Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of glial cells in multiple sclerosis disease progression

Abstract

Despite the development of highly effective treatments for relapsing–remitting multiple sclerosis (MS), limited progress has been made in addressing primary progressive or secondary progressive MS, both of which lead to loss of oligodendrocytes and neurons and axons, and to irreversible accumulation of disability. Neuroinflammation is central to all forms of MS. The current effective therapies for relapsing–remitting MS target the peripheral immune system; these treatments, however, have repeatedly failed in progressive MS. Greater understanding of inflammation driven by CNS-resident cells — including astrocytes and microglia — is, therefore, required to identify novel potential therapeutic opportunities. Advances in imaging, biomarker analysis and genomics suggest that microglia and astrocytes have central roles in the progressive disease process. In this Review, we provide an overview of the involvement of astrocytes and microglia at major sites of pathology in progressive MS. We discuss current and future therapeutic approaches to directly target glial cells, either to inhibit pathogenic functions or to restore homeostatic functions lost during the course of the disease. We also discuss how bidirectional communication between astrocytes and microglia needs to be considered, as therapeutic targeting of one is likely to alter the functions of the other.

Key points

  • Immune mechanisms of progressive multiple sclerosis (MS) predominantly involve cells that are resident in the CNS, leptomeninges or cerebrospinal fluid, whereas MS relapses are driven by transient infiltration of peripheral immune cells.

  • The contributions of microglia and astrocytes — resident glial cells of the CNS parenchyma — to tissue injury and repair reflect their dynamic state of activation.

  • In MS, glial cells are activated across the CNS, including expanding white matter lesions, superficial cortical grey matter, periventricular deep grey matter and the spinal cord.

  • Glial cell activation states reflect responses to the local environment (for example, injured neurons and neighbouring glia) and the external environment (for example, viruses and microbiome products).

  • Clinically applicable markers of glial cell activation include imaging (MRI and PET) and bio-assays (cell type-related proteins, microRNAs and exosomes).

  • Current therapies that affect glial function largely modulate signal transduction pathways; future directions include genetic reprogramming and/or endogenous cell replacement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunohistochemical features of mixed active–inactive lesions and active lesions.
Fig. 2: Immunohistochemical features of subpial and periventricular multiple sclerosis lesions.

Similar content being viewed by others

References

  1. Solomon, A. J. et al. The contemporary spectrum of multiple sclerosis misdiagnosis: a multicenter study. Neurology 87, 1393–1399 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thompson, A. & Ciccarelli, O. Towards treating progressive multiple sclerosis. Nat. Rev. Neurol. 16, 589–590 (2020).

    Article  PubMed  Google Scholar 

  3. Faissner, S., Plemel, J. R., Gold, R. & Yong, V. W. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov. 18, 905–922 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Kirby, L. et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat. Commun. 10, 3887 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Michell-Robinson, M. A. et al. Roles of microglia in brain development, tissue maintenance and repair. Brain 138, 1138–1159 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ponath, G., Park, C. & Pitt, D. The role of astrocytes in multiple sclerosis. Front. Immunol. 9, 217 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kuhlmann, T. et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24 (2017). This report outlines the histological features of microglia and astrocytes during progression of MS lesions.

    Article  CAS  PubMed  Google Scholar 

  8. Sati, P. et al. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat. Rev. Neurol. 12, 714–722 (2016).

    Article  PubMed  Google Scholar 

  9. Kutzelnigg, A. et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128, 2705–2712 (2005).

    Article  PubMed  Google Scholar 

  10. Frischer, J. M. et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 78, 710–721 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 8, a028936 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hess, K. et al. Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol. 140, 359–375 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tham, M. et al. Iron heterogeneity in early active multiple sclerosis lesions. Ann. Neurol. 89, 498–510 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Williams, R., Buchheit, C. L., Berman, N. E. & LeVine, S. M. Pathogenic implications of iron accumulation in multiple sclerosis. J. Neurochem. 120, 7–25 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Gillen, K. M., Mubarak, M., Nguyen, T. D. & Pitt, D. Significance and in vivo detection of iron-laden microglia in white matter multiple sclerosis lesions. Front. Immunol. 9, 255 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dal-Bianco, A. et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7T magnetic resonance imaging. Acta Neuropathol. 133, 25–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Dal-Bianco, A. et al. Long-term evolution of multiple sclerosis iron rim lesions in 7T MRI. Brain 144, 833–847 (2021). This paper describes the evolution of MS lesions on the basis of iron content in microglia and macrophages.

    Article  PubMed  Google Scholar 

  18. Filippi, M. et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 18, 198–210 (2019).

    Article  PubMed  Google Scholar 

  19. Rawji, K. S., Gonzalez Martinez, G. A., Sharma, A. & Franklin, R. J. M. The role of astrocytes in remyelination. Trends Neurosci. 43, 596–607 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Ponath, G. et al. Myelin phagocytosis by astrocytes after myelin damage promotes lesion pathology. Brain 140, 399–413 (2017).

    Article  PubMed  Google Scholar 

  21. Popescu, B. F. et al. Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions. Acta Neuropathol. 134, 45–64 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rathore, K. I., Redensek, A. & David, S. Iron homeostasis in astrocytes and microglia is differentially regulated by TNF-α and TGF-β1. Glia 60, 738–750 (2012).

    Article  PubMed  Google Scholar 

  23. Elliott, C. et al. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult. Scler. 25, 1915–1925 (2019).

    Article  PubMed  Google Scholar 

  24. Truyen, L. et al. Accumulation of hypointense lesions (“black holes”) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 47, 1469–1476 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Ludwin, S. K. The pathogenesis of multiple sclerosis: relating human pathology to experimental studies. J. Neuropathol. Exp. Neurol. 65, 305–318 (2006).

    Article  PubMed  Google Scholar 

  26. Absinta, M., Sati, P. & Reich, D. S. Advanced MRI and staging of multiple sclerosis lesions. Nat. Rev. Neurol. 12, 358–368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maggi, P. et al. The formation of inflammatory demyelinated lesions in cerebral white matter. Ann. Neurol. 76, 594–608 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Singh, S. et al. Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol. 125, 595–608 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van der Poel, M. et al. Transcriptional profiling of human microglia reveals grey-white matter heterogeneity and multiple sclerosis-associated changes. Nat. Commun. 10, 1139 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Holland, R. et al. Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain Behav. Immun. 68, 183–196 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Schuster, S., Boley, D., Moller, P., Stark, H. & Kaleta, C. Mathematical models for explaining the Warburg effect: a review focussed on ATP and biomass production. Biochem. Soc. Trans. 43, 1187–1194 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Nair, S. et al. Lipopolysaccharide-induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia 67, 1047–1061 (2019).

    Article  PubMed  Google Scholar 

  33. Lukas, C. et al. Early central atrophy rate predicts 5 year clinical outcome in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 81, 1351–1356 (2010).

    Article  PubMed  Google Scholar 

  34. Eshaghi, A. et al. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann. Neurol. 83, 210–222 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hidalgo de la Cruz, M. et al. Clinical predictivity of thalamic sub-regional connectivity in clinically isolated syndrome: a 7-year study. Mol. Psychiatry 26, 2163–2174 (2020).

    Article  PubMed  Google Scholar 

  36. Mahajan, K. R., Nakamura, K., Cohen, J. A., Trapp, B. D. & Ontaneda, D. Intrinsic and extrinsic mechanisms of thalamic pathology in multiple sclerosis. Ann. Neurol. 88, 81–92 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fadda, G. et al. A surface-in gradient of thalamic damage evolves in pediatric multiple sclerosis. Ann. Neurol. 85, 340–351 (2019). This study demonstrates the surface-in distribution of pathology in the thalamus, which implicates CSF-derived injury.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Magliozzi, R. et al. A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 68, 477–493 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Magliozzi, R. et al. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann. Neurol. 83, 739–755 (2018). This study demonstrates the link between cortical damage in progressive MS and immune-derived products in the CSF and meninges.

    Article  CAS  PubMed  Google Scholar 

  40. Mastorakos, P. & McGavern, D. The anatomy and immunology of vasculature in the central nervous system. Sci. Immunol. 4, eaav0492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rasmussen, M. K., Mestre, H. & Nedergaard, M. The glymphatic pathway in neurological disorders. Lancet Neurol. 17, 1016–1024 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peterson, J. W., Bo, L., Mork, S., Chang, A. & Trapp, B. D. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50, 389–400 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Hyvarinen, T. et al. Co-stimulation with IL-1β and TNF-α induces an inflammatory reactive astrocyte phenotype with neurosupportive characteristics in a human pluripotent stem cell model system. Sci. Rep. 9, 16944 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ta, T. T. et al. Priming of microglia with IFN-γ slows neuronal gamma oscillations in situ. Proc. Natl Acad. Sci. USA 116, 4637–4642 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Piccio, L. et al. Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain 131, 3081–3091 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).

    Article  PubMed  Google Scholar 

  47. van Olst, L. et al. Meningeal inflammation in multiple sclerosis induces phenotypic changes in cortical microglia that differentially associate with neurodegeneration. Acta Neuropathol. 141, 881–899 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Abdelhak, A., Huss, A., Kassubek, J., Tumani, H. & Otto, M. Serum GFAP as a biomarker for disease severity in multiple sclerosis. Sci. Rep. 8, 14798 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ayrignac, X. et al. Serum GFAP in multiple sclerosis: correlation with disease type and MRI markers of disease severity. Sci. Rep. 10, 10923 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Masvekar, R. et al. Cerebrospinal fluid biomarkers link toxic astrogliosis and microglial activation to multiple sclerosis severity. Mult. Scler. Relat. Disord. 28, 34–43 (2019).

    Article  PubMed  Google Scholar 

  51. Perez-Miralles, F. et al. CSF chitinase 3-like-1 association with disability of primary progressive MS. Neurol. Neuroimmunol. Neuroinflamm. 7, e815 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Comabella, M. et al. Plasma osteopontin levels in multiple sclerosis. J. Neuroimmunol. 158, 231–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Stilund, M. et al. Soluble CD163 as a marker of macrophage activity in newly diagnosed patients with multiple sclerosis. PLoS ONE 9, e98588 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Greenhalgh, A. D. et al. Peripherally derived macrophages modulate microglial function to reduce inflammation after CNS injury. PLoS Biol. 16, e2005264 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Duffy, C. P. & McCoy, C. E. The role of microRNAs in repair processes in multiple sclerosis. Cells 9, 1711 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  56. Mycko, M. P. & Baranzini, S. E. microRNA and exosome profiling in multiple sclerosis. Mult. Scler. 26, 599–604 (2020). This study demonstrates the potential of microRNAs and exosomes as biomarkers in progressive MS.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rao, V. T. S. et al. Astrocytes in the pathogenesis of multiple sclerosis: an in situ microRNA study. J. Neuropathol. Exp. Neurol. 78, 1130–1146 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Kieran N. W. et al. MicroRNA-210 regulates the metabolic and inflammatory status of primary human astrocytes J. Neuroinflammation 19, 10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Siegel, S. R., Mackenzie, J., Chaplin, G., Jablonski, N. G. & Griffiths, L. Circulating microRNAs involved in multiple sclerosis. Mol. Biol. Rep. 39, 6219–6225 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Bergman, P. et al. Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm 3, e219 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sondergaard, H. B., Hesse, D., Krakauer, M., Sorensen, P. S. & Sellebjerg, F. Differential microRNA expression in blood in multiple sclerosis. Mult. Scler. 19, 1849–1857 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Keller, A. et al. Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS ONE 4, e7440 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Regev, K. et al. Association between serum micrornas and magnetic resonance imaging measures of multiple sclerosis severity. JAMA Neurol. 74, 275–285 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Regev, K. et al. Identification of MS-specific serum miRNAs in an international multicenter study. Neurol. Neuroimmunol. Neuroinflamm 5, e491 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Regev, K. et al. Comprehensive evaluation of serum microRNAs as biomarkers in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm 3, e267 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Carandini, T. et al. Microvesicles: what is the role in multiple sclerosis? Front. Neurol. 6, 111 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Blonda, M., Amoruso, A., Martino, T. & Avolio, C. New insights into immune cell-derived extracellular vesicles in multiple sclerosis. Front. Neurol. 9, 604 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Selmaj, I. et al. Global exosome transcriptome profiling reveals biomarkers for multiple sclerosis. Ann. Neurol. 81, 703–717 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Ebrahimkhani, S. et al. Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci. Rep. 7, 14293 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shah, R., Patel, T. & Freedman, J. E. Circulating extracellular vesicles in human disease. N. Engl. J. Med. 379, 2180–2181 (2018).

    Article  PubMed  Google Scholar 

  71. Gharbi, T., Zhang, Z. & Yang, G. Y. The function of astrocyte mediated extracellular vesicles in central nervous system diseases. Front. Cell Dev. Biol. 8, 568889 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Guo, M. et al. Microglial exosomes facilitate α-synuclein transmission in Parkinson’s disease. Brain 143, 1476–1497 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Meabon, J. S. et al. Differential expression of the glutamate transporter GLT-1 in pancreas. J. Histochem. Cytochem. 60, 139–151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cadoret, A. et al. New targets of β-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene 21, 8293–8301 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Weiner, H. L. et al. Serial magnetic resonance imaging in multiple sclerosis: correlation with attacks, disability, and disease stage. J. Neuroimmunol. 104, 164–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Inglese, M., Grossman, R. I. & Filippi, M. Magnetic resonance imaging monitoring of multiple sclerosis lesion evolution. J. Neuroimaging 15, 22S–29S (2005).

    Article  PubMed  Google Scholar 

  77. Brambilla, R. The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol. 137, 757–783 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Voet, S., Prinz, M. & van Loo, G. Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Mol. Med. 25, 112–123 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Sheng, W. S., Hu, S., Feng, A. & Rock, R. B. Reactive oxygen species from human astrocytes induced functional impairment and oxidative damage. Neurochem. Res. 38, 2148–2159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lassmann, H. & van Horssen, J. Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim. Biophys. Acta 1862, 506–510 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Ulvestad, E. et al. Fc receptors for IgG on cultured human microglia mediate cytotoxicity and phagocytosis of antibody-coated targets. J. Neuropathol. Exp. Neurol. 53, 27–36 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Lian, H. et al. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron 85, 101–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Farina, C., Aloisi, F. & Meinl, E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 28, 138–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013). This study links the dynamic properties of microglia with a role in mediating myelin injury and repair.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ludwin, S. K., Rao, V., Moore, C. S. & Antel, J. P. Astrocytes in multiple sclerosis. Mult. Scler. 22, 1114–1124 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Escartin, C. et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Healy, L. M. & Antel, J. P. Sphingosine-1-phosphate receptors in the central nervous and immune systems. Curr. Drug. Targets 17, 1841–1850 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Healy, L. M. et al. Pathway specific modulation of S1P1 receptor signalling in rat and human astrocytes. Br. J. Pharmacol. 169, 1114–1129 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mullershausen, F. et al. Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors. J. Neurochemistry 102, 1151–1161 (2007).

    Article  CAS  Google Scholar 

  90. Choi, J. W. et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc. Natl Acad. Sci. USA 108, 751–756 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Wu, C. et al. Dual effects of daily FTY720 on human astrocytes in vitro: relevance for neuroinflammation. J. Neuroinflammation 10, 41 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mannioui, A. et al. The Xenopus tadpole: an in vivo model to screen drugs favoring remyelination. Mult. Scler. 24, 1421–1432 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Mayo, L. et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat. Med. 20, 1147–1156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fox, R. J. et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med. 367, 1087–1097 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Scannevin, R. H. et al. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J. Pharmacol. Exp. Ther. 341, 274–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Galloway, D. A., Williams, J. B. & Moore, C. S. Effects of fumarates on inflammatory human astrocyte responses and oligodendrocyte differentiation. Ann. Clin. Transl. Neurol. 4, 381–391 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020). This study defines the molecular pathways by which microglia and astrocytes regulate each other’s state of activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kosa, P. et al. Idebenone does not inhibit disability progression in primary progressive MS. Mult. Scler. Relat. Disord. 45, 102434 (2020).

    Article  PubMed  Google Scholar 

  99. Jaber, S. M. et al. Idebenone has distinct effects on mitochondrial respiration in cortical astrocytes compared to cortical neurons due to differential NQO1 activity. J. Neurosci. 40, 4609–4619 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Filippi, M. et al. Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J. Neurol. Neurosurg. Psychiatry 85, 851–858 (2014).

    Article  PubMed  Google Scholar 

  101. Vollmer, T. L. et al. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J. Neurol. 261, 773–783 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Rothhammer, V. et al. Aryl hydrocarbon receptor activation in astrocytes by laquinimod ameliorates autoimmune inflammation in the CNS. Neurol. Neuroimmunol. Neuroinflamm 8, e946 (2021). This study defines pathways of microbiome–glia interactions and potential therapeutic approaches to modulate these pathways.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wheeler, M. A., Rothhammer, V. & Quintana, F. J. Control of immune-mediated pathology via the aryl hydrocarbon receptor. J. Biol. Chem. 292, 12383–12389 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Giovannoni, G. et al. A randomized, placebo-controlled, phase 2 trial of laquinimod in primary progressive multiple sclerosis. Neurology 95, e1027–e1040 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Comi, G. et al. CONCERTO: a randomized, placebo-controlled trial of oral laquinimod in relapsing-remitting multiple sclerosis. Mult. Scler., https://doi.org/10.1177/13524585211032803 (2021).

  107. Lisak, R. P. et al. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for molecules associated with metabolism, signaling and regulation in central nervous system mixed glial cell cultures. J. Neuroinflammation 6, 4 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ma, Y. et al. In vivo chemical reprogramming of astrocytes into neurons. Cell Discov. 7, 12 (2021). This study identifies a novel means to reprogramme functional properties of astrocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fazia, T. et al. Investigating the causal effect of brain expression of CCL2, NFKB1, MAPK14, TNFRSF1A, CXCL10 genes on multiple sclerosis: a two-sample Mendelian randomization approach. Front. Bioeng. Biotechnol. 8, 397 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ponath, G. et al. Enhanced astrocyte responses are driven by a genetic risk allele associated with multiple sclerosis. Nat. Commun. 9, 5337 (2018). This study demonstrates the potential to manipulate astrocyte function on the basis of genetic profile.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guerrero, B. L. & Sicotte, N. L. Microglia in multiple sclerosis: friend or foe? Front. Immunol. 11, 374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Healy, L. M., Michell-Robinson, M. A. & Antel, J. P. Regulation of human glia by multiple sclerosis disease modifying therapies. Semin. Immunopathol. 37, 639–649 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Parodi, B. et al. Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. Acta Neuropathol. 130, 279–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Giuliani, F., Hader, W. & Yong, V. W. Minocycline attenuates T cell and microglia activity to impair cytokine production in T cell-microglia interaction. J. Leukoc. Biol. 78, 135–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Sorensen, P. S. et al. Minocycline added to subcutaneous interferon β-1a in multiple sclerosis: randomized RECYCLINE study. Eur. J. Neurol. 23, 861–870 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Metz, L. M. et al. Trial of minocycline in a clinically isolated syndrome of multiple sclerosis. N. Engl. J. Med. 376, 2122–2133 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Metz, L. M. et al. Glatiramer acetate in combination with minocycline in patients with relapsing–remitting multiple sclerosis: results of a Canadian, multicenter, double-blind, placebo-controlled trial. Mult. Scler. 15, 1183–1194 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Suzumura, A., Ito, A., Yoshikawa, M. & Sawada, M. Ibudilast suppresses TNFα production by glial cells functioning mainly as type III phosphodiesterase inhibitor in the CNS. Brain Res. 837, 203–212 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Cho, Y. et al. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc. Natl Acad. Sci. USA 107, 11313–11318 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schepers, M. et al. Targeting phosphodiesterases–towards a tailor-made approach in multiple sclerosis treatment. Front. Immunol. 10, 1727 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, B. et al. Suppressive effects of phosphodiesterase type IV inhibitors on rat cultured microglial cells: comparison with other types of cAMP-elevating agents. Neuropharmacology 42, 262–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Mestre, L. et al. PDE7 inhibitor TC3.6 ameliorates symptomatology in a model of primary progressive multiple sclerosis. Br. J. Pharmacol. 172, 4277–4290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fox, R. J. et al. Phase 2 trial of ibudilast in progressive multiple sclerosis. N. Engl. J. Med. 379, 846–855 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Luchetti, S. et al. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 135, 511–528 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Oh, J. et al. Cognitive impairment, the central vein sign, and paramagnetic rim lesions in RIS. Mult. Scler. 27, 2199–2208 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Plemel, J. R. et al. Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Sci. Adv. 6, eaay6324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dolgin, E. BTK blockers make headway in multiple sclerosis. Nat. Biotechnol. 39, 3–5 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Vetrie, D. et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361, 226–233 (1993).

    Article  CAS  PubMed  Google Scholar 

  129. Rawlings, D. J. et al. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science 261, 358–361 (1993).

    Article  CAS  PubMed  Google Scholar 

  130. Dong, Y. et al. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat. Neurosci. 24, 489–503 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Nissen, J. C., Thompson, K. K., West, B. L. & Tsirka, S. E. Csf1R inhibition attenuates experimental autoimmune encephalomyelitis and promotes recovery. Exp. Neurol. 307, 24–36 (2018). This study demonstrates the potential of microglia depletion as a therapeutic intervention.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Heppner, F. L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Moreno, M. A. et al. Therapeutic depletion of monocyte-derived cells protects from long-term axonal loss in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 290, 36–46 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Tanabe, S., Saitoh, S., Miyajima, H., Itokazu, T. & Yamashita, T. Microglia suppress the secondary progression of autoimmune encephalomyelitis. Glia 67, 1694–1704 (2019).

    PubMed  Google Scholar 

  135. Matejuk, A. & Ransohoff, R. M. Crosstalk between astrocytes and microglia: an overview. Front. Immunol. 11, 1416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Habbas, S. et al. Neuroinflammatory TNFα impairs memory via astrocyte signaling. Cell 163, 1730–1741 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Marzan, D. E. et al. Activated microglia drive demyelination via CSF1R signaling. Glia 69, 1583–1604 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019). This study helps to define the overall heterogeneity of microglia at the molecular level.

    Article  CAS  PubMed  Google Scholar 

  141. Jakel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bottcher, C. et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat. Neurosci. 22, 78–90 (2019).

    Article  PubMed  Google Scholar 

  143. Spassky, N. et al. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J. Neurosci. 25, 10–18 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bedussi, B. et al. Clearance from the mouse brain by convection of interstitial fluid towards the ventricular system. Fluids Barriers CNS 12, 23 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ma, Q., Ineichen, B. V., Detmar, M. & Proulx, S. T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8, 1434 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Alvarez, J. I. & Teale, J. M. Differential changes in junctional complex proteins suggest the ependymal lining as the main source of leukocyte infiltration into ventricles in murine neurocysticercosis. J. Neuroimmunol. 187, 102–113 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Abdi, K. et al. Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus. Nat. Commun. 9, 1655 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Guo, Y. et al. Pathogenic implications of cerebrospinal fluid barrier pathology in neuromyelitis optica. Acta Neuropathol. 133, 597–612 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lisanti, C. J., Asbach, P. & Bradley, W. G. Jr The ependymal “dot-dash” sign: an MR imaging finding of early multiple sclerosis. Am. J. Neuroradiol. 26, 2033–2036 (2005).

    PubMed  PubMed Central  Google Scholar 

  150. Adams, C. W., Abdulla, Y. H., Torres, E. M. & Poston, R. N. Periventricular lesions in multiple sclerosis: their perivenous origin and relationship to granular ependymitis. Neuropathol. Appl. Neurobiol. 13, 141–152 (1987).

    Article  CAS  PubMed  Google Scholar 

  151. Laabich, A., Graff, M. N., Dunel-Erb, S., Sensenbrenner, M. & Delaunoy, J. P. A study of in vitro and in vivo morphological changes of ependymal cells induced by galactocerebrosides. Glia 4, 504–513 (1991).

    Article  CAS  PubMed  Google Scholar 

  152. Shah, P. T. et al. Single-cell transcriptomics and fate mapping of ependymal cells reveals an absence of neural stem cell function. Cell 173, 1045–1057.e9 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Hatrock, D., Caporicci-Dinucci, N. & Stratton, J. A. Ependymal cells and multiple sclerosis: proposing a relationship. Neural Regen. Res. 15, 263–264 (2020).

    Article  PubMed  Google Scholar 

  154. Osaki, L. H. et al. Interferon-γ directly induces gastric epithelial cell death and is required for progression to metaplasia. J. Pathol. 247, 513–523 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kotredes, K. P. & Gamero, A. M. Interferons as inducers of apoptosis in malignant cells. J. Interferon Cytokine Res. 33, 162–170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Deckert-Schluter, M., Schluter, D., Hof, H., Wiestler, O. D. & Lassmann, H. Differential expression of ICAM-1, VCAM-1 and their ligands LFA-1, Mac-1, CD43, VLA-4, and MHC class II antigens in murine Toxoplasma encephalitis: a light microscopic and ultrastructural immunohistochemical study. J. Neuropathol. Exp. Neurol. 53, 457–468 (1994).

    Article  CAS  PubMed  Google Scholar 

  157. Petersen, M. A., Ryu, J. K. & Akassoglou, K. Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. Nat. Rev. Neurosci. 19, 283–301 (2018). This study demonstrates the involvement of a specific blood-derived constituent in MS lesion evolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ravikumar, B. et al. Differential efficacy of the TSPO ligands etifoxine and XBD-173 in two rodent models of multiple sclerosis. Neuropharmacology 108, 229–237 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Daugherty, D. J. et al. A TSPO ligand is protective in a mouse model of multiple sclerosis. EMBO Mol. Med. 5, 891–903 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Owen, D. R. et al. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J. Cereb. Blood Flow. Metab. 37, 2679–2690 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Nutma, E. et al. A quantitative neuropathological assessment of translocator protein expression in multiple sclerosis. Brain 142, 3440–3455 (2019). This study relates the expression of TSPO, which is used as a target in in vivo PET ligand studies, with cell type and activation state.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Nutma, E. et al. Activated microglia do not increase 18 kDa translocator protein (TSPO) expression in the multiple sclerosis brain. Glia 69, 2447–2458 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hagens, M. H. J. et al. In vivo assessment of neuroinflammation in progressive multiple sclerosis: a proof of concept study with [(18)F]DPA714 PET. J. Neuroinflammation 15, 314 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jack Antel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks E. Benveniste, C.-Y. Chen, D. Pitt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Healy, L.M., Stratton, J.A., Kuhlmann, T. et al. The role of glial cells in multiple sclerosis disease progression. Nat Rev Neurol 18, 237–248 (2022). https://doi.org/10.1038/s41582-022-00624-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-022-00624-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing