Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Why won’t it stop? The dynamics of benzodiazepine resistance in status epilepticus

Subjects

An Author Correction to this article was published on 18 May 2022

This article has been updated

Abstract

Status epilepticus is a life-threatening neurological emergency that affects both adults and children. Approximately 36% of episodes of status epilepticus do not respond to the current preferred first-line treatment, benzodiazepines. The proportion of episodes that are refractory to benzodiazepines is higher in low-income and middle-income countries (LMICs) than in high-income countries (HICs). Evidence suggests that longer episodes of status epilepticus alter brain physiology, thereby contributing to the emergence of benzodiazepine resistance. Such changes include alterations in GABAA receptor function and in the transmembrane gradient for chloride, both of which erode the ability of benzodiazepines to enhance inhibitory synaptic signalling. Often, current management guidelines for status epilepticus do not account for these duration-related changes in pathophysiology, which might differentially impact individuals in LMICs, where the average time taken to reach medical attention is longer than in HICs. In this Perspective article, we aim to combine clinical insights and the latest evidence from basic science to inspire a new, context-specific approach to efficiently managing status epilepticus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Socioeconomic and temporal differences in benzodiazepine-resistant convulsive status epilepticus.
Fig. 2: Benzodiazepines bind to Cl-permeable GABAARs and enhance channel conductance.
Fig. 3: Changes in intracellular Cl concentration set the properties of GABAAR-mediated signalling.
Fig. 4: Status epilepticus causes disruptions to GABAAR composition and function.
Fig. 5: Proposed timeline of changes affecting benzodiazepine efficacy during status epilepticus.
Fig. 6: Spatial dynamics of activity-dependent shifts in [Cl]i and [K+]e might explain different responses to benzodiazepines.

Similar content being viewed by others

Code availability

All code used to generate Fig. 1 and Supplementary Fig. 1 can be accessed at https://github.com/richardjburman/bzp_review.

Data availability

All data used to generate Fig. 1 and Supplementary Fig. 1. can be accessed at https://github.com/richardjburman/bzp_review.

Change history

References

  1. The World Health Organization. Epilepsy: a Public Health Imperative (WHO, 2019).

  2. Trinka, E. et al. A definition and classification of status epilepticus — report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia 56, 1515–1523 (2015).

    Article  PubMed  Google Scholar 

  3. Abend, N. S. & Loddenkemper, T. Management of pediatric status epilepticus. Curr. Treat. Options Neurol. 16, 301 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brophy, G. M. et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit. Care 17, 3–23 (2012).

    Article  PubMed  Google Scholar 

  5. Crawshaw, A. A. & Cock, H. R. Medical management of status epilepticus: emergency room to intensive care unit. Seizure 75, 145–152 (2020).

    Article  PubMed  Google Scholar 

  6. Glauser, T. et al. Evidence-based guideline: treatment of convulsive status epilepticus in children and adults: report of the guideline committee of the american epilepsy society. Epilepsy Curr. 16, 48–61 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Trinka, E., Höfler, J., Leitinger, M. & Brigo, F. Pharmacotherapy for status epilepticus. Drugs 75, 1499–1521 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burman, R. J. et al. A Comparison of parenteral phenobarbital vs. parenteral phenytoin as second-line management for pediatric convulsive status epilepticus in a resource-limited setting. Front. Neurol. 10, 506 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kapur, J. et al. Randomized trial of three anticonvulsant medications for status epilepticus. N. Eng. J. Med. 381, 2103–2113 (2019).

    Article  CAS  Google Scholar 

  10. Dalziel, S. R. et al. Levetiracetam versus phenytoin for second-line treatment of convulsive status epilepticus in children (ConSEPT): an open-label, multicentre, randomised controlled trial. Lancet 393, 2135–2145 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Lyttle, M. D. et al. Levetiracetam versus phenytoin for second-line treatment of paediatric convulsive status epilepticus (EcLiPSE): a multicentre, open-label, randomised trial. Lancet 393, 2125–2134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prabhakar, H. & Kalaivani, M. Propofol versus thiopental sodium for the treatment of refractory status epilepticus. Cochrane Database Syst. Rev. 2, CD009202 (2017).

    PubMed  Google Scholar 

  13. Shorvon, S. & Ferlisi, M. The outcome of therapies in refractory and super-refractory convulsive status epilepticus and recommendations for therapy. Brain 135, 2314–2328 (2012).

    Article  PubMed  Google Scholar 

  14. Gaínza-Lein, M. et al. Association of time to treatment with short-term outcomes for pediatric patients with refractory convulsive status epilepticus. JAMA Neurol. 75, 410–418 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Beghi, E. et al. Global, regional, and national burden of epilepsy, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 357–375 (2019).

    Article  Google Scholar 

  16. Feigin, V. L. et al. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 16, 877–897 (2017).

    Article  Google Scholar 

  17. Lee, B. Treatment gap for convulsive status epilepticus in resource-poor countries. Epilepsia 59, 135–139 (2018).

    Article  PubMed  Google Scholar 

  18. Newton, C. R. & Garcia, H. H. Epilepsy in poor regions of the world. Lancet 380, 1193–1201 (2012).

    Article  PubMed  Google Scholar 

  19. Newton, C. R. J. C. Status epilepticus in resource-poor countries. Epilepsia 50, 54–55 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kantanen, A.-M., Sairanen, J. & Kälviäinen, R. Incidence of the different stages of status epilepticus in Eastern Finland: A population-based study. Epilepsy Behav. 101, 106413 (2019).

    Article  PubMed  Google Scholar 

  21. Leitinger, M. et al. Epidemiology of status epilepticus in adults: Apples, pears, and oranges — A critical review. Epilepsy Behav. 103, 106720 (2020).

    Article  PubMed  Google Scholar 

  22. Lu, M. et al. Epidemiology of status epilepticus in the United States: A systematic review. Epilepsy Behav. 112, 107459 (2020).

    Article  PubMed  Google Scholar 

  23. Shorvon, S. & Sen, A. What is status epilepticus and what do we know about its epidemiology? Seizure 75, 131–136 (2020).

    Article  PubMed  Google Scholar 

  24. Chin, R. F. et al. Incidence, cause, and short-term outcome of convulsive status epilepticus in childhood: prospective population-based study. Lancet 368, 222–229 (2006).

    Article  PubMed  Google Scholar 

  25. Sadarangani, M. et al. Incidence and outcome of convulsive status epilepticus in Kenyan children: a cohort study. Lancet Neurol. 7, 145–150 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schubert-Bast, S. et al. Burden and epidemiology of status epilepticus in infants, children, and adolescents: A population-based study on German health insurance data. Epilepsia 60, 911–920 (2019).

    Article  PubMed  Google Scholar 

  27. Leitinger, M. et al. Epidemiology of status epilepticus in adults: A population-based study on incidence, causes, and outcomes. Epilepsia 60, 53–62 (2019).

    Article  PubMed  Google Scholar 

  28. Nazerian, P. et al. Incidence, management and short-term prognosis of status epilepticus in the emergency department: a population survey. Eur. J. Emerg. Med. 26, 228–230 (2019).

    Article  PubMed  Google Scholar 

  29. Tiamkao, S., Pranboon, S., Thepsuthammarat, K. & Sawanyawisuth, K. Incidences and outcomes of status epilepticus: A 9-year longitudinal national study. Epilepsy Behav. 49, 135–137 (2015).

    Article  PubMed  Google Scholar 

  30. Sánchez, S. & Rincon, F. Status epilepticus: epidemiology and public health needs. J. Clin. Med. 5, 71 (2016).

    Article  PubMed Central  Google Scholar 

  31. Chamberlain, J. M. et al. Efficacy of levetiracetam, fosphenytoin, and valproate for established status epilepticus by age group (ESETT): a double-blind, responsive-adaptive, randomised controlled trial. Lancet 395, 1217–1224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Strzelczyk, A., Knake, S., Oertel, W. H., Rosenow, F. & Hamer, H. M. Inpatient treatment costs of status epilepticus in adults in Germany. Seizure 22, 882–885 (2013).

    Article  PubMed  Google Scholar 

  33. Kariuki, S. M. et al. Prevalence and factors associated with convulsive status epilepticus in Africans with epilepsy. Neurology 84, 1838–1845 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Newton, C. R. & Kariuki, S. M. Status epilepticus in sub-Saharan Africa: New findings. Epilepsia 54, 50–53 (2013).

    Article  PubMed  Google Scholar 

  35. Treiman, D. M. The role of benzodiazepines in the management of status epilepticus. Neurology 40, 32–42 (1990).

    CAS  PubMed  Google Scholar 

  36. Burman, R. J. et al. Excitatory GABAergic signalling is associated with benzodiazepine resistance in status epilepticus. Brain 142, 3482–3501 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sánchez Fernández, I. et al. Time from convulsive status epilepticus onset to anticonvulsant administration in children. Neurology 84, 2304–2311 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Guterman, E. L. et al. Prehospital midazolam use and outcomes among patients with out-of-hospital status epilepticus. Neurology 95, e3203–e3212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sathe, A. G. et al. Underdosing of benzodiazepines in patients with status epilepticus enrolled in established status epilepticus treatment trial. Acad. Emerg. Med. 26, 940–943 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Silbergleit, R. et al. Intramuscular versus Intravenous Therapy for Prehospital Status Epilepticus. N. Eng. J. Med. 366, 591–600 (2012).

    Article  CAS  Google Scholar 

  41. Alldredge, B. K. et al. A comparison of lorazepam, diazepam, and placebo for the treatment of out-of-hospital status epilepticus. N. Eng. J. Med. 345, 631–637 (2001).

    Article  CAS  Google Scholar 

  42. Betjemann, J. P. & Lowenstein, D. H. Status epilepticus in adults. Lancet Neurol. 14, 615–624 (2015).

    Article  PubMed  Google Scholar 

  43. Olsen, R. W. GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology 136, 10–22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Olsen, R. W. & Sieghart, W. GABAA receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56, 141–148 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Benke, D. et al. Analysis of the presence and abundance of GABAA receptors containing two different types of α subunits in murine brain using point-mutated α subunits. J. Biol. Chem. 279, 43654–43660 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Simon, J., Wakimoto, H., Fujita, N., Lalande, M. & Barnard, E. A. Analysis of the Set of GABAA receptor genes in the human genome. J. Biol. Chem. 279, 41422–41435 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Sigel, E. & Steinmann, M. E. Structure, function, and modulation of gabaa receptors. J. Biol. Chem. 287, 40224–40231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Edwards, F. A., Konnerth, A. & Sakmann, B. Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study. J. Physiol. 430, 213–249 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nusser, Z., Cull-Candy, S. & Farrant, M. Differences in Synaptic GABAA receptor number underlie variation in GABA mini amplitude. Neuron 19, 697–709 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Brickley, S. G., Cull-Candy, S. G. & Farrant, M. Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J. Neurosci. 19, 2960–2973 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Farrant, M. & Nusser, Z. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat. Rev. Neurosci. 6, 215–229 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Rudolph, U. & Möhler, H. GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr. Opin. Pharmacol. 6, 18–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Sigel, E. & Steinmann, M. E. Structure, function and modulation of GABAA receptors. J. Biol. Chem. 287, 40224–40231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Simon, J., Wakimoto, H., Fujita, N., Lalande, M. & Barnard, E. A. Analysis of the set of GABAA genes in the Human Genome. J. Biol. Chem. 279, 41422–41435 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Farrant, M. & Kaila, K. in Progress in Brain Research (eds Tepper, J. M., Abercrombie, E. D. & Bolam, J. P.) 59–87 (Elsevier, 2007).

  56. Caraiscos, V. B. et al. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing gamma-aminobutyric acid type A receptors. Proc. Natl Acad. Sci. USA 101, 3662–3667 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vithlani, M., Terunuma, M. & Moss, S. J. The Dynamic Modulation of GABAA receptor trafficking and its role in regulating the plasticity of inhibitory synapses. Physiol. Rev. 91, 1009–1022 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Richter, L. et al. Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. Nat. Chem. Biol. 8, 455–464 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Phulera, S. et al. Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor in complex with GABA. eLife 7, e39383 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kaila, K. Ionic basis of GABAA receptor channel function in the nervous system. Prog. Neurobiol. 42, 489–537 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Kaila, K., Pasternack, M., Saarikoski, J. & Voipio, J. Influence of GABA-gated bicarbonate conductance on potential, current and intracellular chloride in crayfish muscle fibres. J. Physiol. 416, 161–181 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kaila, K. & Voipio, J. Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature 330, 163–165 (1987).

    Article  CAS  PubMed  Google Scholar 

  63. Krogsgaard-Larsen, P., Froelund, B., Joergensen, F. S. & Schousboe, A. GABAA receptor agonists, partial agonists, and antagonists. design and therapeutic prospects. J. Med. Chem. 37, 2489–2505 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Müller, W. & Wollert, U. Characterization of the binding of benzodiazepines to human serum albumin. Naunyn Schmiedeberg’s Arch. Pharmacol. 280, 229–237 (1973).

    Article  Google Scholar 

  65. Haefely, W. E., Martin, J. R., Richards, J. G. & Schoch, P. The multiplicity of actions of benzodiazepine receptor ligands. Can. J. Psychiatry 38, 102–108 (1993).

    Google Scholar 

  66. Costa, E. & Guidotti, A. Endogenous ligands for benzodiazepine recognition sites. Biochem. Pharmacol. 34, 3399–3403 (1985).

    Article  CAS  PubMed  Google Scholar 

  67. Farzampour, Z., Reimer, R. J. & Huguenard, J. Endozepines. Adv. Pharmacol. 72, 147–164 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Christian, C. A. & Huguenard, J. R. Astrocytes potentiate GABAergic transmission in the thalamic reticular nucleus via endozepine signaling. Proc. Natl Acad. Sci. USA 110, 20278–20283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Christian, C. A. et al. Endogenous positive allosteric modulation of GABAA receptors by diazepam binding inhibitor. Neuron 78, 1063–1074 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wieland, H. A., Lüddens, H. & Seeburg, P. H. A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J. Biol. Chem. 267, 1426–1429 (1992).

    Article  CAS  PubMed  Google Scholar 

  71. Duncalfe, L. L., Carpenter, M. R., Smillie, L. B., Martin, I. L. & Dunn, S. M. J. The major site of photoaffinity labeling of the γ-aminobutyric acid type A receptor by [3H]flunitrazepam is histidine 102 of the α subunit. J. Biol. Chem. 271, 9209–9214 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Goldschen-Ohm, M. P., Wagner, D. A., Petrou, S. & Jones, M. V. An epilepsy-related region in the GABAA receptor mediates long-distance effects on GABA and benzodiazepine binding sites. Mol. Pharmacol. 77, 35–45 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Haefely, W., Kulcsár, A. & Möhler, H. Possible involvement of GABA in the central actions of benzodiazepines. Psychopharmacol. Bull. 11, 58–59 (1975).

    CAS  PubMed  Google Scholar 

  74. Vicini, S., Mienville, J. M. & Costa, E. Actions of benzodiazepine and beta-carboline derivatives on gamma-aminobutyric acid-activated Cl- channels recorded from membrane patches of neonatal rat cortical neurons in culture. J. Pharmacol. Exp. Ther. 243, 1195–1201 (1987).

    CAS  PubMed  Google Scholar 

  75. Rogers, C. J., Twyman, R. E. & Macdonald, R. L. Benzodiazepine and beta-carboline regulation of single GABAA receptor channels of mouse spinal neurones in culture. J. Physiol. 475, 69–82 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ben-Ari, Y. Excitatory actions of GABA during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Blaesse, P., Airaksinen, M. S., Rivera, C. & Kaila, K. Cation-chloride cotransporters and neuronal function. Neuron 61, 820–838 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Kaila, K., Price, T. J., Payne, J. A., Puskarjov, M. & Voipio, J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat. Rev. Neurosci. 15, 637–654 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Raimondo, J. V., Richards, B. A. & Woodin, M. A. Neuronal chloride and excitability — the big impact of small changes. Curr. Opin. Neurobiol. 43, 35–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Raimondo, J. V., Burman, R. J., Katz, A. A. & Akerman, C. J. Ion dynamics during seizures. Front. Cell. Neurosci. 9, 419 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wright, R., Raimondo, J. V. & Akerman, C. J. Spatial and temporal dynamics in the ionic driving force for GABAA receptors. Neural Plast. 2011, 728395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Delpire, E. Cation-chloride cotransporters in neuronal communication. Physiology 15, 309–312 (2000).

    Article  CAS  Google Scholar 

  83. Düsterwald, K. M. et al. Biophysical models reveal the relative importance of transporter proteins and impermeant anions in chloride homeostasis. eLife 7, e39575 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Glykys, J. et al. Local impermeant anions establish the neuronal chloride concentration. Science 343, 670–675 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Payne, J. A., Rivera, C., Voipio, J. & Kaila, K. Cation–chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci. 26, 199–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Hille, B. in Ion Channels of Excitable Membranes (ed. Hille, B.) (Sinauer, 2001).

  87. Aronson, P. S. in Medical Physiology. A Cellular and Molecular Approach (ed. Boron, W. F. & Boulpaep, E. L.) 106–146 (Elsevier, 2012).

  88. Voipio, J. et al. Comment on “Local impermeant anions establish the neuronal chloride concentration”. Science 345, 1130 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Rivera, C. et al. The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251–255 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Kakazu, Y., Akaike, N., Komiyama, S. & Nabekura, J. Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons. J. Neurosci. 19, 2843–2851 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yamada, J. et al. Cl uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J. Physiol. 557, 829–841 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Achilles, K. et al. Kinetic properties of Cl uptake mediated by Na+-dependent K+-2Cl cotransport in immature rat neocortical neurons. J. Neurosci. 27, 8616–8627 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tyzio, R. et al. Postnatal changes in somatic γ-aminobutyric acid signalling in the rat hippocampus. Eur. J. Neurosci. 27, 2515–2528 (2008).

    Article  PubMed  Google Scholar 

  94. Vanhatalo, S. et al. Slow endogenous activity transients and developmental expression of K+–Cl− cotransporter 2 in the immature human cortex. Eur. J. Neurosci. 22, 2799–2804 (2005).

    Article  PubMed  Google Scholar 

  95. Sedmak, G. et al. Developmental expression patterns of KCC2 and functionally associated molecules in the human brain. Cereb. Cortex 26, 4574–4589 (2016).

    Article  PubMed  Google Scholar 

  96. Virtanen, M. A., Uvarov, P., Mavrovic, M., Poncer, J. C. & Kaila, K. The multifaceted roles of KCC2 in cortical development. Trends Neurosci. 44, 378–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Löscher, W. & Kaila, K. CNS pharmacology of NKCC1 inhibitors. Neuropharmacology 205, 108910 (2021).

    Article  PubMed  CAS  Google Scholar 

  98. Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bakken, T. E. et al. Single-cell and single-nucleus RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates, and humans. eLife 10, e64875 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Khirug, S. et al. GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na–K–2Cl cotransporter NKCC1. J. Neurosci. 28, 4635–4639 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Szabadics, J. et al. Excitatory Effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311, 233–235 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, H. H. C., Jurd, R. & Moss, S. J. Tyrosine phosphorylation regulates the membrane trafficking of the potassium chloride co-transporter KCC2. Mol. Cell. Neurosci. 45, 173–179 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee, H. H. C., Deeb, T. Z., Walker, J. A., Davies, P. A. & Moss, S. J. NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor–mediated currents. Nat. Neurosci. 14, 736–743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rivera, C. et al. Mechanism of activity-dependent downregulation of the neuron-specific K-Cl Cotransporter KCC2. J. Neurosci. 24, 4683–4691 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pathak, H. R. et al. Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J. Neurosci. 27, 14012–14022 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bragin, D. E., Sanderson, J. L., Peterson, S., Connor, J. A. & Müller, W. S. Development of epileptiform excitability in the deep entorhinal cortex after status epilepticus. Eur. J. Neuro. 30, 611–624 (2009).

    Article  Google Scholar 

  107. Li, X. et al. Long-term expressional changes of Na+-K+-Cl- co-transporter 1 (NKCC1) and K+-Cl- co-transporter 2 (KCC2) in CA1 region of hippocampus following lithium-pilocarpine induced status epilepticus (PISE). Brain Res. 1221, 141–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Barmashenko, G., Hefft, S., Aertsen, A., Kirschstein, T. & Köhling, R. Positive shifts of the GABAA receptor reversal potential due to altered chloride homeostasis is widespread after status epilepticus. Epilepsia 52, 1570–1578 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Huberfeld, G. et al. Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J. Neurosci. 27, 9866–9873 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim, D. Y. et al. GABAA receptor-mediated activation of L-type calcium channels induces neuronal excitation in surgically resected human hypothalamic hamartomas. Epilepsia 49, 861–871 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Pallud, J. et al. Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci. Transl. Med. 6, 244ra89 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Liu, R., Wang, J., Liang, S., Zhang, G. & Yang, X. Role of NKCC1 and KCC2 in epilepsy: from expression to function. Front. Neurol. 10, 1407 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Haider, B., Duque, A., Hasenstaub, A. R. & McCormick, D. A. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26, 4535–4545 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Trevelyan, A. J., Sussillo, D., Watson, B. O. & Yuste, R. Modular propagation of epileptiform activity: evidence for an inhibitory veto in neocortex. J. Neurosci. 26, 12447–12455 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kaila, K., Saarikoski, J. & Vopio, J. Mechanism of action of GABA on intracellular pH and on surface pH in crayfish muscle fibres. J. Physiol. 427, 241–260 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Staley, K., Soldo, B. & Proctor, W. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269, 977–981 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. Staley, K. J. & Proctor, W. R. Modulation of mammalian dendritic GABAA receptor function by the kinetics of Cl- and HCO3 transport. J. Physiol. 519, 693–712 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lillis, K. P., Karmer, M. A., Mertz, J., Staley, K. J. & White, J. A. Pyramidal cells accumulate chloride at seizure onset. Neurobiol. Dis. 47, 358–366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Raimondo, J. V., Markram, H. & Akerman, C. J. Short-term ionic plasticity at GABAergic synapses. Front. Synaptic Neurosci. 4, 5 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gulledge, A. T. & Stuart, G. J. Excitatory actions of GABA in the cortex. Neuron 37, 299–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Lombardi, A., Luhmann, H. J. & Kilb, W. Modelling the spatial and temporal constrains of the GABAergic influence on neuronal excitability. bioRxiv https://doi.org/10.1101/2021.06.22.449394 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kaila, K., Lamsa, K., Smirnov, S., Taira, T. & Voipio, J. Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient. J. Neurosci. 17, 7662–7672 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Viitanen, T., Ruusuvuori, E., Kaila, K. & Voipio, J. The K+-Cl cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus: GABA excitation and KCC2. J. Physiol. 588, 1527–1540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ellender, T. J., Raimondo, J. V., Irkle, A., Lamsa, K. P. & Akerman, C. J. Excitatory effects of parvalbumin-expressing interneurons maintain hippocampal epileptiform activity via synchronous afterdischarges. J. Neurosci. 34, 15208–15222 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Fujiwara-Tsukamoto, Y. et al. Prototypic seizure activity driven by mature hippocampal fast-spiking interneurons. J. Neurosci. 30, 13679–13689 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ilie, A., Raimondo, J. V. & Akerman, C. J. Adenosine release during seizures attenuates GABAA receptor-mediated depolarization. J. Neurosci. 32, 5321–5332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sulis Sato, S. et al. Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo. Proc. Natl Acad. Sci. USA 114, 8770–8779 (2017).

    Article  CAS  Google Scholar 

  128. Kapur, J. & Coulter, D. A. Experimental status epilepticus alters γ-aminobutyric acid Type A Receptor Function in CA1 pyramidal neurons. Ann. Neurol. 38, 893–900 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Naylor, D. E. Trafficking of GABAA receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J. Neurosci. 25, 7724–7733 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Feng, H.-J., Mathews, G. C., Kao, C. & Macdonald, R. L. Alterations of GABAA-receptor function and allosteric modulation during development of status epilepticus. J. Neurophysiol. 99, 1285–1293 (2008).

    Article  PubMed  Google Scholar 

  131. Terunuma, M. et al. Deficits in Phosphorylation of GABAA receptors by intimately associated protein kinase c activity underlie compromised synaptic inhibition during status epilepticus. J. Neurosci. 28, 376–384 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Goodkin, H. P., Joshi, S., Mtchedlishvili, Z., Brar, J. & Kapur, J. Subunit-specific trafficking of GABAA receptors during status epilepticus. J. Neurosci. 28, 2527–2538 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rice, A., Rafiq, A., Shapiro, S. M. & Delorenzo, R. J. Long-lasting reduction of inhibitory function and y-aminobutyric acid type A receptor subunit mRNA expression in a model of temporal lobe epilepsy. Proc. Natl Acad. Sci. USA 93, 9665–9669 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Goodkin, H. P. Status epilepticus increases the intracellular accumulation of GABAA receptors. J. Neurosci. 25, 5511–5520 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hand, K. S. P. et al. Central benzodiazepine receptor autoradiography in hippocampal sclerosis. Br. J. Pharmacol. 122, 358–364 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Savic, I. et al. In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 332, 863–866 (1988).

    Article  Google Scholar 

  137. Bouvard, S. et al. Seizure-related short-term plasticity of benzodiazepine receptors in partial epilepsy: a [11C]flumazenilPET study. Brain 128, 1330–1343 (2005).

    Article  PubMed  Google Scholar 

  138. Ryvlin, P. et al. Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients. Brain 121, 2067–2081 (1998).

    Article  PubMed  Google Scholar 

  139. Deeb, T. Z., Nakamura, Y., Frost, G. D., Davies, P. A. & Moss, S. J. Disrupted Cl− homeostasis contributes to reductions in the inhibitory efficacy of diazepam during hyperexcited states. Eur. J. Neurosci. 38, 2453–2467 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sivakumaran, S. & Maguire, J. Bumetanide reduces seizure progression and the development of pharmacoresistant status epilepticus. Epilepsia 57, 222–232 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. DeLorenzo, R. J., Pal, S. & Sombati, S. Prolonged activation of the N-methyl-D-aspartate receptor–Ca2+ transduction pathway causes spontaneous recurrent epileptiform discharges in hippocampal neurons in culture. Proc. Natl Acad. Sci. USA 95, 14482–14487 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bannai, H. et al. Bidirectional control of synaptic GABAAR clustering by glutamate and calcium. Cell Rep. 13, 2768–2780 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Joshi, S. & Kapur, J. N-Methyl-D-aspartic acid receptor activation downregulates expression of δ subunit-containing GABAa receptors in cultured hippocampal neurons. Mol. Pharmacol. 84, 1–11 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bannai, H. et al. Activity-dependent tuning of inhibitory neurotransmission based on GABAAR diffusion dynamics. Neuron 62, 670–682 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Eckel, R., Szulc, B., Walker, M. C. & Kittler, J. T. Activation of calcineurin underlies altered trafficking of α2 subunit containing GABAA receptors during prolonged epileptiform activity. Neuropharmacology 88, 82–90 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rajasekaran, K., Todorovic, M. & Kapur, J. P. Calcium-permeable AMPA receptors are expressed in a rodent model of status epilepticus. Ann. Neurol. 72, 91–102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Burman, R. J., Raimondo, J. V., Jefferys, J. G. R., Sen, A. & Akerman, C. J. The transition to status epilepticus: how the brain meets the demands of perpetual seizure activity. Seizure 75, 137–144 (2020).

    Article  PubMed  Google Scholar 

  148. Macdonald, R. L. & Barker, J. L. Different actions of anticonvulsant and anesthetic barbiturates revealed by use of cultured mammalian neurons. Science 200, 775–777 (1978).

    Article  CAS  PubMed  Google Scholar 

  149. Nardou, R. et al. Phenobarbital but not diazepam reduces AMPA/kainate receptor mediated currents and exerts opposite actions on initial seizures in the neonatal rat hippocampus. Front. Cell. Neurosci. 5, 16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yi-Ping Lee, Ko,G., Brown-Croyts, L. M. & Teyler, T. J. The effects of anticonvulsant drugs on NMDA-EPSP, AMPA-EPSP, and GABA-IPSP in the rat hippocampus. Brain Res. Bull. 42, 297–302 (1997).

    Article  Google Scholar 

  151. Su, Y. et al. Phenobarbital versus valproate for generalized convulsive status epilepticus in adults: a prospective randomized controlled trial in China. CNS Drugs 30, 1201–1207 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Treiman, D. M. et al. Comparison of four treatments for generalized convulsive status epilepticus. N. Eng. J. Med. 339, 792–798 (1998).

    Article  CAS  Google Scholar 

  153. Brodie, M. J. & Kwan, P. Current position of phenobarbital in epilepsy and its future. Epilepsia 53, 40–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Camfield, C. S. et al. Side effects of phenobarbital in toddlers; behavioral and cognitive aspects. J. Pediatr. 95, 361–365 (1979).

    Article  CAS  PubMed  Google Scholar 

  155. Farwell, J. R. et al. Phenobarbital for febrile seizures — effects on intelligence and on seizure recurrence. N. Eng. J. Med. 322, 364–369 (1990).

    Article  CAS  Google Scholar 

  156. Hassan Tonekaboni, S., Beyraghi, N., Sahar Tahbaz, H., Abdolmajid Bahreynian, S. & Aghamohammadpoor, M. Neurocognitive effects of phenobarbital discontinuation in epileptic children. Epilepsy Behav. 8, 145–148 (2006).

    Article  Google Scholar 

  157. Meador, K. J. et al. Comparative cognitive effects of phenobarbital, phenytoin, and valproate in healthy adults. Neurology 45, 1494–1499 (1995).

    Article  CAS  PubMed  Google Scholar 

  158. Riva, D. & Devoti, M. Discontinuation of phenobarbital in children: effects on neurocognitive behavior. Pediatr. Neurol. 14, 36–40 (1996).

    Article  CAS  PubMed  Google Scholar 

  159. Sulzbacher, S., Farwell, J. R., Temkin, N., Lu, A. S. & Hirtz, D. G. Late cognitive effects of early treatment with phenobarbital. Clin. Pediatr. 38, 387–394 (1999).

    Article  CAS  Google Scholar 

  160. Ding, D. et al. Cognitive and mood effects of phenobarbital treatment in people with epilepsy in rural China: a prospective study. J. Neurol. Neurosurg. Psychiatry 83, 1139–1144 (2012).

    Article  PubMed  Google Scholar 

  161. Pal, D. K., Das, T., Chaudhury, G., Johnson, A. L. & Neville, B. G. Randomised controlled trial to assess acceptability of phenobarbital for childhood epilepsy in rural India. Lancet 351, 19–23 (1998).

    Article  CAS  PubMed  Google Scholar 

  162. Satischandra, P. et al. The effect of phenobarbitone on cognition in adult patients with new onset epilepsy: a multi-centric prospective study from India. Epilepsy Res. 108, 928–936 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Wang, W. et al. Efficacy assessment of phenobarbital in epilepsy: a large community-based intervention trial in rural China. Lancet Neurol. 5, 46–52 (2006).

    Article  PubMed  CAS  Google Scholar 

  164. Wolf, S. M., Forsythe, A., Stunden, A. A., Friedman, R. & Diamond, H. Long-term effect of phenobarbital on cognitive function in children with febrile convulsions. Pediatrics 68, 820–823 (1981).

    Article  CAS  PubMed  Google Scholar 

  165. Watkins, L. V., Cock, H. R., Angus-Leppan, H. & Shankar, R. Valproate and the Pregnancy Prevention Programme: exceptional circumstances. Br. J. Gen. Pract. 69, 166–167 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Bhalla, D. et al. Undue regulatory control on phenobarbital — an important yet overlooked reason for the epilepsy treatment gap. Epilepsia 56, 659–662 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Trinka, E., Brigo, F. & Shorvon, S. Recent advances in status epilepticus. Curr. Opin. Neurol. 29, 189–198 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Neligan, A., Rajakulendran, S. & Walker, M. C. Advances in the management of generalized convulsive status epilepticus: what have we learned? Brain 144, 1336–1341 (2021).

    Article  PubMed  Google Scholar 

  169. Amengual-Gual, M., Sánchez Fernández, I. & Wainwright, M. S. Novel drugs and early polypharmacotherapy in status epilepticus. Seizure 68, 79–88 (2019).

    Article  PubMed  Google Scholar 

  170. Leo, A., Giovannini, G., Russo, E. & Meletti, S. The role of AMPA receptors and their antagonists in status epilepticus. Epilepsia 59, 1098–1108 (2018).

    Article  PubMed  Google Scholar 

  171. Prisco, L. et al. A pragmatic approach to intravenous anaesthetics and electroencephalographic endpoints for the treatment of refractory and super-refractory status epilepticus in critical care. Seizure 75, 153–164 (2020).

    Article  PubMed  Google Scholar 

  172. Kapur, J. Role of NMDA receptors in the pathophysiology and treatment of status epilepticus. Epilepsia Open 3, 165–168 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Brigo, F. et al. Perampanel in the treatment of status epilepticus: A systematic review of the literature. Epilepsy Behav. 86, 179–186 (2018).

    Article  PubMed  Google Scholar 

  174. Rosati, A., De Masi, S. & Guerrini, R. Ketamine for refractory status epilepticus: a systematic review. CNS Drugs 32, 997–1009 (2018).

    Article  PubMed  Google Scholar 

  175. Vossler, D. G. et al. Treatment of refractory convulsive status epilepticus: a comprehensive review by the american epilepsy society treatments committee. Epilepsy Curr. 20, 245–264 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Yen, W., Williamson, J., Bertram, E. H. & Kapur, J. A comparison of three NMDA receptor antagonists in the treatment of prolonged status epilepticus. Epilepsy Res. 59, 43–50 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang, T., Todorovic, M. S., Williamson, J. & Kapur, J. Flupirtine and diazepam combination terminates established status epilepticus: results in three rodent models. Ann. Clin. Transl. Neurol. 4, 888–896 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ulvi, H., Yoldas, T., Müngen, B. & Yigiter, R. Continuous infusion of midazolam in the treatment of refractory generalized convulsive status epilepticus. Neurol. Sci. 23, 177–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  179. Fernandez, A. et al. High-dose midazolam infusion for refractory status epilepticus. Neurology 82, 359–365 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Koul, R. L., Aithala, G. R., Chacko, A., Joshi, R. & Elbualy, M. S. Continuous midazolam infusion as treatment of status epilepticus. Arch. Dis. Child. 76, 445–448 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Eissa, T. L. et al. Cross-scale effects of neural interactions during human neocortical seizure activity. Proc. Natl Acad. Sci. USA 114, 10761–10766 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Liou, J. et al. A model for focal seizure onset, propagation, evolution, and progression. eLife 9, e50927 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Stell, B. M., Brickley, S. G., Tang, C. Y., Farrant, M. & Mody, I. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by δ subunit-containing GABAA receptors. Proc. Natl Acad. Sci. USA 100, 14439–14444 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Rogawski, M. A., Loya, C. M., Reddy, K., Zolkowska, D. & Lossin, C. Neuroactive steroids for the treatment of status epilepticus. Epilepsia 54, 93–98 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Vaitkevicius, H. et al. First-in-man allopregnanolone use in super-refractory status epilepticus. Ann. Clin. Trans. Neurol. 4, 411–414 (2017).

    Article  Google Scholar 

  186. Rossetti, A. O. Place of neurosteroids in the treatment of status epilepticus. Epilepsia 59, 216–219 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. Rosenthal, E. S. et al. Brexanolone as adjunctive therapy in super-refractory status epilepticus. Ann. Neurol. 82, 342–352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Prasad, M., Krishnan, P. R., Sequeira, R. & Al-Roomi, K. Anticonvulsant therapy for status epilepticus. Cochrane Database Sys. Rev. 9, CD003723 (2014).

    Google Scholar 

  189. Das, K. et al. Clinical feature and outcome of childhood status epilepticus in a teaching hospital, Odisha, India. Cureus 12, e10927 (2020).

    PubMed  PubMed Central  Google Scholar 

  190. Hassan, H. et al. An audit of the predictors of outcome in status epilepticus from a resource-poor country: a comparison with developed countries. Epileptic Disord. 18, 163–172 (2016).

    Article  PubMed  Google Scholar 

  191. Thakker, A. & Shanbag, P. A randomized controlled trial of intranasalmidazolam versus intravenous-diazepam for acute childhood seizures. J. Neurol. 260, 470–474 (2013).

    Article  CAS  PubMed  Google Scholar 

  192. Misra, U. K., Kalita, J. & Maurya, P. K. Levetiracetam versus lorazepam in status epilepticus: a randomized, open labeled pilot study. J. Neurol. 259, 645–648 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Gathwala, G., Goel, M., Singh, J. & Mittal, K. Intravenous diazepam, midazolam and lorazepam in acute seizure control. Ind. J. Pediatr. 79, 327–332 (2012).

    Article  Google Scholar 

  194. Arya, R., Gulati, S., Kabra, M., Sahu, J. K. & Kalra, V. Intranasal versus intravenous lorazepam for control of acute seizures in children: A randomized open-label study. Epilepsia 52, 788–793 (2011).

    Article  CAS  PubMed  Google Scholar 

  195. Chen, W. B. et al. Valproate versus diazepam for generalized convulsive status epilepticus: a pilot study. Eur. J. Neurol. 18, 1391–1396 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Skinner, H. J. et al. Adult convulsive status epilepticus in the developing country of Honduras. Seizure 19, 363–367 (2010).

    Article  PubMed  Google Scholar 

  197. Amare, A., Zenebe, G., Hammack, J. & Davey, G. Status epilepticus: Clinical presentation, cause, outcome, and predictors of death in 119 Ethiopian patients. Epilepsia 49, 600–607 (2008).

    Article  PubMed  Google Scholar 

  198. Mpimbaza, A., Ndeezi, G., Staedke, S., Rosenthal, P. J. & Byarugaba, J. Comparison of buccal midazolam with rectal diazepam in the treatment of prolonged seizures in ugandan children: a randomized clinical trial. Pediatrics 121, 58–64 (2008).

    Article  Google Scholar 

  199. Ahmad, S., Ellis, J. C., Kamwendo, H. & Molyneux, E. Efficacy and safety of intranasal lorazepam versus intramuscular paraldehyde for protracted convulsions in children: an open randomised trial. Lancet 367, 1591–1597 (2006).

    Article  CAS  PubMed  Google Scholar 

  200. Fişgin, T. et al. Effects of intranasal midazolam and rectal diazepam on acute convulsions in children: prospective randomized study. J. Child. Neurol. 17, 123–126 (2002).

    Article  PubMed  Google Scholar 

  201. Tabarki, B. et al. Infantile status epilepticus in Tunisia. Clinical, etiological and prognostic aspects. Seizure 10, 365–369 (2001).

    Article  CAS  PubMed  Google Scholar 

  202. Theusinger, O. M., Schenk, P., Dette-Oltmann, K., Mariotti, S. & Baulig, W. Treatment of seizures in children and adults in the emergency medical system of the city of Zurich, Switzerland — midazolam vs. diazepam — a retrospective analysis. J. Emerg. Med. 57, 345–353 (2019).

    Article  PubMed  Google Scholar 

  203. Kay, L. et al. Intranasal midazolam as first-line inhospital treatment for status epilepticus: a pharmaco-EEG cohort study. Ann. Clin. Transl. Neurol. 6, 2413–2425 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Navarro, V. et al. Prehospital treatment with levetiracetam plus clonazepam or placebo plus clonazepam in status epilepticus (SAMUKeppra): a randomised, double-blind, phase 3 trial. Lancet Neurol. 15, 47–55 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. Chamberlain, J. M. et al. Lorazepam vs diazepam for pediatric status epilepticus: a randomized clinical trial. JAMA 311, 1652–1660 (2014).

    Article  PubMed  CAS  Google Scholar 

  206. Chin, R. F. et al. Treatment of community-onset, childhood convulsive status epilepticus: a prospective, population-based study. Lancet Neurol. 7, 696–703 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. McIntyre, J. et al. Safety and efficacy of buccal midazolam versus rectal diazepam for emergency treatment of seizures in children: a randomised controlled trial. Lancet 366, 205–210 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. Qureshi, A., Wassmer, E., Davies, P., Berry, K. & Whitehouse, W. P. Comparative audit of intravenous lorazepam and diazepam in the emergency treatment of convulsive status epilepticus in children. Seizure 11, 141–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  209. Mayer, S. A. et al. Refractory status epilepticus: frequency, risk factors, and impact on outcome. Arch. Neurol. 59, 205 (2002).

    Article  PubMed  Google Scholar 

  210. Lahat, E., Goldman, M., Barr, J., Bistritzer, T. & Berkovitch, M. Comparison of intranasal midazolam with intravenous diazepam for treating febrile seizures in children: prospective randomised study. BMJ 321, 83–86 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Coeytaux, A., Jallon, P., Galobardes, B. & Morabia, A. Incidence of status epilepticus in French-speaking Switzerland: (EPISTAR). Neurology 55, 693–697 (2000).

    Article  CAS  PubMed  Google Scholar 

  212. Scott, R. C., Besag, F. M. & Neville, B. G. Buccal midazolam and rectal diazepam for treatment of prolonged seizures in childhood and adolescence: a randomised trial. Lancet 353, 623–626 (1999).

    Article  CAS  PubMed  Google Scholar 

  213. Chamberlain, J. M. et al. A prospective, randomized study comparing intramuscular midazolam with intravenous diazepam for the treatment of seizures in children. Pediatr. Emerg. Care 13, 92–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  214. Appletan, R., Sweeney, A., Choonara, I., Robson, J. & Molyneux, E. Lorazepam versus diazepam in the acute treatment of epileptic seizures and status epilepticus. Dev. Med. Child. Neurol. 37, 682–688 (1995).

    Article  Google Scholar 

  215. Remy, C., Jourdil, N., Villemain, D., Favel, P. & Genton, P. Intrarectal diazepam in epileptic adults. Epilepsia 33, 353–358 (1992).

    Article  CAS  PubMed  Google Scholar 

  216. The World Bank. World Bank Country and Lending Groups https://datahelpdesk.worldbank.org/knowledgebase/articles/378832-what-is-the-world-bank-atlas-method (2020).

  217. Bowser, D. N. et al. Altered kinetics and benzodiazepine sensitivity of a GABAA receptor subunit mutation (γ2(R43Q)] found in human epilepsy. Proc. Natl Acad. Sci. USA 99, 15170–15175 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Lorenz-Guertin, J. M., Bambino, M. J. & Jacob, T. C. γ2 GABAAR trafficking and the consequences of human genetic variation. Front. Cell Neurosci. 12, 265 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Macdonald, R. L., Kang, J.-Q. & Gallagher, M. J. in Jasper’s Basic Mechanisms of the Epilepsies (eds Noebels, J. L., Avoli, M., Rogawski, M. A., Olsen, R. W. & Delgado-Escueta, A. V.) (National Center for Biotechnology Information, 2012).

  220. Macdonald, R. L., Bianch, M. T. & Feng, H. Mutations linked to generalized epilepsy in humans reduce GABAA receptor current. Exp. Neurol. 184, 58–67 (2003).

    Article  CAS  Google Scholar 

  221. Rosenberg, H. C., Tietz, E. I. & Chiu, T. H. Tolerance to the anticonvulsant action of benzodiazepines. Relationship to decreased receptor density. Neuropharmacology 24, 639–644 (1985).

    Article  CAS  PubMed  Google Scholar 

  222. Avanzini, G. Is tolerance to antiepileptic drugs clinically relevant? Epilepsia 47, 1285–1287 (2006).

    Article  PubMed  Google Scholar 

  223. Löscher, W. & Schmidt, D. Experimental and clinical evidence for loss of effect (tolerance) during prolonged treatment with antiepileptic drugs. Epilepsia 47, 1253–1284 (2006).

    Article  PubMed  CAS  Google Scholar 

  224. Levy, R. H. Cytochrome P450 isoenzymes and antiepileptic drug interactions. Epilepsia 36, 8–13 (1995).

    Article  Google Scholar 

  225. Verrotti, A., Lattanzi, S., Brigo, F. & Zaccara, G. Pharmacodynamic interactions of antiepileptic drugs: from bench to clinical practice. Epilepsy Behav. 104, 106939 (2020).

    Article  PubMed  Google Scholar 

  226. Patsalos, P. N. & Perucca, E. Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol. 2, 347–356 (2003).

    Article  CAS  PubMed  Google Scholar 

  227. Griffin, C. E., Kaye, A. M., Bueno, F. R. & Kaye, A. D. Benzodiazepine pharmacology and central nervous system–mediated effects. Ochsner J. 13, 214–223 (2013).

    PubMed  PubMed Central  Google Scholar 

  228. Löscher, W., Rundfeldt, C., Hönack, D. & Ebert, U. Long-term studies on anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. I. Comparison of diazepam, clonazepam, clobazam and abecarnil. J. Pharmacol. Exp. Ther. 279, 561–572 (1996).

    PubMed  Google Scholar 

  229. Douglas Knowles, W., Traub, R. D., Wong, R. K. S. & Miles, R. Properties of neural networks: experimentation and modelling of the epileptic hippocampal slice. Trends Neurosci. 8, 73–79 (1985).

    Article  Google Scholar 

  230. Riss, J., Cloyd, J., Gates, J. & Collins, S. Benzodiazepines in epilepsy: pharmacology and pharmacokinetics. Acta Neurol. Scand. 118, 69–86 (2008).

    Article  CAS  PubMed  Google Scholar 

  231. File, S. E. Tolerance to the behavioral actions of benzodiazepines. Neurosci. Biobehav. Rev. 9, 113–121 (1985).

    Article  CAS  PubMed  Google Scholar 

  232. File, S. E. The history of benzodiazepine dependence: a review of animal studies. Neuro. Biobehav. Rev. 14, 135–146 (1990).

    Article  CAS  Google Scholar 

  233. Bateson, A. N. Basic pharmacologic mechanisms involved in benzodiazepine tolerance and withdrawal. Curr. Pharm. Des. 8, 5–21 (2001).

    Article  Google Scholar 

  234. Vinkers, C. H. & Olivier, B. Mechanisms underlying tolerance after long-term benzodiazepine use: a future for subtype-selective gabaa receptor modulators? Adv. Pharmacol. Sci. 2012, 416864 (2012).

    PubMed  PubMed Central  Google Scholar 

  235. Uusi-Oukari, M. & Korpi, E. R. Regulation of GABAA receptor subunit expression by pharmacological agents. Pharmacol. Rev. 62, 97–135 (2010).

    Article  CAS  PubMed  Google Scholar 

  236. Allison, C. & Pratt, J. A. Neuroadaptive processes in GABAergic and glutamatergic systems in benzodiazepine dependence. Pharmacol. Ther. 98, 171–195 (2003).

    Article  CAS  PubMed  Google Scholar 

  237. Feng, J., Cai, X., Zhao, J. & Yan, Z. Serotonin receptors modulate GABAA receptor channels through activation of anchored protein kinase C in prefrontal cortical neurons. J. Neurosci. 21, 6502–6511 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Wang, X., Zhong, P. & Yan, Z. Dopamine D4 receptors modulate gabaergic signaling in pyramidal neurons of prefrontal cortex. J. Neurosci. 22, 9185–9193 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Brandon, N. J., Jovanovic, J. N., Smart, T. G. & Moss, S. J. Receptor for activated C kinase-1 facilitates protein kinase C-dependent phosphorylation and functional modulation of GABAA receptors with the activation of G-protein-coupled receptors. J. Neurosci. 22, 6353–6361 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Wilson, M. A. & Biscardi, R. Effects of gender and gonadectomy on responses to chronic benzodiazepine receptor agonist exposure in rats. Eur. J. Pharm. 215, 99–107 (1992).

    Article  CAS  Google Scholar 

  241. Krishnan, G. P. & Bazhenov, M. Ionic dynamics mediate spontaneous termination of seizures and postictal depression state. J. Neurosci. 31, 8870–8882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Löscher, W., Puskarjov, M. & Kaila, K. Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology 69, 62–74 (2013).

    Article  PubMed  CAS  Google Scholar 

  243. Moore, Y. E., Kelley, M. R., Brandon, N. J., Deeb, T. Z. & Moss, S. J. Seizing control of KCC2: a new therapeutic target for epilepsy. Trends Neurosci. 40, 555–571 (2017).

    Article  CAS  PubMed  Google Scholar 

  244. Magloire, V. et al. KCC2 overexpression prevents the paradoxical seizure-promoting action of somatic inhibition. Nat. Commun. 10, 1225–1237 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Moore, Y. E., Deeb, T. Z., Chadchankar, H., Brandon, N. J. & Moss, S. J. Potentiating KCC2 activity is sufficient to limit the onset and severity of seizures. Proc. Natl Acad. Sci. USA 115, 10166–10171 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Sutter, R., Semmlack, S. & Kaplan, P. W. Nonconvulsive status epilepticus in adults — insights into the invisible. Nat. Rev. Neurol. 12, 281–293 (2016).

    Article  CAS  PubMed  Google Scholar 

  247. Sutter, R., Ruegg, S. & Kaplan, P. W. Epidemiology, diagnosis, and management of nonconvulsive status epilepticus: opening Pandora’s box. Neurology 2, 275–286 (2012).

    PubMed  PubMed Central  Google Scholar 

  248. De Negri, M. et al. Treatment of electrical status epilepticus by short diazepam (DZP) cycles after DZP rectal bolus test. Brain Dev. 17, 330–333 (1995).

    Article  PubMed  Google Scholar 

  249. Hopp, J. L., Sanchez, A., Krumholz, A., Hart, G. & Barry, E. Nonconvulsive status epilepticus: value of a benzodiazepine trial for predicting outcomes. Neurologist 17, 325–329 (2011).

    Article  PubMed  Google Scholar 

  250. Power, K. N., Gramstad, A., Gilhus, N. E. & Engelsen, B. A. Adult nonconvulsive status epilepticus in a clinical setting: Semiology, aetiology, treatment and outcome. Seizure 24, 102–106 (2015).

    Article  PubMed  Google Scholar 

  251. Ben-Ari, Y., Gaiarsa, J.-L., Tyzio, R. & Khazipov, R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol. Rev. 87, 1215–1284 (2007).

    Article  CAS  PubMed  Google Scholar 

  252. Kahle, K. T. et al. Roles of the cation–chloride cotransporters in neurological disease. Nat. Rev. Neurol. 4, 490–503 (2008).

    Article  CAS  Google Scholar 

  253. Akerman, C. J. & Cline, H. T. Depolarizing GABAergic conductances regulate the balance of excitation to inhibition in the developing retinotectal circuit in vivo. J. Neurosci. 26, 5117–5130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Leinekugel, X., Medina, I., Khalilov, I., Ben-Ari, Y. & Khazipov, R. Ca2+ oscillations mediated by the synergistic excitatory actions of GABAA and NMDA receptors in the neonatal hippocampus. Neuron 18, 243–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  255. Pfeffer, C. K. et al. NKCC1-Dependent GABAergic excitation drives synaptic network maturation during early hippocampal development. J. Neurosci. 29, 3419–3430 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Wang, D. D. & Kriegstein, A. R. GABA regulates excitatory synapse formation in the neocortex via NMDA receptor activation. J. Neurosci. 28, 5547–5558 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Peerboom, C. & Wierenga, C. J. The postnatal GABA shift: a developmental perspective. Neuro. Biobehav. Rev. 124, 179–192 (2021).

    Article  CAS  Google Scholar 

  258. Tyzio, R. et al. The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J. Neurosci. 19, 10372–10382 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Wang, D. D. & Kriegstein, A. R. Defining the role of GABA in cortical development. J. Physiol. 587, 1873–1879 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Wu, G.-Y., Malinow, R. & Cline, H. T. Maturation of a Central Glutamatergic Synapse. Science 274, 972–976 (1996).

    Article  CAS  PubMed  Google Scholar 

  261. Dzhala, V. I. et al. NKCC1 transporter facilitates seizures in the developing brain. Nat. Med. 11, 1205–1213 (2005).

    Article  CAS  PubMed  Google Scholar 

  262. Ramantani, G. et al. Neonatal Seizures — Are We there Yet? Neuropediatrics 50, 280–293 (2019).

    Article  PubMed  Google Scholar 

  263. Boylan, G. B. et al. Phenobarbitone, neonatal seizures, and video-EEG. Arch. Dis. Child. Fetal Neonatal Ed. 86, 165–170 (2002).

    Article  Google Scholar 

  264. Boylan, G. B. et al. Outcome of electroclinical, electrographic, and clinical seizures in the newborn infant. Dev. Med. Child. Neurol. 41, 819–825 (1999).

    Article  CAS  PubMed  Google Scholar 

  265. Connell, J., Oozeer, R., Vries, L., de, Dubowitz, L. M. & Dubowitz, V. Clinical and EEG response to anticonvulsants in neonatal seizures. Arch. Dis. Child. 64, 459–464 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Murray, D. M. et al. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch. Dis. Child. Fetal Neonatal Ed. 93, 187–191 (2008).

    Article  Google Scholar 

  267. Rennie, J. M. & Boylan, G. B. Neonatal seizures and their treatment. Curr. Opin. Neurol. 16, 177–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  268. Scher, M. S., Alvin, J., Gaus, L., Minnigh, B. & Painter, M. J. Uncoupling of EEG-clinical neonatal seizures after antiepileptic drug use. Pediatr. Neurol. 28, 277–280 (2003).

    Article  PubMed  Google Scholar 

  269. Weiner, S. P., Painter, M. J., Geva, D., Guthrie, R. D. & Scher, M. S. Neonatal seizures: electroclinical dissociation. Pediatr. Neurol. 7, 363–368 (1991).

    Article  CAS  PubMed  Google Scholar 

  270. Glykys, J. et al. Differences in cortical versus subcortical GABAergic signaling: a candidate mechanism of electroclinical uncoupling of neonatal seizures. Neuron 63, 657–672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Kharod, S. C., Carter, B. M. & Kadam, S. D. Pharmaco-resistant neonatal seizures: critical mechanistic insights from a chemoconvulsant model. Dev. Neurobiol. 11, 1117–1130 (2018).

    Article  CAS  Google Scholar 

  272. Dzhala, V. I. et al. Progressive NKCC1-dependent neuronal chloride accumulation during neonatal seizures. J. Neurosci. 30, 11745–11761 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Glykys, J. & Staley, K. J. Diazepam effect during early neonatal development correlates with neuronal Cl. Ann. Clin. Transl. Neurol. 2, 1055–1070 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Johne, M. et al. A combination of phenobarbital and the bumetanide derivative bumepamine prevents neonatal seizures and subsequent hippocampal neurodegeneration in a rat model of birth asphyxia. Epilepsia 62, 1460–1471 (2021).

    Article  CAS  PubMed  Google Scholar 

  275. Lawrence, R. & Inder, T. Neonatal status epilepticus. Sem. Pediatr. Neurol. 17, 163–168 (2010).

    Article  Google Scholar 

  276. Pressler, R. M. et al. Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO): an open-label, dose finding, and feasibility phase 1/2 trial. Lancet Neurol. 14, 469–477 (2015).

    Article  CAS  PubMed  Google Scholar 

  277. Soul, J. S. et al. A pilot randomized, controlled, double-blind trial of bumetanide to treat neonatal seizures. Ann. Neurol. 89, 327–340 (2021).

    Article  CAS  PubMed  Google Scholar 

  278. Stafstrom, C. E. Mechanism-based treatment for neonatal seizures: still on the horizon. Epilepsy Curr. 20, 53S–55S (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Kang, S. K., Markowitz, G. H., Kim, S. T., Johnston, M. V. & Kadam, S. D. Age-and sex-dependent susceptibility to phenobarbital-resistant neonatal seizures: role of chloride co-transporters. Front. Cell. Neurosci. 9, 173 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. J. Trevelyan (Institute of Neurosciences, Newcastle, UK) for his helpful comments on this manuscript. R.J.B. is supported by a Shaun Johnson Memorial Scholarship through the Leverhulme Trust. R.J.B., R.E.R. and G.R. are supported by project grants from the Theodor and Ida Herzog-Egli Foundation and the Anna Mueller Grocholski Foundation. R.E.R. is supported by a Sir Henry Wellcome Fellowship (209164/Z/17/Z). A.S. is supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC). C.J.A. received funding from the European Research Council under the European Community’s Seventh Framework Programme FP7/2007-2013, ERC Grant Agreement 617670. J.V.R. is supported by the National Research Foundation of South Africa, a Wellcome Trust Seed Award (214042/Z/18/Z), the South African Medical Research Council and by the FLAIR Fellowship Programme (FLR\R1\190829): a partnership between the African Academy of Sciences and the Royal Society funded by the UK Government’s Global Challenges Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

R.J.B and J.V.R. researched data for the article, made a substantial contribution to discussion of content, wrote the article, and reviewed and edited the manuscript before submission. All other authors made a substantial contribution to discussion of content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Richard J. Burman or Joseph V. Raimondo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

The studies mentioned in Table 1 were found using medical search headings (MeSH) on the PubMed and Embase database search platforms. We searched within the main heading of ‘convulsive status epilepticus’ and included ‘drug therapy’ and ‘prevention and control’ as subheadings. We added ‘benzodiazepines’ with the subheadings ‘administration and dosage’ and ‘therapeutic use’ to our search requirements. We limited our search to studies published from 1 January 1990 to 1 July 2021 and to peer-reviewed studies that were published in English and had the full text available. Studies were included if they were performed in patients, both adult and/or paediatric, presenting in convulsive status epilepticus and where monotherapy with a benzodiazepine (consisting of one or two doses), of any kind or formulation, was assessed in terms of its efficacy in terminating status epilepticus. In addition to this search, we also assessed the studies mentioned in two systematic reviews7,188 and added additional studies that met our inclusion criteria.

Supplementary information

Glossary

Co-transporters

Transmembrane proteins that allow the coupled, simultaneous transport of multiple substances across the membrane.

Equilibrium potential

The electrical potential difference at which the flow of ions down their transmembrane concentration gradient is exactly balanced by the opposing potential difference across the membrane; at the equilibrium potential there is no net flux of ions.

Ionotropic receptor

A ligand-gated ion channel in which ligand binding results in transmembrane ion flux through the receptor’s pore.

Phasic inhibition

The fast activation of synaptic GABAA receptors following pre-synaptic release of GABA.

Resting membrane potential

The electrical potential difference across the cell membrane at rest (that is, when the cell is not receiving synaptic input or engaged in action potential firing).

Secondary active transport

The transport of chemical substances across a membrane (also known as co-transport), where the energy to move one substance against its concentration gradient is provided by the movement of another substance down its concentration gradient.

Shunting

A type of inhibition whereby activated GABAA receptors lower the local membrane resistance, which reduces (or ‘shunts’) the impact of concurrent excitatory synaptic inputs.

Tonic inhibition

The continuous activation of perisynaptic and extrasynaptic GABAA receptors owing to the presence of ambient GABA in the extracellular space, or spontaneous GABAA receptor openings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burman, R.J., Rosch, R.E., Wilmshurst, J.M. et al. Why won’t it stop? The dynamics of benzodiazepine resistance in status epilepticus. Nat Rev Neurol 18, 428–441 (2022). https://doi.org/10.1038/s41582-022-00664-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-022-00664-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing