Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Neurogenetic disorders across the lifespan: from aberrant development to degeneration

Abstract

Intellectual disability and autism spectrum disorder (ASD) are common, and genetic testing is increasingly performed in individuals with these diagnoses to inform prognosis, refine management and provide information about recurrence risk in the family. For neurogenetic conditions associated with intellectual disability and ASD, data on natural history in adults are scarce; however, as older adults with these disorders are identified, it is becoming clear that some conditions are associated with both neurodevelopmental problems and neurodegeneration. Moreover, emerging evidence indicates that some neurogenetic conditions associated primarily with neurodegeneration also affect neurodevelopment. In this Perspective, we discuss examples of diseases that have developmental and degenerative overlap. We propose that neurogenetic disorders should be studied continually across the lifespan to understand the roles of the affected genes in brain development and maintenance, and to inform strategies for treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Michelson, D. J. et al. Evidence report: genetic and metabolic testing on children with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 77, 1629–1635 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Maenner, M. J., Shaw, K. A. & Baio, J. Prevalence of autism spectrum disorder among children aged 8 years – autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveill. Summ. 69, 1–12 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Patja, K., Iivanainen, M., Vesala, H., Oksanen, H. & Ruoppila, I. Life expectancy of people with intellectual disability: a 35-year follow-up study. J. Intellect. Disabil. Res. 44, 591–599 (2000).

    Article  PubMed  Google Scholar 

  4. Tyrer, F., Smith, L. K. & McGrother, C. W. Mortality in adults with moderate to profound intellectual disability: a population-based study. J. Intellect. Disabil. Res. 51, 520–527 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Coppus, A. M. People with intellectual disability: what do we know about adulthood and life expectancy? Dev. Disabil. Res. Rev. 18, 6–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Hartley, D. et al. Down syndrome and Alzheimer’s disease: common pathways, common goals. Alzheimers Dement. 11, 700–709 (2015).

    Article  PubMed  Google Scholar 

  7. Hickman, R. A., Faustin, A. & Wisniewski, T. Alzheimer disease and its growing epidemic: risk factors, biomarkers, and the urgent need for therapeutics. Neurol. Clin. 34, 941–953 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. World Health Organization. Dementia: a Public Health Priority (WHO, 2012).

  9. Lemere, C. A. et al. Sequence of deposition of heterogeneous amyloid β-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol. Dis. 3, 16–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Mann, D. M. The pathological association between Down syndrome and Alzheimer disease. Mech. Ageing Dev. 43, 99–136 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Leverenz, J. B. & Raskind, M. A. Early amyloid deposition in the medial temporal lobe of young Down syndrome patients: a regional quantitative analysis. Exp. Neurol. 150, 296–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Visser, F. E. et al. Prospective study of the prevalence of Alzheimer-type dementia in institutionalized individuals with Down syndrome. Am. J. Ment. Retard. 101, 400–412 (1997).

    CAS  PubMed  Google Scholar 

  13. Evenhuis, H. M. The natural history of dementia in ageing people with intellectual disability. J. Intellect. Disabil. Res. 41, 92–96 (1997).

    Article  PubMed  Google Scholar 

  14. Zigman, W. B. et al. Incidence and prevalence of dementia in elderly adults with mental retardation without Down syndrome. Am. J. Ment. Retard. 109, 126–141 (2004).

    Article  PubMed  Google Scholar 

  15. Strydom, A., Chan, T., King, M., Hassiotis, A. & Livingston, G. Incidence of dementia in older adults with intellectual disabilities. Res. Dev. Disabil. 34, 1881–1885 (2013).

    Article  PubMed  Google Scholar 

  16. Vivanti, G., Tao, S., Lyall, K., Robins, D. L. & Shea, L. L. The prevalence and incidence of early-onset dementia among adults with autism spectrum disorder. Autism Res. 14, 2189–2199 (2021).

    Article  PubMed  Google Scholar 

  17. Takenoshita, S. et al. Prevalence of dementia in people with intellectual disabilities: cross-sectional study. Int. J. Geriatr. Psychiatry 35, 414–422 (2020).

    Article  PubMed  Google Scholar 

  18. Selkoe, D. & Kopan, R. Notch and presenilin: regulated intramembrane proteolysis links development and degeneration. Annu. Rev. Neurosci. 26, 565–597 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Mehler, M. F. & Gokhan, S. Developmental mechanisms in the pathogenesis of neurodegenerative diseases. Prog. Neurobiol. 63, 337–363 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Kovacs, G. G. et al. Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience 269, 152–172 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Schor, N. F. & Bianchi, D. W. Neurodevelopmental clues to neurodegeneration. Pediatr. Neurol. 123, 67–76 (2021).

    Article  PubMed  Google Scholar 

  22. Rogers, D. & Schor, N. F. The child is father to the man: developmental roles for proteins of importance for neurodegenerative disease. Ann. Neurol. 67, 151–158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Braak, H., Thal, D. R., Ghebremedhin, E. & Del Tredici, K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 70, 960–969 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Hickman, R. A., Flowers, X. E. & Wisniewski, T. Primary age-related tauopathy (PART): addressing the spectrum of neuronal tauopathic changes in the aging brain. Curr. Neurol. Neurosci. Rep. 20, 39 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jack, C. R. Jr et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jack, C. R. Jr et al. Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50–95 years: a cross-sectional study. Lancet Neurol. 16, 435–444 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jack, C. R. Jr et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rowe, C. C. et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol. Aging 31, 1275–1283 (2010).

    Article  PubMed  Google Scholar 

  29. Hardy, J. A. & Higgins, G. A. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Hardy, J. The discovery of Alzheimer-causing mutations in the APP gene and the formulation of the “amyloid cascade hypothesis”. FEBS J. 284, 1040–1044 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Hardy, J. Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J. Alzheimers Dis. 9, 151–153 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Magara, F. et al. Genetic background changes the pattern of forebrain commissure defects in transgenic mice underexpressing the β-amyloid-precursor protein. Proc. Natl Acad. Sci. USA 96, 4656–4661 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thinakaran, G. & Koo, E. H. Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 283, 29615–29619 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nikolaev, A., McLaughlin, T., O’Leary, D. D. & Tessier-Lavigne, M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457, 981–989 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lahiri, D. K. et al. Autism as early neurodevelopmental disorder: evidence for an sAPPα-mediated anabolic pathway. Front. Cell Neurosci. 7, 94 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marik, S. A., Olsen, O., Tessier-Lavigne, M. & Gilbert, C. D. Physiological role for amyloid precursor protein in adult experience-dependent plasticity. Proc. Natl Acad. Sci. USA 113, 7912–7917 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ray, B., Sokol, D. K., Maloney, B. & Lahiri, D. K. Finding novel distinctions between the sAPPα-mediated anabolic biochemical pathways in autism spectrum disorder and fragile X syndrome plasma and brain tissue. Sci. Rep. 6, 26052 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sabari, B. R. Biomolecular condensates and gene activation in development and disease. Dev. Cell 55, 84–96 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wippich, F. et al. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152, 791–805 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Strzelecka, M. et al. Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis. Nat. Struct. Mol. Biol. 17, 403–409 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Mathieu, C., Pappu, R. V. & Taylor, J. P. Beyond aggregation: pathological phase transitions in neurodegenerative disease. Science 370, 56–60 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, H. & Fuxreiter, M. The structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell 165, 1055–1066 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zbinden, A., Pérez-Berlanga, M., De Rossi, P. & Polymenidou, M. Phase separation and neurodegenerative diseases: a disturbance in the force. Dev. Cell 55, 45–68 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Peskett, T. R. et al. A liquid to solid phase transition underlying pathological huntingtin exon1 aggregation. Mol. Cell 70, 588–601 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Alcalà-Vida, R., Awada, A., Boutillier, A.-L. & Merienne, K. Epigenetic mechanisms underlying enhancer modulation of neuronal identity, neuronal activity and neurodegeneration. Neurobiol. Dis. 147, 105155 (2021).

    Article  PubMed  CAS  Google Scholar 

  50. Van Battum, E. Y., Brignani, S. & Pasterkamp, R. J. Axon guidance proteins in neurological disorders. Lancet Neurol. 14, 532–546 (2015).

    Article  PubMed  CAS  Google Scholar 

  51. Geschwind, D. H. & Levitt, P. Autism spectrum disorders: developmental disconnection syndromes. Curr. Opin. Neurobiol. 17, 103–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Amaral, D. G., Schumann, C. M. & Nordahl, C. W. Neuroanatomy of autism. Trends Neurosci. 31, 137–145 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. McFadden, K. & Minshew, N. Evidence for dysregulation of axonal growth and guidance in the etiology of ASD. Front. Hum. Neurosci. 7, 671 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pasterkamp, R. J. et al. Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Mol. Cell Neurosci. 13, 143–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Limoni, G. & Niquille, M. Semaphorins and plexins in central nervous system patterning: the key to it all? Curr. Opin. Neurobiol. 66, 224–232 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. O’Shea, S. A. et al. Neuropathological findings in a case of parkinsonism and developmental delay associated with a monoallelic variant in PLXNA1. Mov. Disord. 36, 2681–2687 (2021).

    Article  PubMed  Google Scholar 

  57. Dworschak, G. C. et al. Biallelic and monoallelic variants in PLXNA1 are implicated in a novel neurodevelopmental disorder with variable cerebral and eye anomalies. Genet. Med. 23, 1715–1725 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet. 41, 1094–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 41, 1088–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Caselli, R. J. et al. Longitudinal modeling of age-related memory decline and the APOE ε4 effect. N. Engl. J. Med. 361, 255–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Izaks, G. J. et al. The association of APOE genotype with cognitive function in persons aged 35 years or older. PLoS ONE 6, e27415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dean, D. C. 3rd et al. Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: a cross-sectional imaging study. JAMA Neurol. 71, 11–22 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Remer, J. et al. Longitudinal white matter and cognitive development in pediatric carriers of the apolipoprotein ε4 allele. Neuroimage 222, 117243 (2020).

    Article  PubMed  Google Scholar 

  64. Shaw, P. et al. Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: an observational study. Lancet Neurol. 6, 494–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. van der Plas, E., Schultz, J. & Nopoulos, P. The neurodevelopmental hypothesis of Huntington’s disease. J. Huntingt. Dis. 9, 217–229 (2020).

    Article  CAS  Google Scholar 

  66. D’Gama, A. M. & Walsh, C. A. Somatic mosaicism and neurodevelopmental disease. Nat. Neurosci. 21, 1504–1514 (2018).

    Article  PubMed  CAS  Google Scholar 

  67. Lee, M. H. et al. Somatic APP gene recombination in Alzheimer’s disease and normal neurons. Nature 563, 639–645 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Park, J. S. et al. Brain somatic mutations observed in Alzheimer’s disease associated with aging and dysregulation of tau phosphorylation. Nat. Commun. 10, 3090 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lodato, M. A. & Walsh, C. A. Genome aging: somatic mutation in the brain links age-related decline with disease and nominates pathogenic mechanisms. Hum. Mol. Genet. 28, R197–R206 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bae, T. et al. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 359, 550–555 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–410 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Lodato, M. A. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359, 555–559 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Miller, M. B., Reed, H. C. & Walsh, C. A. Brain somatic mutation in aging and Alzheimer’s disease. Annu. Rev. Genomics Hum. Genet. 22, 239–256 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Dolan, P. J. & Johnson, G. V. The role of tau kinases in Alzheimer’s disease. Curr. Opin. Drug Discov. Dev. 13, 595 (2010).

    CAS  Google Scholar 

  75. Swatton, J. E. et al. Increased MAP kinase activity in Alzheimer’s and Down syndrome but not in schizophrenia human brain. Eur. J. Neurosci. 19, 2711–2719 (2004).

    Article  PubMed  Google Scholar 

  76. Cai, Z., Yan, L.-J., Li, K., Quazi, S. H. & Zhao, B. Roles of AMP-activated protein kinase in Alzheimer’s disease. Neuromolecular Med. 14, 1–14 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Greenberg, S. M., Koo, E. H., Selkoe, D. J., Qiu, W. Q. & Kosik, K. S. Secreted beta-amyloid precursor protein stimulates mitogen-activated protein kinase and enhances tau phosphorylation. Proc. Natl Acad. Sci. USA 91, 7104–7108 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jiang, J. et al. Stimulation of EphB2 attenuates tau phosphorylation through PI3K/Akt-mediated inactivation of glycogen synthase kinase-3β. Sci. Rep. 5, 11765–11765 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schon, EricA. & Przedborski, S. Mitochondria: the next (neurode)generation. Neuron 70, 1033–1053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Area-Gomez, E., Guardia-Laguarta, C., Schon, E. A. & Przedborski, S. Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. J. Clin. Invest. 129, 34–45 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wong, L. J. C. et al. Molecular and clinical genetics of mitochondrial diseases due to POLG mutations. Hum. Mutat. 29, E150–E172 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nguyen, K. V., Sharief, F. S., Chan, S. S., Copeland, W. C. & Naviaux, R. K. Molecular diagnosis of Alpers syndrome. J. Hepatol. 45, 108–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Falk, M. J. Neurodevelopmental manifestations of mitochondrial disease. J. Dev. Behav. Pediatr. 31, 610 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Davidzon, G. et al. Early-onset familial parkinsonism due to POLG mutations. Ann. Neurol. 59, 859–862 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Luoma, P. et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase γ mutations: clinical and molecular genetic study. Lancet 364, 875–882 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Macdonald, R., Barnes, K., Hastings, C. & Mortiboys, H. Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: can mitochondria be targeted therapeutically? Biochem. Soc. Trans. 46, 891–909 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Schapira, A. et al. Mitochondrial complex I deficiency in Parkinson’s disease. J. Neurochem. 54, 823–827 (1990).

    Article  CAS  PubMed  Google Scholar 

  88. Trinh, D., Israwi, A. R., Arathoon, L. R., Gleave, J. A. & Nash, J. E. The multi-faceted role of mitochondria in the pathology of Parkinson’s disease. J. Neurochem. 156, 715–752 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, R. G. et al. Early-onset Parkinson disease caused by a mutation in CHCHD2 and mitochondrial dysfunction. Neurol. Genet. 4, e276 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Bose, A. & Beal, M. F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 139, 216–231 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. DiGuiseppi, C. et al. Screening for autism spectrum disorders in children with Down syndrome: population prevalence and screening test characteristics. J. Dev. Behav. Pediatr. 31, 181–191 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kent, L., Evans, J., Paul, M. & Sharp, M. Comorbidity of autistic spectrum disorders in children with Down syndrome. Dev. Med. Child Neurol. 41, 153–158 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Reilly, C. Autism spectrum disorders in Down syndrome: a review. Res. Autism Spectr. Disord. 3, 829–839 (2009).

    Article  Google Scholar 

  94. Schmidt-Sidor, B., Wisniewski, K. E., Shepard, T. H. & Sersen, E. A. Brain growth in Down syndrome subjects 15 to 22 weeks of gestational age and birth to 60 months. Clin. Neuropathol. 9, 181–190 (1990).

    CAS  PubMed  Google Scholar 

  95. Guidi, S. et al. Neurogenesis impairment and increased cell death reduce total neuron number in the hippocampal region of fetuses with Down syndrome. Brain Pathol. 18, 180–197 (2008).

    Article  PubMed  Google Scholar 

  96. Davidson, Y. S., Robinson, A., Prasher, V. P. & Mann, D. M. A. The age of onset and evolution of Braak tangle stage and Thal amyloid pathology of Alzheimer’s disease in individuals with Down syndrome. Acta Neuropathol. Commun. 6, 56 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Fortea, J. et al. Clinical and biomarker changes of Alzheimer’s disease in adults with Down syndrome: a cross-sectional study. Lancet 395, 1988–1997 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rafii, M. S. et al. The AT(N) framework for Alzheimer’s disease in adults with Down syndrome. Alzheimers Dement. 12, e12062 (2020).

    Google Scholar 

  99. Mengel, D. et al. Dynamics of plasma biomarkers in Down syndrome: the relative levels of Aβ42 decrease with age, whereas NT1 tau and NfL increase. Alzheimers Res. Ther. 12, 27 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Iannello, R. C., Crack, P. J., de Haan, J. B. & Kola, I. Oxidative stress and neural dysfunction in Down syndrome. J. Neural Transm. Suppl. 57, 257–267 (1999).

    CAS  PubMed  Google Scholar 

  101. Zis, P., Dickinson, M., Shende, S., Walker, Z. & Strydom, A. Oxidative stress and memory decline in adults with Down syndrome: longitudinal study. J. Alzheimers Dis. 31, 277–283 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Handen, B. L. et al. Imaging brain amyloid in nondemented young adults with Down syndrome using Pittsburgh compound B. Alzheimers Dement. 8, 496–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hartley, S. L. et al. Cognitive functioning in relation to brain amyloid-β in healthy adults with Down syndrome. Brain 137, 2556–2563 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 38, 24–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Theuns, J. et al. Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am. J. Hum. Genet. 78, 936–946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Doran, E. et al. Down syndrome, partial trisomy 21, and absence of Alzheimer’s disease: the role of APP. J. Alzheimers Dis. 56, 459–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Prasher, V. P. et al. Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann. Neurol. 43, 380–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Muller, U. C., Deller, T. & Korte, M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat. Rev. Neurosci. 18, 281–298 (2017).

    Article  PubMed  CAS  Google Scholar 

  110. Lott, I. T. & Head, E. Dementia in Down syndrome: unique insights for Alzheimer disease research. Nat. Rev. Neurol. 15, 135–147 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Olmos-Serrano, J. L. et al. Down syndrome developmental brain transcriptome reveals defective oligodendrocyte differentiation and myelination. Neuron 89, 1208–1222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu, F. et al. Overexpression of Dyrk1A contributes to neurofibrillary degeneration in Down syndrome. FASEB J. 22, 3224–3233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Arron, J. R. et al. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441, 595–600 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Wolvetang, E. J. et al. Overexpression of the chromosome 21 transcription factor Ets2 induces neuronal apoptosis. Neurobiol. Dis. 14, 349–356 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Wegiel, J. et al. Link between DYRK1A overexpression and several-fold enhancement of neurofibrillary degeneration with 3-repeat tau protein in Down syndrome. J. Neuropathol. Exp. Neurol. 70, 36–50 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Yamakawa, K. et al. DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Hum. Mol. Genet. 7, 227–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Jia, Y.-l et al. Expression and significance of DSCAM in the cerebral cortex of APP transgenic mice. Neurosci. Lett. 491, 153–157 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Tang, X. Y. et al. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome. J. Clin. Invest. 131, e135763 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  119. Wolvetang, E. W. et al. The chromosome 21 transcription factor ETS2 transactivates the β-APP promoter: implications for Down syndrome. Biochim. Biophys. Acta 1628, 105–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Antonarakis, S. E. Down syndrome and the complexity of genome dosage imbalance. Nat. Rev. Genet. 18, 147 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Hagerman, R. J. et al. Fragile X syndrome. Nat. Rev. Dis. Primers 3, 17065 (2017).

    Article  PubMed  Google Scholar 

  122. Verkerk, A. J. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).

    Article  CAS  PubMed  Google Scholar 

  123. Belmonte, M. K. & Bourgeron, T. Fragile X syndrome and autism at the intersection of genetic and neural networks. Nat. Neurosci. 9, 1221–1225 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Greco, C. M. et al. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 129, 243–255 (2005).

    Article  PubMed  Google Scholar 

  125. Greco, C. M. et al. Neuronal intranuclear inclusions in a new cerebellar tremor/ataxia syndrome among fragile X carriers. Brain 125, 1760–1771 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Kaufmann, W. E. et al. Autism spectrum disorder in fragile X syndrome: cooccurring conditions and current treatment. Pediatrics 139, S194–S206 (2017).

    Article  PubMed  Google Scholar 

  127. Hall, D., Pickler, L., Riley, K., Tassone, F. & Hagerman, R. Parkinsonism and cognitive decline in a fragile X mosaic male. Mov. Disord. 25, 1523–1524 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Utari, A. et al. Aging in fragile X syndrome. J. Neurodev. Disord. 2, 70–76 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hagerman, P. Fragile X-associated tremor/ataxia syndrome (FXTAS): pathology and mechanisms. Acta Neuropathol. 126, 1–19 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Boot, E., Bassett, A. S. & Marras, C. 22q11.2 deletion syndrome-associated Parkinson’s disease. Mov. Disord. Clin. Pract. 6, 11–16 (2019).

    Article  PubMed  Google Scholar 

  131. Butcher, N. J. et al. Association between early-onset Parkinson disease and 22q11.2 deletion syndrome: identification of a novel genetic form of Parkinson disease and its clinical implications. JAMA Neurol. 70, 1359–1366 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Krahn, L. E., Maraganore, D. M. & Michels, V. V. Childhood-onset schizophrenia associated with parkinsonism in a patient with a microdeletion of chromosome 22. Mayo Clin. Proc. 73, 956–959 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Zaleski, C. et al. The co-occurrence of early onset Parkinson disease and 22q11.2 deletion syndrome. Am. J. Med. Genet. A 149A, 525–528 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. La Cognata, V., Morello, G., D’Agata, V. & Cavallaro, S. Copy number variability in Parkinson’s disease: assembling the puzzle through a systems biology approach. Hum. Genet. 136, 13–37 (2017).

    Article  PubMed  CAS  Google Scholar 

  135. Butcher, N. J. et al. Neuroimaging and clinical features in adults with a 22q11.2 deletion at risk of Parkinson’s disease. Brain 140, 1371–1383 (2017).

    Article  PubMed  Google Scholar 

  136. Loveday, C. et al. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth. Hum. Mol. Genet. 24, 4775–4779 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kim, C. Y. et al. Early-onset parkinsonism is a manifestation of the PPP2R5D p.E200K mutation. Ann. Neurol. 88, 1028–1033 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Wirth, T. et al. Loss-of-function mutations in NR4A2 cause dopa-responsive dystonia parkinsonism. Mov. Disord. 35, 880–885 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Wilson, G. R. et al. Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with α-synuclein pathology. Am. J. Hum. Genet. 95, 729–735 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gao, Y. et al. Genetic analysis of RAB39B in an early-onset Parkinson’s disease cohort. Front. Neurol. 11, 523 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Gao, Y., Martínez-Cerdeño, V., Hogan, K. J., McLean, C. A. & Lockhart, P. J. Clinical and neuropathological features associated with loss of RAB39B. Mov. Disord. 35, 687–693 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Morato Torres, C. A. et al. The role of alpha-synuclein and other Parkinson’s genes in neurodevelopmental and neurodegenerative disorders. Int. J. Mol. Sci. 21, 5724 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  143. Bryant, L. et al. Histone H3.3 beyond cancer: germline mutations in histone 3 family 3A and 3B cause a previously unidentified neurodegenerative disorder in 46 patients. Sci. Adv. 6, eabc9207 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tanaka, Y. et al. The molecular motor KIF1A transports the TrkA neurotrophin receptor and is essential for sensory neuron survival and function. Neuron 90, 1215–1229 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Boyle, L. et al. Genotype and defects in microtubule-based motility correlate with clinical severity in KIF1A-associated neurological disorder. HGG Adv. 2, 100026 (2021).

    PubMed  PubMed Central  Google Scholar 

  146. Kaur, S. et al. Expansion of the phenotypic spectrum of de novo missense variants in kinesin family member 1A (KIF1A). Hum. Mutat. 41, 1761–1774 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Aguilera, C. et al. The novel KIF1A missense variant (R169T) strongly reduces microtubule stimulated ATPase activity and is associated with NESCAV syndrome. Front. Neurosci. 15, 423 (2021).

    Article  Google Scholar 

  148. Langlois, S. et al. De novo dominant variants affecting the motor domain of KIF1A are a cause of PEHO syndrome. Eur. J. Hum. Genet. 24, 949–953 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Citterio, A. et al. Variants in KIF1A gene in dominant and sporadic forms of hereditary spastic paraparesis. J. Neurol. 262, 2684–2690 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Dewan, R. et al. Pathogenic huntingtin repeat expansions in patients with frontotemporal dementia and amyotrophic lateral sclerosis. Neuron 109, 448–460 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. & MacDonald, M. E. et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  152. Bates, G. P. et al. Huntington disease. Nat. Rev. Dis. Primers 1, 15005 (2015).

    Article  PubMed  Google Scholar 

  153. Scahill, R. I. et al. Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington’s disease young adult study (HD-YAS): a cross-sectional analysis. Lancet Neurol. 19, 502–512 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nopoulos, P. C. et al. Smaller intracranial volume in prodromal Huntington’s disease: evidence for abnormal neurodevelopment. Brain 134, 137–142 (2011).

    Article  PubMed  Google Scholar 

  155. Lee, J. K. et al. Measures of growth in children at risk for Huntington disease. Neurology 79, 668–674 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Tereshchenko, A. et al. Developmental trajectory of height, weight, and BMI in children and adolescents at risk for Huntington’s disease: effect of mHTT on growth. J. Huntingt. Dis. 9, 245–251 (2020).

    Article  Google Scholar 

  157. van der Plas, E. et al. Abnormal brain development in child and adolescent carriers of mutant huntingtin. Neurology 93, e1021–e1030 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Saudou, F. & Humbert, S. The biology of huntingtin. Neuron 89, 910–926 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Ferlazzo, M. L. et al. Mutations of the Huntington’s disease protein impact on the ATM-dependent signaling and repair pathways of the radiation-induced DNA double-strand breaks: corrective effect of statins and bisphosphonates. Mol. Neurobiol. 49, 1200–1211 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Maiuri, T., Bowie, L. E. & Truant, R. DNA repair signaling of huntingtin: the next link between late-onset neurodegenerative disease and oxidative DNA damage. DNA Cell Biol. 38, 1–6 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Gao, R. et al. Mutant huntingtin impairs PNKP and ATXN3, disrupting DNA repair and transcription. eLife 8, e42988 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Barnat, M. et al. Huntington’s disease alters human neurodevelopment. Science 369, 787–793 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hickman, R. A. et al. Developmental malformations in Huntington disease: neuropathologic evidence of focal neuronal migration defects in a subset of adult brains. Acta Neuropathol. 141, 399–413 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Molero, A. E. et al. Impairment of developmental stem cell-mediated striatal neurogenesis and pluripotency genes in a knock-in model of Huntington’s disease. Proc. Natl Acad. Sci. USA 106, 21900–21905 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Molero, A. E. et al. Selective expression of mutant huntingtin during development recapitulates characteristic features of Huntington’s disease. Proc. Natl Acad. Sci. USA 113, 5736–5741 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mehler, M. F. et al. Loss-of-huntingtin in medial and lateral ganglionic lineages differentially disrupts regional interneuron and projection neuron subtypes and promotes Huntington’s disease-associated behavioral, cellular, and pathological hallmarks. J. Neurosci. 39, 1892–1909 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Arteaga-Bracho, E. E. et al. Postnatal and adult consequences of loss of huntingtin during development: implications for Huntington’s disease. Neurobiol. Dis. 96, 144–155 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ilyas, M., Mir, A., Efthymiou, S. & Houlden, H. The genetics of intellectual disability: advancing technology and gene editing. F1000Res. 9, 22 (2020).

    Article  CAS  Google Scholar 

  169. Vissers, L. E., Gilissen, C. & Veltman, J. A. Genetic studies in intellectual disability and related disorders. Nat. Rev. Genet. 17, 9–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Hebbar, M. & Mefford, H. C. Recent advances in epilepsy genomics and genetic testing. F1000Res. 9, 185 (2020).

    Article  CAS  Google Scholar 

  171. Teague, S. et al. Retention strategies in longitudinal cohort studies: a systematic review and meta-analysis. BMC Med. Res. Methodol. 18, 151–151 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Webster, E. et al. De novo PHIP-predicted deleterious variants are associated with developmental delay, intellectual disability, obesity, and dysmorphic features. Cold Spring Harb. Mol. Case Stud. 2, a001172 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Yehia, L. & Eng, C. in GeneReviews (eds Adam, M.P. et al.) NBK1488 (University of Washington, 2001).

  174. Glover, G., Williams, R., Heslop, P., Oyinlola, J. & Grey, J. Mortality in people with intellectual disabilities in England. J. Intellect. Disabil. Res. 61, 62–74 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.A.H. was supported by grant funding from the Huntington Disease Society of America and Hereditary Disease Foundation and was a Columbia University Irving Medical Center ADRC Research Education Component trainee (P30 AG066462-01, PI Scott Small, MD). The New York Brain Bank is supported by P50 AG008702 (PI Scott Small, MD). M.F.M. was supported by grants from the NIH (NS125224; OD025320; NS096144). W.K.C. was supported by a grant from SFARI.

Author information

Authors and Affiliations

Authors

Contributions

W.K.C., R.A.H. and S.A.O'S. researched data for the article, made a substantial contribution to discussion of content, wrote the article, and reviewed and edited the manuscript before submission. M.F.M. made a substantial contribution to the discussion of content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Wendy K. Chung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks E. Head, who co-reviewed with A. Martini; R. Hagerman; and P. Nopoulos for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

All of Us: https://allofus.nih.gov/

Simons Searchlight: https://www.simonssearchlight.org/

UK Biobank: https://www.ukbiobank.ac.uk/

Glossary

Intrinsically disordered

An intrinsically disordered protein or region that lacks a dominant 3D structure and adopts a range of conformational states.

Liquid–liquid demixing

A process that generates membraneless compartments within the subcellular space, in which certain components are enriched while others are excluded.

Metastable

A kinetically trapped structure (for example, a protein or other molecule) that maintains a local free energy minimum within a dynamic system.

Pleiotropic

When one gene influences two or more seemingly unrelated phenotypic traits.

Population-based cohorts

Epidemiological studies in which a defined population is followed and observed longitudinally.

Super-enhancers

Transcriptional enhancers that drive expression of genes that define cell identity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hickman, R.A., O’Shea, S.A., Mehler, M.F. et al. Neurogenetic disorders across the lifespan: from aberrant development to degeneration. Nat Rev Neurol 18, 117–124 (2022). https://doi.org/10.1038/s41582-021-00595-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00595-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing