34477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sampson, T. R. et al. A gut bacterial amyloid promotes α-synuclein aggregation and motor impairment in mice. Elife 9, e53111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leclair-Visonneau, L., Neunlist, M., Derkinderen, P. & Lebouvier, T. The gut in Parkinson’s disease: bottom-up, top-down, or neither? Neurogastroenterol. Motil. 32, e13777 (2020).

    Article  PubMed  Google Scholar 

  40. Ulusoy, A. et al. Brain-to-stomach transfer of α-synuclein via vagal preganglionic projections. Acta Neuropathol. 133, 381–393 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Matteoli, G. & Boeckxstaens, G. E. The vagal innervation of the gut and immune homeostasis. Gut 62, 1214–1222 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Arotcarena, M. L. et al. Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain 143, 1462–1475 (2020).

    Article  PubMed  Google Scholar 

  43. Kuan, W. L. et al. Systemic α-synuclein injection triggers selective neuronal pathology as seen in patients with Parkinson’s disease. Mol. Psychiatry 26, 556–567 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Pellegrini, C. et al. Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration. J. Neuroinflamm. 13, 146 (2016).

    Article  CAS  Google Scholar 

  45. O’Donovan, S. M. et al. Nigral overexpression of α-synuclein in a rat Parkinson’s disease model indicates alterations in the enteric nervous system and the gut microbiome. Neurogastroenterol. Motil. 32, e13726 (2020).

    Article  PubMed  CAS  Google Scholar 

  46. Lionnet, A. et al. Does Parkinson’s disease start in the gut? Acta Neuropathol. 135, 1–12 (2018).

    Article  PubMed  Google Scholar 

  47. Forsyth, C. B. et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 6, e28032 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kelly, L. P. et al. Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson’s disease. Mov. Disord. 29, 999–1009 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Clairembault, T. et al. Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathol. Commun. 3, 12 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Houser, M. C. et al. Stool immune profiles evince gastrointestinal inflammation in Parkinson’s disease. Mov. Disord. 33, 793–804 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schwiertz, A. et al. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson’s disease. Parkinsonism Relat. Disord. 50, 104–107 (2018).

    Article  PubMed  Google Scholar 

  52. Perez-Pardo, P. et al. Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut 68, 829–843 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Burgueno, J. F. & Abreu, M. T. Epithelial Toll-like receptors and their role in gut homeostasis and disease. Nat. Rev. Gastroenterol. Hepatol. 17, 263–278 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Kouli, A., Horne, C. B. & Williams-Gray, C. H. Toll-like receptors and their therapeutic potential in Parkinson’s disease and α-synucleinopathies. Brain Behav. Immun. 81, 41–51 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Devos, D. et al. Colonic inflammation in Parkinson’s disease. Neurobiol. Dis. 50, 42–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Clairembault, T. et al. Enteric GFAP expression and phosphorylation in Parkinson’s disease. J. Neurochem. 130, 805–815 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Benvenuti, L. et al. Enteric glia at the crossroads between intestinal immune system and epithelial barrier: implications for Parkinson disease. Int. J. Mol. Sci. 21, 9199 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  58. Hor, J. W. et al. Fecal calprotectin in Parkinson’s disease and multiple system atrophy. J. Mov. Disord. https://doi.org/10.14802/jmd.21085 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tan, E. K. et al. Parkinson disease and the immune system — associations, mechanisms and therapeutics. Nat. Rev. Neurol. 16, 303–318 (2020).

    Article  PubMed  Google Scholar 

  60. Houser, M. C. & Tansey, M. G. The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis. 3, 3 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Stolzenberg, E. B. et al. Role for neuronal alpha-synuclein in gastrointestinal immunity. J. Innate Immun. 9, 456–463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Allen Reish, H. E. & Standaert, D. G. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease. J. Parkinsons Dis. 5, 1–19 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, W. et al. Caspase-1 causes truncation and aggregation of the Parkinson’s disease-associated protein α-synuclein. Proc. Natl Acad. Sci. USA 113, 9587–9592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grathwohl, S. et al. Specific immune modulation of experimental colitis drives enteric alpha-synuclein accumulation and triggers age-related Parkinson-like brain pathology. Free Neuropathol. 2, 13 (2021).

    Google Scholar 

  65. Resnikoff, H. et al. Colonic inflammation affects myenteric alpha-synuclein in nonhuman primates. J. Inflamm. Res. 12, 113–126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shannon, K. M. et al. Alpha-synuclein in colonic submucosa in early untreated Parkinson’s disease. Mov. Disord. 27, 709–715 (2012).

    Article  PubMed  Google Scholar 

  67. Prigent, A. et al. Enteric alpha-synuclein expression is increased in Crohn’s disease. Acta Neuropathol. 137, 359–361 (2019).

    Article  PubMed  Google Scholar 

  68. Chandra, R., Hiniker, A., Kuo, Y. M., Nussbaum, R. L. & Liddle, R. A. α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight 2, e92295 (2017).

    Article  PubMed Central  Google Scholar 

  69. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Matheoud, D. et al. Intestinal infection triggers Parkinson’s disease-like symptoms in Pink1(-/-) mice. Nature 571, 565–569 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Unger, M. M. et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat. Disord. 32, 66–72 (2016).

    Article  PubMed  Google Scholar 

  72. Rolli-Derkinderen, M. et al. Is Parkinson’s disease a chronic low-grade inflammatory bowel disease? J. Neurol. 267, 2207–2213 (2020).

    Article  PubMed  Google Scholar 

  73. Vancamelbeke, M. & Vermeire, S. The intestinal barrier: a fundamental role in health and disease. Expert. Rev. Gastroenterol. Hepatol. 11, 821–834 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Heintz-Buschart, A. & Wilmes, P. Human gut microbiome: function matters. Trends Microbiol. 26, 563–574 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: from association to modulation. Cell 172, 1198–1215 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Falony, G. J. et al. Population level analysis of gut microbiome variation. Science 352, 560–564 (2020).

    Article  CAS  Google Scholar 

  81. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shanahan, F., Ghosh, T. S. & O’Toole, P. W. The healthy microbiome — what is the definition of a healthy gut microbiome? Gastroenterology 160, 483–494 (2021).

    Article  PubMed  Google Scholar 

  83. DeJong, E. N., Surette, M. G. & Bowdish, D. M. E. The gut microbiota and unhealthy aging: disentangling cause from consequence. Cell Host Microbe 28, 180–189 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Kundu, P., Blacher, E., Elinav, E. & Pettersson, S. Our gut microbiome: the evolving inner self. Cell 171, 1481–1493 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Thevaranjan, N. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21, 455–466 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jeffery, I. B., Lynch, D. B. & O’Toole, P. W. Composition and temporal stability of the gut microbiota in older persons. ISME J. 10, 170–182 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Kong, F. et al. Gut microbiota signatures of longevity. Curr. Biol. 26, R832–R833 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Tuikhar, N. et al. Comparative analysis of the gut microbiota in centenarians and young adults shows a common signature across genotypically non-related populations. Mech. Ageing Dev. 179, 23–35 (2019).

    Article  PubMed  Google Scholar 

  91. Wu, L. et al. A cross-sectional study of compositional and functional profiles of gut microbiota in Sardinian centenarians. mSystems 4, e00325-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rampelli, S. et al. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems 5, e00124-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cirstea, M. S. et al. The gut mycobiome in Parkinson’s disease. J. Parkinsons Dis. 11, 153–158 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Bedarf, J. R. et al. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naive Parkinson’s disease patients. Genome Med. 9, 39 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hill-Burns, E. M. et al. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov. Disord. 32, 739–749 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cirstea, M. S. et al. Microbiota composition and metabolism are associated with gut function in Parkinson’s disease. Mov. Disord. 35, 1208–1217 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Nishiwaki, H. et al. Meta-analysis of gut dysbiosis in Parkinson’s disease. Mov. Disord. 35, 1626–1635 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Barichella, M. et al. Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov. Disord. 34, 396–405 (2019).

    Article  PubMed  Google Scholar 

  99. Romano, S. et al. Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinsons Dis. 7, 27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Toh, T. S. et al. Gut microbiome in Parkinson’s disease: new insights from meta-analysis. Parkinsonism Relat. Disord. 94, 1–9 (2022).

    Article  PubMed  Google Scholar 

  101. Baldini, F. et al. Parkinson’s disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions. BMC Biol. 18, 62 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wallen, Z. D. et al. Characterizing dysbiosis of gut microbiome in PD: evidence for overabundance of opportunistic pathogens. NPJ Parkinsons Dis. 6, 11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Qian, Y. et al. Gut metagenomics-derived genes as potential biomarkers of Parkinson’s disease. Brain 143, 2474–2489 (2020).

    Article  PubMed  Google Scholar 

  104. Tan, A. H., Hor, J. W., Chong, C. W. & Lim, S. Y. Probiotics for Parkinson’s disease: current evidence and future directions. JGH Open. 5, 414–419 (2021).

    Article  PubMed  Google Scholar 

  105. Cani, P. D. Human gut microbiome: hopes, threats and promises. Gut 67, 1716–1725 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Tan, A. H. et al. Altered body composition, sarcopenia, frailty, and their clinico-biological correlates, in Parkinson’s disease. Parkinsonism Relat. Disord. 56, 58–64 (2018).

    Article  PubMed  Google Scholar 

  107. Yong, V. W. et al. Progressive and accelerated weight and body fat loss in Parkinson’s disease: a three-year prospective longitudinal study. Parkinsonism Relat. Disord. 77, 28–35 (2020).

    Article  PubMed  Google Scholar 

  108. Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A. & Alm, E. J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8, 1784 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Vascellari, S. et al. Gut microbiota and metabolome alterations associated with Parkinson’s disease. mSystems 5, e00561-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Aho, V. T. E. et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol. Neurodegener. 16, 6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dalile, B., Van Oudenhove, L., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478 (2019).

    Article  PubMed  Google Scholar 

  113. Sharma, S., Taliyan, R. & Singh, S. Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: modulation of histone deacetylase activity. Behav. Brain Res. 291, 306–314 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Rane, P. et al. The histone deacetylase inhibitor, sodium butyrate, alleviates cognitive deficits in pre-motor stage PD. Neuropharmacology 62, 2409–2412 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Srivastav, S. et al. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J. Nutr. Biochem. 69, 73–86 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Tan, A. H. et al. Altered gut microbiome and metabolome in patients with multiple system atrophy. Mov. Disord. 33, 174 (2018).

    Article  PubMed  Google Scholar 

  117. Rosario, D. et al. Systematic analysis of gut microbiome reveals the role of bacterial folate and homocysteine metabolism in Parkinson’s disease. Cell Rep. 34, 108807 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Pu, Y. et al. Antibiotic-induced microbiome depletion protects against MPTP-induced dopaminergic neurotoxicity in the brain. Aging 11, 6915–6929 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xie, W. et al. Twice subacute MPTP administrations induced time-dependent dopaminergic neurodegeneration and inflammation in midbrain and ileum, as well as gut microbiota disorders in PD mice. Neurotoxicology 76, 200–212 (2020).

    Article  PubMed  Google Scholar 

  120. Zhu, Y. et al. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson’s disease in mouse: potential association between neurotransmitter disturbance and gut microbiota dysbiosis. ACS Chem. Neurosci. 11, 3366–3376 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Lai, F. et al. Intestinal pathology and gut microbiota alterations in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Neurochem. Res. 43, 1986–1999 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Bhattarai, Y. et al. Role of gut microbiota in regulating gastrointestinal dysfunction and motor symptoms in a mouse model of Parkinson’s disease. Gut Microbes 13, 1866974 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Perez-Pardo, P. et al. Gut bacterial composition in a mouse model of Parkinson’s disease. Benef. Microbes 9, 799–814 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Yang, X., Qian, Y., Xu, S., Song, Y. & Xiao, Q. Longitudinal analysis of fecal microbiome and pathologic processes in a rotenone induced mice model of Parkinson’s disease. Front. Aging Neurosci. 9, 441 (2017).

    Article  PubMed  CAS  Google Scholar 

  125. Dodiya, H. B. et al. Chronic stress-induced gut dysfunction exacerbates Parkinson’s disease phenotype and pathology in a rotenone-induced mouse model of Parkinson’s disease. Neurobiol. Dis. 135, 104352 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Johnson, M. E., Stringer, A. & Bobrovskaya, L. Rotenone induces gastrointestinal pathology and microbiota alterations in a rat model of Parkinson’s disease. Neurotoxicology 65, 174–185 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Choi, J. G., Huh, E., Kim, N., Kim, D. H. & Oh, M. S. High-throughput 16S rRNA gene sequencing reveals that 6-hydroxydopamine affects gut microbial environment. PLoS ONE 14, e0217194 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Koutzoumis, D. N. et al. Alterations of the gut microbiota with antibiotics protects dopamine neuron loss and improve motor deficits in a pharmacological rodent model of Parkinson’s disease. Exp. Neurol. 325, 113159 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Nixon, A. M. et al. HFE genotype restricts the response to paraquat in a mouse model of neurotoxicity. J. Neurochem. 145, 299–311 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Singh, Y. et al. Enriched environmental conditions modify the gut microbiome composition and fecal markers of inflammation in Parkinson’s disease. Front. Neurosci. 13, 1032 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ghaisas, S. et al. MitoPark transgenic mouse model recapitulates the gastrointestinal dysfunction and gut-microbiome changes of Parkinson’s disease. Neurotoxicology 75, 186–199 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sun, M. F. et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav. Immun. 70, 48–60 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mulak, A. & Bonaz, B. Brain-gut-microbiota axis in Parkinson’s disease. World J. Gastroenterol. 21, 10609–10620 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Goya, M. E. et al. Probiotic Bacillus subtilis protects against α-synuclein aggregation in C. elegans. Cell Rep. 30, 367–380 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Laukens, D., Brinkman, B. M., Raes, J., De Vos, M. & Vandenabeele, P. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol. Rev. 40, 117–132 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Abbott, R. D. et al. Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology 57, 456–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Song, E. M. et al. Long-term risks of Parkinson’s disease, surgery, and colorectal cancer in patients with slow-transit constipation. Clin. Gastroenterol. Hepatol. 19, 2577–2586 (2021).

    Article  PubMed  Google Scholar 

  139. Camacho, M. et al. Early constipation predicts faster dementia onset in Parkinson’s disease. NPJ Parkinsons Dis. 7, 45 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jones, J. D., Rahmani, E., Garcia, E. & Jacobs, J. P. Gastrointestinal symptoms are predictive of trajectories of cognitive functioning in de novo Parkinson’s disease. Parkinsonism Relat. Disord. 72, 7–12 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Chen, Y. Y. et al. Clinical characteristics and peripheral T cell subsets in Parkinson’s disease patients with constipation. Int. J. Clin. Exp. Pathol. 8, 2495–2504 (2015).

    PubMed  PubMed Central  Google Scholar 

  142. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen, M. L. & Sundrud, M. S. Cytokine networks and T-cell subsets in inflammatory bowel diseases. Inflamm. Bowel Dis. 22, 1157–1167 (2016).

    Article  PubMed  Google Scholar 

  144. Peter, I. et al. Anti-tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease. JAMA Neurol. 75, 939–946 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Zhu, F. et al. The risk of Parkinson’s disease in inflammatory bowel disease: a systematic review and meta-analysis. Dig. Liver Dis. 51, 38–42 (2019).

    Article  PubMed  Google Scholar 

  146. Lee, H. S., Lobbestael, E., Vermeire, S., Sabino, J. & Cleynen, I. Inflammatory bowel disease and Parkinson’s disease: common pathophysiological links. Gut 70, 408–417 (2021).

    CAS  PubMed  Google Scholar 

  147. Kang, X. et al. Tumor necrosis factor inhibition and Parkinson disease: a Mendelian randomization study. Neurology 96, e1672–e1679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kang, X. et al. Association between microscopic colitis and Parkinson’s disease in a Swedish population. Mov. Disord. 36, 1919–1926 (2021).

    Article  PubMed  Google Scholar 

  149. Herrick, M. K. & Tansey, M. G. Is LRRK2 the missing link between inflammatory bowel disease and Parkinson’s disease? NPJ Parkinsons Dis. 7, 26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hui, K. Y. et al. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn’s disease and Parkinson’s disease. Sci. Transl. Med. 10, eaai7795 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Witoelar, A. et al. Genome-wide pleiotropy between Parkinson disease and autoimmune diseases. JAMA Neurol. 74, 780–792 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Lin, C. H. et al. Mild chronic colitis triggers parkinsonism in LRRK2 mutant mice through activating TNF-α pathway. Mov. Disord. 37, 745–757 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Black, C. J. & Ford, A. C. Global burden of irritable bowel syndrome: trends, predictions and risk factors. Nat. Rev. Gastroenterol. Hepatol. 17, 473–486 (2020).

    Article  PubMed  Google Scholar 

  154. Mertsalmi, T. H., But, A., Pekkonen, E. & Scheperjans, F. Irritable bowel syndrome and risk of Parkinson’s disease in Finland: a nationwide registry-based cohort study. J. Parkinsons Dis. 11, 641–651 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Lai, S. W., Liao, K. F., Lin, C. L. & Sung, F. C. Irritable bowel syndrome correlates with increased risk of Parkinson’s disease in Taiwan. Eur. J. Epidemiol. 29, 57–62 (2014).

    Article  PubMed  Google Scholar 

  156. Weimers, P. et al. Association between inflammatory bowel disease and Parkinson’s disease: seek and you shall find? Gut 68, 175–176 (2019).

    Article  PubMed  Google Scholar 

  157. Yoon, S. Y. et al. Irritable bowel syndrome and subsequent risk of Parkinson’s disease: a nationwide population-based matched-cohort study. J. Neurol. 269, 1404–1412 (2022).

    Article  PubMed  Google Scholar 

  158. Liu, B. et al. Irritable bowel syndrome and Parkinson’s disease risk: register-based studies. NPJ Parkinsons Dis. 7, 5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Svensson, E. et al. Does vagotomy reduce the risk of Parkinson’s disease: the authors reply. Ann. Neurol. 78, 1012–1013 (2015).

    Article  PubMed  Google Scholar 

  160. Killinger, B. A. et al. The vermiform appendix impacts the risk of developing Parkinson’s disease. Sci. Transl. Med. 10, eaar5280 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Chen, Y. et al. Increased accumulation of α-synuclein in inflamed appendices of Parkinson’s disease patients. Mov. Disord. 36, 1911–1918 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Liu, B., Fang, F., Ye, W. & Wirdefeldt, K. Appendectomy, tonsillectomy and Parkinson’s disease risk: a Swedish register-based study. Front. Neurol. 11, 510 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Marras, C., Lang, A. E., Austin, P. C., Lau, C. & Urbach, D. R. Appendectomy in mid and later life and risk of Parkinson’s disease: a population-based study. Mov. Disord. 31, 1243–1247 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Svensson, E. et al. Appendectomy and risk of Parkinson’s disease: a nationwide cohort study with more than 10 years of follow-up. Mov. Disord. 31, 1918–1922 (2016).

    Article  PubMed  Google Scholar 

  165. Palacios, N., Hughes, K. C., Cereda, E., Schwarzschild, M. A. & Ascherio, A. Appendectomy and risk of Parkinson’s disease in two large prospective cohorts of men and women. Mov. Disord. 33, 1492–1496 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Li, P. et al. Gut microbiota dysbiosis is associated with elevated bile acids in Parkinson’s disease. Metabolites 11, 29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yao, X. & Smolka, A. J. Gastric parietal cell physiology and Helicobacter pylori-induced disease. Gastroenterology 156, 2158–2173 (2019).

    Article  PubMed  Google Scholar 

  168. Pimentel, M., Saad, R. J., Long, M. D. & Rao, S. S. C. ACG Clinical Guideline: small intestinal bacterial overgrowth. Am. J. Gastroenterol. 115, 165–178 (2020).

    Article  PubMed  Google Scholar 

  169. Nielsen, H. H., Qiu, J., Friis, S., Wermuth, L. & Ritz, B. Treatment for Helicobacter pylori infection and risk of Parkinson’s disease in Denmark. Eur. J. Neurol. 19, 864–869 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Huang, H. K. et al. Helicobacter pylori infection is associated with an increased risk of Parkinson’s disease: a population-based retrospective cohort study. Parkinsonism Relat. Disord. 47, 26–31 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Tan, A. H. et al. Helicobacter pylori infection is associated with worse severity of Parkinson’s disease. Parkinsonism Relat. Disord. 21, 221–225 (2015).

    Article  PubMed  Google Scholar 

  172. Rahne, K. E., Tagesson, C. & Nyholm, D. Motor fluctuations and Helicobacter pylori in Parkinson’s disease. J. Neurol. 260, 2974–2980 (2013).

    Article  PubMed  Google Scholar 

  173. Adike, A. & DiBaise, J. K. Small intestinal bacterial overgrowth: nutritional implications, diagnosis, and management. Gastroenterol. Clin. North. Am. 47, 193–208 (2018).

    Article  PubMed  Google Scholar 

  174. Tan, A. H. et al. Small intestinal bacterial overgrowth in Parkinson’s disease. Parkinsonism Relat. Disord. 20, 535–540 (2014).

    Article  PubMed  Google Scholar 

  175. Niu, X. L. et al. Prevalence of small intestinal bacterial overgrowth in Chinese patients with Parkinson’s disease. J. Neural Transm. 123, 1381–1386 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Lee, W. Y., Yoon, W. T., Shin, H. Y., Jeon, S. H. & Rhee, P. L. Helicobacter pylori infection and motor fluctuations in patients with Parkinson’s disease. Mov. Disord. 23, 1696–1700 (2008).

    Article  PubMed  Google Scholar 

  177. Fasano, A. et al. The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov. Disord. 28, 1241–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Pierantozzi, M. et al. Helicobacter pylori eradication and l-dopa absorption in patients with PD and motor fluctuations. Neurology 66, 1824–1829 (2006).

    Article  CAS  PubMed  Google Scholar 

  179. McGee, D. J., Lu, X. H. & Disbrow, E. A. Stomaching the possibility of a pathogenic role for Helicobacter pylori in Parkinson’s disease. J. Parkinsons Dis. 8, 367–374 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Suwarnalata, G. et al. Augmentation of autoantibodies by Helicobacter pylori in Parkinson’s disease patients may be linked to greater severity. PLoS ONE 11, e0153725 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. De Pablo-Fernandez, E. et al. Association of autonomic dysfunction with disease progression and survival in Parkinson disease. JAMA Neurol. 74, 970–976 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Heintz-Buschart, A. et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 33, 88–98 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Nishiwaki, H. et al. Short-chain fatty acid-producing gut microbiota is decreased in Parkinson’s disease but not in rapid-eye-movement sleep behavior disorder. mSystems 5, e00797-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Heinzel, S. et al. Gut microbiome signatures of risk and prodromal markers of Parkinson disease. Ann. Neurol. 88, 320–331 (2020).

    Article  PubMed  Google Scholar 

  185. Lubomski, M. et al. Parkinson’s disease and the gastrointestinal microbiome. J. Neurol. 267, 2507–2523 (2020).

    Article  PubMed  Google Scholar 

  186. Vascellari, S. et al. Clinical phenotypes of Parkinson’s disease associate with distinct gut microbiota and metabolome enterotypes. Biomolecules 11, 144 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Scheperjans, F. et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 30, 350–358 (2015).

    Article  PubMed  Google Scholar 

  188. Cilia, R. et al. Does gut microbiota influence the course of Parkinson’s disease? A 3-year prospective exploratory study in de novo patients. J. Parkinsons Dis. 11, 159–170 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Minato, T. et al. Progression of Parkinson’s disease is associated with gut dysbiosis: two-year follow-up study. PLoS ONE 12, e0187307 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Aho, V. T. E. et al. Gut microbiota in Parkinson’s disease: temporal stability and relations to disease progression. EBioMedicine 44, 691–707 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Shin, C., Lim, Y., Lim, H. & Ahn, T. B. Plasma short-chain fatty acids in patients with Parkinson’s disease. Mov. Disord. 35, 1021–1027 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. He, X. et al. Plasma short-chain fatty acids differences in multiple system atrophy from Parkinson’s disease. J. Parkinsons Dis. 11, 1167–1176 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Chen, S. J. et al. Association of fecal and plasma levels of short-chain fatty acids with gut microbiota and clinical severity in Parkinson disease patients. Neurology 98, e848–e858 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Janeiro, M. H., Ramirez, M. J., Milagro, F. I., Martinez, J. A. & Solas, M. Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients 10, 1398 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  195. Chung, S. J. et al. Gut microbiota-derived metabolite trimethylamine N-oxide as a biomarker in early Parkinson’s disease. Nutrition 83, 111090 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Sankowski, B. et al. Higher cerebrospinal fluid to plasma ratio of p-cresol sulfate and indoxyl sulfate in patients with Parkinson’s disease. Clin. Chim. Acta 501, 165–173 (2020).

    Article  CAS  PubMed  Google Scholar 

  197. Chen, S. J. et al. The gut metabolite trimethylamine N-oxide is associated with Parkinson’s disease severity and progression. Mov. Disord. 35, 2115–2116 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Gentile, C. L. & Weir, T. L. The gut microbiota at the intersection of diet and human health. Science 362, 776–780 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. Boulos, C., Yaghi, N., El Hayeck, R., Heraoui, G. N. & Fakhoury-Sayegh, N. Nutritional risk factors, microbiota and Parkinson’s disease: what is the current evidence? Nutrients 11, 1896 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  201. Wang, A., Lin, Y., Wu, Y. & Zhang, D. Macronutrients intake and risk of Parkinson’s disease: a meta-analysis. Geriatr. Gerontol. Int. 15, 606–616 (2015).

    Article  PubMed  Google Scholar 

  202. Marion-Letellier, R., Savoye, G. & Ghosh, S. Polyunsaturated fatty acids and inflammation. IUBMB Life 67, 659–667 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Ying, A. F. et al. Dietary antioxidants and risk of Parkinson’s disease in the Singapore Chinese Health Study. Mov. Disord. 35, 1765–1773 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hantikainen, E. et al. Dietary antioxidants and the risk of Parkinson disease: the Swedish National March Cohort. Neurology 96, e895–e903 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Yang, F., Wolk, A., Hakansson, N., Pedersen, N. L. & Wirdefeldt, K. Dietary antioxidants and risk of Parkinson’s disease in two population-based cohorts. Mov. Disord. 32, 1631–1636 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Hughes, K. C. et al. Intake of antioxidant vitamins and risk of Parkinson’s disease. Mov. Disord. 31, 1909–1914 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Chang, M. C., Kwak, S. G. & Kwak, S. Effect of dietary vitamins C and E on the risk of Parkinson’s disease: a meta-analysis. Clin. Nutr. 40, 3922–3930 (2021).

    Article  CAS  PubMed  Google Scholar 

  208. Takeda, A. et al. Vitamin A and carotenoids and the risk of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology 42, 25–38 (2014).

    Article  PubMed  Google Scholar 

  209. de Lau, L. M. L., Koudstaal, P. J., Witteman, J. C., Hofman, A. & Breteler, M. M. Dietary folate, vitamin B12, and vitamin B6 and the risk of Parkinson disease. Neurology 67, 315–318 (2006).

    Article  PubMed  CAS  Google Scholar 

  210. Murakami, K. et al. Dietary intake of folate, vitamin B6, vitamin B12 and riboflavin and risk of Parkinson’s disease: a case-control study in Japan. Br. J. Nutr. 104, 757–764 (2010).

    Article  CAS  PubMed  Google Scholar 

  211. Shen, L. Associations between B vitamins and Parkinson’s disease. Nutrients 7, 7197–7208 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Chen, H. et al. Folate intake and risk of Parkinson’s disease. Am. J. Epidemiol. 160, 368–375 (2004).

    Article  PubMed  Google Scholar 

  213. Fan, X. et al. Role of homocysteine in the development and progression of Parkinson’s disease. Ann. Clin. Transl. Neurol. 7, 2332–2338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Zhao, Y. et al. Investigating the causality of metabolites involved in one-carbon metabolism with the risk and age at onset of Parkinson’s disease: a two-sample Mendelian randomization study. Neurobiol. Aging 108, 196–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  215. Christine, C. W. et al. Vitamin B12 and homocysteine levels predict different outcomes in early Parkinson’s disease. Mov. Disord. 33, 762–770 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Sleeman, I. et al. Urate and homocysteine: predicting motor and cognitive changes in newly diagnosed Parkinson’s disease. J. Parkinsons Dis. 9, 351–359 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Cheng, P. et al. Dietary intake of iron, zinc, copper, and risk of Parkinson’s disease: a meta-analysis. Neurol. Sci. 36, 2269–2275 (2015).

    Article  PubMed  Google Scholar 

  218. Palacios, N. et al. Caffeine and risk of Parkinson’s disease in a large cohort of men and women. Mov. Disord. 27, 1276–1282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Qi, H. & Li, S. Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr. Gerontol. Int. 14, 430–439 (2014).

    Article  PubMed  Google Scholar 

  220. Chen, J. F. & Schwarzschild, M. A. Do caffeine and more selective adenosine A2A receptor antagonists protect against dopaminergic neurodegeneration in Parkinson’s disease? Parkinonism Relat. Disord. 80, S45–S53 (2020).

    Article  Google Scholar 

  221. Iriondo-DeHond, A., Uranga, J. A., Del Castillo, M. D. & Abalo, R. Effects of coffee and its components on the gastrointestinal tract and the brain-gut axis. Nutrients 13, 88 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  222. Postuma, R. B. et al. Risk factors for neurodegeneration in idiopathic rapid eye movement sleep behavior disorder: a multicenter study. Ann. Neurol. 77, 830–839 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Gao, X., Cassidy, A., Schwarzschild, M. A., Rimm, E. B. & Ascherio, A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology 78, 1138–1145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Gao, X., O’ Reilly, É. J., Schwarzschild, M. A. & Ascherio, A. Prospective study of plasma urate and risk of Parkinson disease in men and women. Neurology 86, 520–526 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Gao, X. et al. Diet, urate, and Parkinson’s disease risk in men. Am. J. Epidemiol. 167, 831–838 (2008).

    Article  PubMed  Google Scholar 

  226. Chamorro, A. & Mir, P. Raising serum urate levels in Parkinson disease: a strategy only for women? Neurology 93, 611–612 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Hughes, K. C. et al. Intake of dairy foods and risk of Parkinson disease. Neurology 89, 46–52 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Jiang, W., Ju, C., Jiang, H. & Zhang, D. Dairy foods intake and risk of Parkinson’s disease: a dose-response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 29, 613–619 (2014).

    Article  CAS  PubMed  Google Scholar 

  229. Jimenez-Jimenez, F. J., Alonso-Navarro, H., Garcia-Martin, E. & Agundez, J. A. G. Alcohol consumption and risk for Parkinson’s disease: a systematic review and meta-analysis. J. Neurol. 266, 1821–1834 (2019).

    Article  CAS  PubMed  Google Scholar 

  230. Peters, S. et al. Alcohol consumption and risk of Parkinson’s disease: data from a large prospective European cohort. Mov. Disord. 35, 1258–1263 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Kim, I. Y. et al. Alcohol intake and Parkinson’s disease risk in the Million Women Study. Mov. Disord. 35, 443–449 (2020).

    Article  PubMed  Google Scholar 

  232. Kim, R., Yoo, D., Jung, Y. J., Han, K. & Lee, J. Y. Sex differences in smoking, alcohol consumption, and risk of Parkinson’s disease: a nationwide cohort study. Parkinsonism Relat. Disord. 71, 60–65 (2020).

    Article  PubMed  Google Scholar 

  233. Jacobs, B. M. et al. Parkinson’s disease determinants, prediction and gene–environment interactions in the UK Biobank. J. Neurol. Neurosurg. Psychiatry 91, 1046–1054 (2020).

    Article  PubMed  Google Scholar 

  234. Paul, K. C. et al. The association between lifestyle factors and Parkinson’s disease progression and mortality. Mov. Disord. 34, 58–66 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Kim, J. J., Bandres-Ciga, S., Blauwendraat, C. & Gan-Or, Z. International Parkinson’s Disease Genomics ConsortiumNo genetic evidence for involvement of alcohol dehydrogenase genes in risk for Parkinson’s disease. Neurobiol. Aging 87, 140.e19–140.e22 (2020).

  236. Gao, X. et al. Prospective study of dietary pattern and risk of Parkinson disease. Am. J. Clin. Nutr. 86, 1486–1494 (2007).

    Article  CAS  PubMed  Google Scholar 

  237. Yin, W., Lof, M., Pedersen, N. L., Sandin, S. & Fang, F. Mediterranean dietary pattern at middle age and risk of Parkinson’s disease: a Swedish cohort study. Mov. Disord. 36, 255–260 (2021).

    Article  PubMed  Google Scholar 

  238. Maraki, M. I. et al. Mediterranean diet adherence is related to reduced probability of prodromal Parkinson’s disease. Mov. Disord. 34, 48–57 (2019).

    Article  PubMed  Google Scholar 

  239. Alcalay, R. N. et al. The association between Mediterranean diet adherence and Parkinson’s disease. Mov. Disord. 27, 771–774 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Metcalfe-Roach, A. et al. MIND and Mediterranean diets associated with later onset of Parkinson’s disease. Mov. Disord. 36, 977–984 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Cassani, E. et al. Dietary habits in Parkinson’s disease: adherence to Mediterranean diet. Parkinsonism Relat. Disord. 42, 40–46 (2017).

    Article  PubMed  Google Scholar 

  242. Tosti, V., Bertozzi, B. & Fontana, L. Health benefits of the Mediterranean diet: metabolic and molecular mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 73, 318–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  243. Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).

    Article  CAS  PubMed  Google Scholar 

  244. Kline, E. M. et al. Genetic and environmental factors in Parkinson’s disease converge on immune function and inflammation. Mov. Disord. 36, 25–36 (2021).

    Article  PubMed  Google Scholar 

  245. Gardet, A. et al. LRRK2 is involved in the IFN-γ response and host response to pathogens. J. Immunol. 185, 5577–5585 (2010).

    Article  CAS  PubMed  Google Scholar 

  246. Cook, D. A. et al. LRRK2 levels in immune cells are increased in Parkinson’s disease. NPJ Parkinsons Dis. 3, 11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Takagawa, T. et al. An increase in LRRK2 suppresses autophagy and enhances Dectin-1-induced immunity in a mouse model of colitis. Sci. Transl. Med. 10, eaan8162 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Menozzi, E., Macnaughtan, J. & Schapira, A. H. V. LRRK2 parkinsonism: does the response to gut bacteria mitigate the neurological picture? Mov. Disord. 36, 71–75 (2021).

    Article  PubMed  Google Scholar 

  249. Wallen, Z. D. et al. Exploring human-genome gut–microbiome interaction in Parkinson’s disease. NPJ Parkinsons Dis. 7, 74 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Tan, A. H. et al. PINK1 p.Leu347Pro mutations in Malays: prevalence and illustrative cases. Parkinsonism Relat. Disord. 79, 34–39 (2020).

    Article  PubMed  Google Scholar 

  251. Knudsen, K., Szwebs, M., Hansen, A. K. & Borghammer, P. Gastric emptying in Parkinson’s disease – a mini-review. Parkinsonism Relat. Disord. 55, 18–25 (2018).

    Article  PubMed  Google Scholar 

  252. Pfeiffer, R. F., Isaacson, S. H. & Pahwa, R. Clinical implications of gastric complications on levodopa treatment in Parkinson’s disease. Parkinsonism Relat. Disord. 76, 63–71 (2020).

    Article  PubMed  Google Scholar 

  253. Barboza, J. L., Okun, M. S. & Moshiree, B. The treatment of gastroparesis, constipation and small intestinal bacterial overgrowth syndrome in patients with Parkinson’s disease. Expert. Opin. Pharmacother. 16, 2449–2464 (2015).

    Article  CAS  PubMed  Google Scholar 

  254. Lim, S. Y. & Tan, A. H. in Parkinson’s Disease: Current and Future Therapeutics and Clinical Trials (eds Galvez-Jimenez, N. et al.) 93–109 (Cambridge Univ. Press, 2016).

  255. Choi, J. H. et al. Double-blind, randomized, placebo-controlled trial of DA-9701 in Parkinson’s disease: PASS-GI Study. Mov. Disord. 35, 1966–1976 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Marrinan, S. L. et al. A randomized, double-blind, placebo-controlled trial of camicinal in Parkinson’s disease. Mov. Disord. 33, 329–332 (2018).

    Article  CAS  PubMed  Google Scholar 

  257. Safirstein, B. E. et al. Pharmacokinetics of inhaled levodopa administered with oral carbidopa in the fed state in patients with Parkinson’s disease. Clin. Ther. 42, 1034–1046 (2020).

    Article  CAS  PubMed  Google Scholar 

  258. Lipp, M. M., Batycky, R., Moore, J., Leinonen, M. & Freed, M. I. Preclinical and clinical assessment of inhaled levodopa for OFF episodes in Parkinson’s disease. Sci. Transl. Med. 8, 360ra136 (2016).

    Article  PubMed  CAS  Google Scholar 

  259. Baruzzi, A. C. et al. Influence of meal ingestion time on pharmacokinetics of orally administered levodopa in Parkinsonian patients. Clin. Neuropharmacol. 10, 527–537 (1987).

    Article  CAS  PubMed  Google Scholar 

  260. Trenkwalder, C., Kuoppamaki, M., Vahteristo, M., Muller, T. & Ellmen, J. Increased dose of carbidopa with levodopa and entacapone improves “off” time in a randomized trial. Neurology 92, e1487–e1496 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Tan, A. H. et al. Helicobacter pylori eradication in Parkinson’s disease: a randomized placebo-controlled trial. Mov. Disord. 35, 2250–2260 (2020).

    Article  CAS  PubMed  Google Scholar 

  262. Astarloa, R., Mena, M. A., Sánchez, V., de la Vega, L. & de Yébenes, J. G. Clinical and pharmacokinetic effects of a diet rich in insoluble fiber on Parkinson disease. Clin. Neuropharmacol. 15, 375–380 (1992).

    Article  CAS  PubMed  Google Scholar 

  263. Maini Rekdal, V., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science 364, eaau6323 (2019).

    Article  PubMed  Google Scholar 

  264. van Kessel, S. P. et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat. Commun. 10, 310 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Limousin, P. & Foltynie, T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat. Rev. Neurol. 15, 234–242 (2019).

    Article  PubMed  Google Scholar 

  266. Arai, E. et al. Subthalamic deep brain stimulation can improve gastric emptying in Parkinson’s disease. Brain 135, 1478–1485 (2012).

    Article  PubMed  Google Scholar 

  267. Su, A., Gandhy, R., Barlow, C. & Triadafilopoulos, G. Utility of the wireless motility capsule and lactulose breath testing in the evaluation of patients with Parkinson’s disease who present with functional gastrointestinal symptoms. BMJ Open Gastroenterol. 4, e000132 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Shiina, S. et al. Levodopa does not worsen gastric emptying in Parkinson’s disease. J. Am. Geriatr. Soc. 63, 2185–2186 (2015).

    Article  PubMed  Google Scholar 

  269. Tan, Y. J. et al. Osteoporosis in Parkinson’s disease: relevance of distal radius dual-energy X-ray absorptiometry (DXA) and sarcopenia. J. Clin. Densitom. 24, 351–361 (2020).

    Article  PubMed  Google Scholar 

  270. Virmani, T., Tazan, S., Mazzoni, P., Ford, B. & Greene, P. E. Motor fluctuations due to interaction between dietary protein and levodopa in Parkinson’s disease. J. Clin. Mov. Disord. 3, 8 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science 363, eaat9931 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Javdan, B. et al. Personalized mapping of drug metabolism by the human gut microbiome. Cell 181, 1661–1679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Vizcarra, J. A., Wilson-Perez, H. E., Fasano, A. & Espay, A. J. Small intestinal bacterial overgrowth in Parkinson’s disease: tribulations of a trial. Parkinsonism Relat. Disord. 54, 110–112 (2018).

    Article  PubMed  Google Scholar 

  275. Fasano, A., Visanji, N. P., Liu, L. W. C., Lang, A. E. & Pfeiffer, R. F. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol. 14, 625–639 (2015).

    Article  CAS  PubMed  Google Scholar 

  276. Narozanska, E. et al. Pharmacokinetics of levodopa in patients with Parkinson disease and motor fluctuations depending on the presence of Helicobacter pylori infection. Clin. Neuropharmacol. 37, 96–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  277. Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).

    Article  PubMed  Google Scholar 

  278. Suez, J., Zmora, N., Segal, E. & Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 25, 716–729 (2019).

    Article  CAS  PubMed  Google Scholar 

  279. Zmora, N. S. E. & Elinav, E. Transforming medicine with the microbiome. Sci. Transl. Med. 11, eaaw1815 (2019).

    Article  CAS  PubMed  Google Scholar 

  280. Harkins, C. P., Kong, H. H. & Segre, J. A. Manipulating the human microbiome to manage disease. JAMA 323, 303–304 (2019).

    Article  Google Scholar 

  281. Phillips, M. C. L., Murtagh, D. K. J., Gilbertson, L. J., Asztely, F. J. S. & Lynch, C. D. P. Low-fat versus ketogenic diet in Parkinson’s disease: a pilot randomized controlled trial. Mov. Disord. 33, 1306–1314 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Hegelmaier, T. et al. Interventional influence of the intestinal microbiome through dietary intervention and bowel cleansing might improve motor symptoms in Parkinson’s disease. Cells 9, 376 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  283. Postuma, R. B. et al. Caffeine as symptomatic treatment for Parkinson disease (Cafe-PD): a randomized trial. Neurology 89, 1795–1803 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Becker, A. et al. Effects of resistant starch on symptoms, fecal markers and gut microbiota in Parkinson’s disease–the RESISTA-PD trial. Genomics Proteom. Bioinforma. https://doi.org/10.1016/j.gpb.2021.08.009 (2021).

    Article  Google Scholar 

  285. Barichella, M. et al. Probiotics and prebiotic fiber for constipation associated with Parkinson disease: an RCT. Neurology 87, 1274–1280 (2016).

    Article  CAS  PubMed  Google Scholar 

  286. Tan, A. H. et al. Probiotics for constipation in Parkinson disease: a randomized placebo-controlled study. Neurology 96, e772–e782 (2021).

    CAS  PubMed  Google Scholar 

  287. Segal, A., Zlotnik, Y., Moyal-Atias, K., Abuhasira, R. & Ifergane, G. Fecal microbiota transplant as a potential treatment for Parkinson’s disease–a case series. Clin. Neurol. Neurosurg. 207, 106791 (2021).

    Article  PubMed  Google Scholar 

  288. Kuai, X. Y. et al. Evaluation of fecal microbiota transplantation in Parkinson’s disease patients with constipation. Microb. Cell Fact. 20, 98 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Aden, K. et al. Metabolic functions of gut microbes associate with efficacy of tumor necrosis factor antagonists in patients with inflammatory bowel diseases. Gastroenterology 157, 1279–1292 (2019).

    Article  CAS  PubMed  Google Scholar 

  290. Hauser, R. A. et al. Targeting neurons in the gastrointestinal tract to treat Parkinson’s disease. Clin. Parkinsonism Relat. Disord. 1, 2–7 (2019).

    Article  Google Scholar 

  291. Lynch, S. V., Ng, S. C., Shanahan, F. & Tilg, H. Translating the gut microbiome: ready for the clinic? Nat. Rev. Gastroenterol. Hepatol. 16, 656–661 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the University of Malaya Parkinson’s Disease and Movement Disorders Research Program Fund (PV035-2017), and M. G. Rudakewich (Synapse Visuals) for providing professional medical illustration services for the figure in Box 2 (the original figure done by the artist was modified by the journal).

Author information

Authors and Affiliations

Authors

Contributions

A.H.T. and S.Y.L. developed the concept and structure of the manuscript, conducted the literature review and prepared the first draft of the manuscript. A.E.L. provided critical review of the manuscript. All authors contributed to the revision of the manuscript.

Corresponding author

Correspondence to Ai Huey Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks M. Cirstea, who co-reviewed with S. Appel-Cresswell; A. Keshavarzian; and R. Pfeiffer for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

We searched PubMed for articles published in English from 1 January 2010 to 4 October 2021, using the following main search terms: “Parkinson’s disease” and “gut–brain axis”, “microbiome”, “dysbiosis”, “gut metabolites”, “constipation”, “inflammatory bowel disease”, “irritable bowel syndrome”, “vagotomy”, “appendectomy”, “Helicobacter pylori”, “small intestinal bacterial overgrowth”, “diet”, “gut motility”, “levodopa pharmacokinetics”, “prebiotics”, “probiotics”, “faecal microbiota transplantation”, “antimicrobials” and “postbiotics”. Where relevant, our literature search was expanded to include studies in healthy or older adults and related neurodegenerative diseases. We also used references cited in the publications retrieved. The final reference list was generated on the basis of relevance to the topics covered in this Review, with a focus on publications within the past 5 years. For the section “Gut dysbiosis in PD: evidence from clinical studies”, we systematically reviewed PubMed articles published in any language from 1 January 2000 to 31 May 2021, using the following search terms: “microbiome” or “microbiota” or “microflora” or “dysbiosis” and “Parkinson” or “parkinsonism”. The inclusion criteria were human case–control studies involving patients with PD, and microbial DNA extraction from stool samples. The results of this literature search are summarized in Supplementary Table 1.

Supplementary information

Glossary

Enteric nervous system

(ENS). An extensive neural network comprising neurons and glial cells embedded in the gut wall that coordinates the main functions of the gastrointestinal tract. Often referred to as the ‘second brain’, it is the largest of the three divisions of the autonomic nervous system, the other two being the sympathetic and the parasympathetic nervous system.

Dorsal motor nucleus of the vagus

(DMNV). The cluster of neuronal cell bodies in the medulla oblongata of the lower brainstem that supplies efferent fibres of the vagus nerve, which is the main contributor to the parasympathetic nervous system. DMNV fibres innervate the gastrointestinal tract from the distal third of the oesophagus to approximately the splenic flexure of the colon.

Microbiome

The collection of all the microorganisms (microbiota) living in a particular environment, including bacteria, fungi, protozoa and viruses. Sometimes, the term is used more specifically to denote the combined genetic material of these microorganisms.

Metabolome

The collection of all low-molecular-weight metabolites within a biological system (cell, biofluid, tissue or organism).

Lipopolysaccharide

An endotoxin and biologically active component of Gram-negative bacterial cell walls with potential immunostimulatory activity.

Defaecatory dyssynergia

A disorder of paradoxical anal sphincter contraction during attempted defaecation in patients with constipation.

Mendelian randomization

An observational research approach that uses variation in genes of known function as a proxy for an exposure (for example, to a drug), risk factor or phenotypic trait, so as to predict its causal effects on health outcomes. This method is less likely to be affected by confounding or reverse causation than are conventional observational studies.

Helicobacter pylori infection

A common, usually chronic, bacterial infection of the stomach and duodenal epithelium that is found worldwide. It is associated with perturbation of the upper gut microbiome and has been directly linked particularly to peptic ulcers and non-ulcer dyspepsia.

Small intestinal bacterial overgrowth

(SIBO). An acquired disorder defined by an excess of bacteria in the small intestine, often caused by colonization of coliform bacteria that usually reside in the colon.

Hypochlorhydria

A condition of reduced production of hydrochloric acid, one of the components of gastric acid. A common cause is atrophic gastritis induced by Helicobacter pylori infection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, A.H., Lim, S.Y. & Lang, A.E. The microbiome–gut–brain axis in Parkinson disease — from basic research to the clinic. Nat Rev Neurol 18, 476–495 (2022). https://doi.org/10.1038/s41582-022-00681-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-022-00681-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology