Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis

Abstract

In contrast to the multiple disease-modifying therapies that are available for relapsing–remitting multiple sclerosis (MS), the therapeutic options for progressive MS (PMS) are limited. Recent advances in our understanding of the neuroimmunology of PMS, including the mechanisms that drive slowly expanding lesions, have fuelled optimism for improved treatment of this condition. In this Review, we highlight the commonly observed neuropathology of PMS and discuss the associated mechanisms of CNS injury. We then apply this knowledge to formulate criteria for therapeutic efficacy in PMS, beginning with the need for early treatment owing to the substantial neuropathology that is already present at the initial clinical presentation. Other requirements include: antagonism of neuroaxonal injury mediators such as pro-inflammatory microglia and lymphocytes; remediation of oxidative stress resulting from iron deposition and mitochondrial dysfunction; and promotion of neuroprotection through remyelination. We consider whether current disease-modifying therapies for relapsing–remitting MS meet the criteria for successful therapeutics in PMS and suggest that the evidence favours the early introduction of sphingosine 1-phosphate receptor modulators. Finally, we weigh up emerging medications, including repurposed generic medications and Bruton’s tyrosine kinase inhibitors, against these fundamental criteria. In this new therapeutic era in PMS, success depends collectively on understanding disease mechanisms, drug characteristics (including brain penetration) and rational use.

Key points

  • Prominent pathological features of progressive multiple sclerosis (PMS) include global brain atrophy, slowly expanding lesions and a predominantly microglia/macrophage-mediated inflammatory response.

  • Neurodegeneration in MS seems to be driven by a complex interplay between compartmentalized neuroinflammation, oxidative stress, iron toxicity and mitochondrial dysfunction, and occurs as early as the radiologically and clinically isolated syndrome stages.

  • Proposed criteria for efficacious therapeutics in PMS include penetration across the blood–brain barrier, antagonism of compartmentalized lymphocytes and microglia/macrophages, and amelioration of oxidative stress.

  • Conferral of direct neuroprotection and remyelination, with the new myelin itself also exerting protective effects, are also desired features of effective treatments for PMS.

  • Emerging therapeutics for PMS that are discussed in this Review include α-lipoic acid, Bruton’s tyrosine kinase inhibitors, ibudilast and statins.

  • Repurposing of oral drugs for use in PMS is a promising area of research, and potential add-on therapeutics include hydroxychloroquine, metformin and niacin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Brain lesions in progressive multiple sclerosis.
Fig. 2: Mechanisms of injury in progressive multiple sclerosis.
Fig. 3: Success criteria for progressive multiple sclerosis medications.
Fig. 4: Early initiation of medication in multiple sclerosis.

Similar content being viewed by others

References

  1. Lublin, F. D. et al. The 2013 clinical course descriptors for multiple sclerosis: a clarification. Neurology 94, 1088–1092 (2020).

    PubMed  PubMed Central  Google Scholar 

  2. MS International Federation. Treatments and therapies. https://www.msif.org/living-with-ms/treatments/ (2021).

  3. Thompson, A. J., Baranzini, S. E., Geurts, J., Hemmer, B. & Ciccarelli, O. Multiple sclerosis. Lancet 391, 1622–1636 (2018).

    PubMed  Google Scholar 

  4. Lassmann, H., van Horssen, J. & Mahad, D. Progressive multiple sclerosis: pathology and pathogenesis. Nat. Rev. Neurol. 8, 647–656 (2012).

    CAS  PubMed  Google Scholar 

  5. Lassmann, H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front. Immunol. 9, 3116 (2018).

    CAS  PubMed  Google Scholar 

  6. Weiner, H. L. A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J. Neurol. 255 (Suppl. 1), 3–11 (2008).

    CAS  PubMed  Google Scholar 

  7. Kutzelnigg, A. et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128, 2705–2712 (2005).

    PubMed  Google Scholar 

  8. Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).

    PubMed  Google Scholar 

  9. Fransen, N. L. et al. Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain 143, 1714–1730 (2020).

    PubMed  Google Scholar 

  10. Komori, M. et al. Cerebrospinal fluid markers reveal intrathecal inflammation in progressive multiple sclerosis. Ann. Neurol. 78, 3–20 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi, S. R. et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 135, 2925–2937 (2012).

    PubMed  Google Scholar 

  12. Antel, J., Antel, S., Caramanos, Z., Arnold, D. L. & Kuhlmann, T. Primary progressive multiple sclerosis: part of the MS disease spectrum or separate disease entity? Acta Neuropathol. 123, 627–638 (2012).

    PubMed  Google Scholar 

  13. Zurawski, J. et al. 7T MRI cerebral leptomeningeal enhancement is common in relapsing-remitting multiple sclerosis and is associated with cortical and thalamic lesions. Mult. Scler. 26, 177–187 (2020).

    PubMed  Google Scholar 

  14. Lucchinetti, C. F. et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365, 2188–2197 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Faissner, S., Plemel, J. R., Gold, R. & Yong, V. W. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov. 18, 905–922 (2019).

    CAS  PubMed  Google Scholar 

  16. He, A. et al. Timing of high-efficacy therapy for multiple sclerosis: a retrospective observational cohort study. Lancet Neurol. 19, 307–316 (2020).

    CAS  PubMed  Google Scholar 

  17. Stys, P. K., Zamponi, G. W., van Minnen, J. & Geurts, J. J. Will the real multiple sclerosis please stand up? Nat. Rev. Neurosci. 13, 507–514 (2012).

    CAS  PubMed  Google Scholar 

  18. Koch, M., Kingwell, E., Rieckmann, P. & Tremlett, H., UBC MS Clinic Neurologists. The natural history of secondary progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 81, 1039–1043 (2010).

    PubMed  Google Scholar 

  19. Tsutsui, S. et al. Multiple sclerosis brain transmits pathology to humanized transgenic mice potentially via protein misfolding pathway (278874, abstr. P514). Presented at the ECTRIMS Congress, 2019.

  20. Luchicchi, A. et al. Axon–myelin unit blistering as early event in MS normal appearing white matter. Ann. Neurol. 89, 711–725 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. De Stefano, N. et al. Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121, 1469–1477 (1998).

    PubMed  Google Scholar 

  22. Bjartmar, C., Kidd, G., Mork, S., Rudick, R. & Trapp, B. D. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann. Neurol. 48, 893–901 (2000).

    CAS  PubMed  Google Scholar 

  23. Eshaghi, A. et al. Progression of regional grey matter atrophy in multiple sclerosis. Brain 141, 1665–1677 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Eshaghi, A. et al. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann. Neurol. 83, 210–222 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Matthews, P. M. et al. Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain 119, 715–722 (1996).

    PubMed  Google Scholar 

  26. Bitsch, A., Schuchardt, J., Bunkowski, S., Kuhlmann, T. & Bruck, W. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123, 1174–1183 (2000).

    PubMed  Google Scholar 

  27. Seewann, A. et al. Diffusely abnormal white matter in chronic multiple sclerosis: imaging and histopathologic analysis. Arch. Neurol. 66, 601–609 (2009).

    PubMed  Google Scholar 

  28. Absinta, M., Lassmann, H. & Trapp, B. D. Mechanisms underlying progression in multiple sclerosis. Curr. Opin. Neurol. 33, 277–285 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Plemel, J. R., Liu, W. Q. & Yong, V. W. Remyelination therapies: a new direction and challenge in multiple sclerosis. Nat. Rev. Drug Discov. 16, 617–634 (2017).

    CAS  PubMed  Google Scholar 

  30. Calabrese, M. et al. Exploring the origins of grey matter damage in multiple sclerosis. Nat. Rev. Neurosci. 16, 147–158 (2015).

    CAS  PubMed  Google Scholar 

  31. Fischer, M. T. et al. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 135, 886–899 (2012).

    PubMed  PubMed Central  Google Scholar 

  32. Frischer, J. M. et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 78, 710–721 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. Luchetti, S. et al. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 135, 511–528 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dal-Bianco, A. et al. Long-term evolution of multiple sclerosis iron rim lesions in 7 T MRI. Brain 144, 833–847 (2021).

    PubMed  Google Scholar 

  35. Dal-Bianco, A. et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol. 133, 25–42 (2017).

    CAS  PubMed  Google Scholar 

  36. Absinta, M. et al. Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol. 76, 1474–1483 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. Elliott, C. et al. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult. Scler. 25, 1915–1925 (2019).

    PubMed  Google Scholar 

  38. Campbell, G. R. et al. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann. Neurol. 69, 481–492 (2011).

    CAS  PubMed  Google Scholar 

  39. Jackle, K. et al. Molecular signature of slowly expanding lesions in progressive multiple sclerosis. Brain 143, 2073–2088 (2020).

    PubMed  Google Scholar 

  40. Bottcher, C. et al. Single-cell mass cytometry reveals complex myeloid cell composition in active lesions of progressive multiple sclerosis. Acta Neuropathol. Commun. 8, 136 (2020).

    PubMed  PubMed Central  Google Scholar 

  41. Ludwin, S. K., Rao, V., Moore, C. S. & Antel, J. P. Astrocytes in multiple sclerosis. Mult. Scler. 22, 1114–1124 (2016).

    CAS  PubMed  Google Scholar 

  42. Lebrun, C. et al. Anomalies characteristic of central nervous system demyelination: radiologically isolated syndrome. Neurol. Clin. 36, 59–68 (2018).

    PubMed  Google Scholar 

  43. Alcaide-Leon, P. et al. Quantitative spinal cord MRI in radiologically isolated syndrome. Neurol. Neuroimmunol. Neuroinflamm 5, e436 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Azevedo, C. J. et al. Early CNS neurodegeneration in radiologically isolated syndrome. Neurol. Neuroimmunol. Neuroinflamm 2, e102 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. George, I. C. et al. Cerebellar volume loss in radiologically isolated syndrome. Mult. Scler. 27, 130–133 (2021).

    CAS  PubMed  Google Scholar 

  46. Kantarci, O. H. et al. Primary progressive multiple sclerosis evolving from radiologically isolated syndrome. Ann. Neurol. 79, 288–294 (2016).

    PubMed  Google Scholar 

  47. Stromillo, M. L. et al. Brain metabolic changes suggestive of axonal damage in radiologically isolated syndrome. Neurology 80, 2090–2094 (2013).

    CAS  PubMed  Google Scholar 

  48. Bjornevik, K. et al. Serum neurofilament light chain levels in patients with presymptomatic multiple sclerosis. JAMA Neurol. 77, 58–64 (2020).

    PubMed  Google Scholar 

  49. Matute-Blanch, C. et al. Neurofilament light chain and oligoclonal bands are prognostic biomarkers in radiologically isolated syndrome. Brain 141, 1085–1093 (2018).

    PubMed  Google Scholar 

  50. Mendiola, A. S. et al. Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nat. Immunol. 21, 513–524 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dong, Y. & Yong, V. W. When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nat. Rev. Neurol. 15, 704–717 (2019).

    PubMed  Google Scholar 

  52. Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E. & Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 14, 164–174 (2004).

    PubMed  Google Scholar 

  53. Howell, O. W. et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134, 2755–2771 (2011).

    PubMed  Google Scholar 

  54. Lisak, R. P. et al. B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J. Neuroimmunol. 309, 88–99 (2017).

    CAS  PubMed  Google Scholar 

  55. Androdias, G. et al. Meningeal T cells associate with diffuse axonal loss in multiple sclerosis spinal cords. Ann. Neurol. 68, 465–476 (2010).

    CAS  PubMed  Google Scholar 

  56. Prineas, J. W. et al. Immunopathology of secondary-progressive multiple sclerosis. Ann. Neurol. 50, 646–657 (2001).

    CAS  PubMed  Google Scholar 

  57. Nikić, I. et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 17, 495–499 (2011).

    PubMed  Google Scholar 

  58. Singh, S. et al. Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol. 125, 595–608 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Giannetti, P. et al. Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome. Brain 138, 110–119 (2015).

    PubMed  Google Scholar 

  60. Sucksdorff, M. et al. Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis. Brain 143, 3318–3330 (2020).

    PubMed  PubMed Central  Google Scholar 

  61. Brown, G. C. & Vilalta, A. How microglia kill neurons. Brain Res. 1628, 288–297 (2015).

    CAS  PubMed  Google Scholar 

  62. Yong, H. Y. F., Rawji, K. S., Ghorbani, S., Xue, M. & Yong, V. W. The benefits of neuroinflammation for the repair of the injured central nervous system. Cell Mol. Immunol. 16, 540–546 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Berghoff, S. A. et al. Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat. Neurosci. 24, 47–60 (2021).

    CAS  PubMed  Google Scholar 

  64. Zrzavy, T. et al. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 140, 1900–1913 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Linnerbauer, M., Wheeler, M. A. & Quintana, F. J. Astrocyte crosstalk in CNS inflammation. Neuron 108, 608–622 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lassmann, H. & van Horssen, J. Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim. Biophys. Acta 1862, 506–510 (2016).

    CAS  PubMed  Google Scholar 

  67. van Horssen, J. et al. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic. Biol. Med. 45, 1729–1737 (2008).

    PubMed  Google Scholar 

  68. Fischer, M. T. et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain 136, 1799–1815 (2013).

    PubMed  PubMed Central  Google Scholar 

  69. Kemp, K. et al. Oxidative injury in multiple sclerosis cerebellar grey matter. Brain Res. 1642, 452–460 (2016).

    CAS  PubMed  Google Scholar 

  70. Haider, L. et al. Oxidative damage in multiple sclerosis lesions. Brain 134, 1914–1924 (2011).

    PubMed  PubMed Central  Google Scholar 

  71. Choi, I. Y., Lee, P., Hughes, A. J., Denney, D. R. & Lynch, S. G. Longitudinal changes of cerebral glutathione (GSH) levels associated with the clinical course of disease progression in patients with secondary progressive multiple sclerosis. Mult. Scler. 23, 956–962 (2017).

    PubMed  Google Scholar 

  72. Choi, I. Y. et al. In vivo evidence of oxidative stress in brains of patients with progressive multiple sclerosis. Mult. Scler. 24, 1029–1038 (2018).

    CAS  PubMed  Google Scholar 

  73. Campbell, G. & Mahad, D. J. Mitochondrial dysfunction and axon degeneration in progressive multiple sclerosis. FEBS Lett. 592, 1113–1121 (2018).

    CAS  PubMed  Google Scholar 

  74. Licht-Mayer, S. et al. Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis. Acta Neuropathol. 140, 143–167 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mahad, D. H., Trapp, B. D. & Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 14, 183–193 (2015).

    CAS  PubMed  Google Scholar 

  76. Dutta, R. et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann. Neurol. 59, 478–489 (2006).

    CAS  PubMed  Google Scholar 

  77. Stephenson, E., Nathoo, N., Mahjoub, Y., Dunn, J. F. & Yong, V. W. Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat. Rev. Neurol. 10, 459–468 (2014).

    CAS  PubMed  Google Scholar 

  78. Lee, N. J. et al. Potential role of iron in repair of inflammatory demyelinating lesions. J. Clin. Invest. 129, 4365–4376 (2019).

    PubMed  PubMed Central  Google Scholar 

  79. Cronin, S. J. F., Woolf, C. J., Weiss, G. & Penninger, J. M. The role of iron regulation in immunometabolism and immune-related disease. Front. Mol. Biosci. 6, 116 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Urrutia, P. et al. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J. Neurochem. 126, 541–549 (2013).

    CAS  PubMed  Google Scholar 

  81. Faissner, S. et al. Systematic screening of generic drugs for progressive multiple sclerosis identifies clomipramine as a promising therapeutic. Nat. Commun. 8, 1990 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Filippi, M. et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 18, 198–210 (2019).

    PubMed  Google Scholar 

  83. Hagemeier, J. et al. Iron-related gene variants and brain iron in multiple sclerosis and healthy individuals. Neuroimage Clin. 17, 530–540 (2018).

    PubMed  Google Scholar 

  84. Elkady, A. M., Cobzas, D., Sun, H., Blevins, G. & Wilman, A. H. Progressive iron accumulation across multiple sclerosis phenotypes revealed by sparse classification of deep gray matter. J. Magn. Reson. Imaging 46, 1464–1473 (2017).

    PubMed  Google Scholar 

  85. Raz, E. et al. Relationship between iron accumulation and white matter injury in multiple sclerosis: a case-control study. J. Neurol. 262, 402–409 (2015).

    CAS  PubMed  Google Scholar 

  86. Haider, L. et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J. Neurol. Neurosurg. Psychiatry 85, 1386–1395 (2014).

    PubMed  Google Scholar 

  87. Bergsland, N. et al. White matter tract injury is associated with deep gray matter iron deposition in multiple sclerosis. J. Neuroimaging 27, 107–113 (2017).

    PubMed  Google Scholar 

  88. Zivadinov, R. et al. Brain iron at quantitative MRI is associated with disability in multiple sclerosis. Radiology 289, 487–496 (2018).

    PubMed  Google Scholar 

  89. Hametner, S. et al. Iron and neurodegeneration in the multiple sclerosis brain. Ann. Neurol. 74, 848–861 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bagnato, F. et al. Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. Brain 134, 3602–3615 (2011).

    PubMed  Google Scholar 

  91. Stangel, M., Kuhlmann, T., Matthews, P. M. & Kilpatrick, T. J. Achievements and obstacles of remyelinating therapies in multiple sclerosis. Nat. Rev. Neurol. 13, 742–754 (2017).

    PubMed  Google Scholar 

  92. Lubetzki, C., Zalc, B., Williams, A., Stadelmann, C. & Stankoff, B. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol. 19, 678–688 (2020).

    PubMed  Google Scholar 

  93. Micu, I., Plemel, J. R., Caprariello, A. V., Nave, K. A. & Stys, P. K. Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system. Nat. Rev. Neurosci. 19, 49–58 (2018).

    CAS  PubMed  Google Scholar 

  94. Kornek, B. et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol. 157, 267–276 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bodini, B. et al. Dynamic imaging of individual remyelination profiles in multiple sclerosis. Ann. Neurol. 79, 726–738 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Franklin, R. J. M., Frisen, J. & Lyons, D. A. Revisiting remyelination: towards a consensus on the regeneration of CNS myelin. Semin. Cell Dev. Biol. 116, 3–9 (2021).

    PubMed  Google Scholar 

  97. Boyd, A., Zhang, H. & Williams, A. Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol. 125, 841–859 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kuhlmann, T. et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131, 1749–1758 (2008).

    CAS  PubMed  Google Scholar 

  99. Patrikios, P. et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129, 3165–3172 (2006).

    PubMed  Google Scholar 

  100. Goldschmidt, T., Antel, J., Konig, F. B., Bruck, W. & Kuhlmann, T. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 72, 1914–1921 (2009).

    CAS  PubMed  Google Scholar 

  101. Bramow, S. et al. Demyelination versus remyelination in progressive multiple sclerosis. Brain 133, 2983–2998 (2010).

    PubMed  Google Scholar 

  102. Strijbis, E. M. M., Kooi, E. J., van der Valk, P. & Geurts, J. J. G. Cortical remyelination is heterogeneous in multiple sclerosis. J. Neuropathol. Exp. Neurol. 76, 390–401 (2017).

    CAS  PubMed  Google Scholar 

  103. Nicaise, A. M. et al. Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proc. Natl Acad. Sci. USA 116, 9030–9039 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Starost, L. et al. Extrinsic immune cell-derived, but not intrinsic oligodendroglial factors contribute to oligodendroglial differentiation block in multiple sclerosis. Acta Neuropathol. 140, 715–736 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cunniffe, N. & Coles, A. Promoting remyelination in multiple sclerosis. J. Neurol. 268, 30–44 (2021).

    PubMed  Google Scholar 

  106. Faissner, S. & Gold, R. Progressive multiple sclerosis: latest therapeutic developments and future directions. Ther. Adv. Neurol. Disord. 12, 1756286419878323 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Villoslada, P. & Steinman, L. New targets and therapeutics for neuroprotection, remyelination and repair in multiple sclerosis. Expert Opin. Investig. Drugs 29, 443–459 (2020).

    CAS  PubMed  Google Scholar 

  108. Macrez, R., Stys, P. K., Vivien, D., Lipton, S. A. & Docagne, F. Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities. Lancet Neurol. 15, 1089–1102 (2016).

    CAS  PubMed  Google Scholar 

  109. Woo, M. S. et al. Neuronal metabotropic glutamate receptor 8 protects against neurodegeneration in CNS inflammation. J. Exp. Med. 218, e20201290 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gallego-Delgado, P. et al. Neuroinflammation in the normal-appearing white matter (NAWM) of the multiple sclerosis brain causes abnormalities at the nodes of Ranvier. PLoS Biol. 18, e3001008 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Schattling, B. et al. Bassoon proteinopathy drives neurodegeneration in multiple sclerosis. Nat. Neurosci. 22, 887–896 (2019).

    CAS  PubMed  Google Scholar 

  112. Tintore, M., Vidal-Jordana, A. & Sastre-Garriga, J. Treatment of multiple sclerosis — success from bench to bedside. Nat. Rev. Neurol. 15, 53–58 (2019).

    CAS  PubMed  Google Scholar 

  113. Rommer, P. S. et al. Immunological aspects of approved MS therapeutics. Front. Immunol. 10, 1564 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Groves, A., Kihara, Y. & Chun, J. Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J. Neurol. Sci. 328, 9–18 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Dubey, D. et al. Dimethyl fumarate in relapsing-remitting multiple sclerosis: rationale, mechanisms of action, pharmacokinetics, efficacy and safety. Expert Rev. Neurother. 15, 339–346 (2015).

    CAS  PubMed  Google Scholar 

  116. Baker, D., Pryce, G., Herrod, S. S. & Schmierer, K. Potential mechanisms of action related to the efficacy and safety of cladribine. Mult. Scler. Relat. Disord. 30, 176–186 (2019).

    PubMed  Google Scholar 

  117. Yong, V. W. Differential mechanisms of action of interferon-β and glatiramer aetate in MS. Neurology 59, 802–808 (2002).

    CAS  PubMed  Google Scholar 

  118. Brundula, V., Rewcastle, N. B., Metz, L. M., Bernard, C. C. & Yong, V. W. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 125, 1297–1308 (2002).

    PubMed  Google Scholar 

  119. Banks, W. A. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 9 (Suppl. 1), S3 (2009).

    PubMed  PubMed Central  Google Scholar 

  120. Montalban, X. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376, 209–220 (2017).

    CAS  PubMed  Google Scholar 

  121. Tallantyre, E., Evangelou, N. & Constantinescu, C. S. Spotlight on teriflunomide. Int. MS J. 15, 62–68 (2008).

    CAS  PubMed  Google Scholar 

  122. Gottle, P. et al. Teriflunomide promotes oligodendroglial differentiation and myelination. J. Neuroinflammation 15, 76 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Singh, V., Voss, E. V., Benardais, K. & Stangel, M. Effects of 2-chlorodeoxyadenosine (cladribine) on primary rat microglia. J. Neuroimmune Pharmacol. 7, 939–950 (2012).

    PubMed  Google Scholar 

  124. Linker, R. A. et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134, 678–692 (2011).

    PubMed  Google Scholar 

  125. Pagani, F. et al. Dimethyl fumarate reduces microglia functional response to tissue damage and favors brain iron homeostasis. Neuroscience 439, 241–254 (2020).

    CAS  PubMed  Google Scholar 

  126. Arnon, R. & Aharoni, R. Glatiramer acetate: from bench to bed and back. Isr. Med. Assoc. J. 21, 151–157 (2019).

    PubMed  Google Scholar 

  127. O’Sullivan, S. & Dev, K. K. Sphingosine-1-phosphate receptor therapies: advances in clinical trials for CNS-related diseases. Neuropharmacology 113, 597–607 (2017).

    PubMed  Google Scholar 

  128. Kim, H. J. et al. Neurobiological effects of sphingosine 1-phosphate receptor modulation in the cuprizone model. FASEB J. 25, 1509–1518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Noda, H., Takeuchi, H., Mizuno, T. & Suzumura, A. Fingolimod phosphate promotes the neuroprotective effects of microglia. J. Neuroimmunol. 256, 13–18 (2013).

    CAS  PubMed  Google Scholar 

  130. Rossi, S. et al. Oral fingolimod rescues the functional deficits of synapses in experimental autoimmune encephalomyelitis. Br. J. Pharmacol. 165, 861–869 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Yazdi, A., Ghasemi-Kasman, M. & Javan, M. Possible regenerative effects of fingolimod (FTY720) in multiple sclerosis disease: an overview on remyelination process. J. Neurosci. Res. 98, 524–536 (2020).

    CAS  PubMed  Google Scholar 

  132. Miron, V. E. et al. FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann. Neurol. 63, 61–71 (2008).

    CAS  PubMed  Google Scholar 

  133. Lublin, F. et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 387, 1075–1084 (2016).

    CAS  PubMed  Google Scholar 

  134. Ward, L. A. et al. Siponimod therapy implicates Th17 cells in a preclinical model of subpial cortical injury. JCI Insight 5, e132522 (2020).

    PubMed Central  Google Scholar 

  135. Gentile, A. et al. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J. Neuroinflammation 13, 207 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. Mannioui, A. et al. The Xenopus tadpole: an in vivo model to screen drugs favoring remyelination. Mult. Scler. 24, 1421–1432 (2018).

    CAS  PubMed  Google Scholar 

  137. Kappos, L. et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 391, 1263–1273 (2018).

    CAS  PubMed  Google Scholar 

  138. Cree, B. A. et al. Siponimod: disentangling disability and relapses in secondary progressive multiple sclerosis. Mult. Scler. 27, 1564–1576 (2021).

    PubMed  Google Scholar 

  139. Benedict, R. H. B. et al. Siponimod and cognition in secondary progressive multiple sclerosis: EXPAND secondary analyses. Neurology 96, e376–e386 (2021).

    CAS  PubMed  Google Scholar 

  140. Kalincik, T. et al. Treatment effectiveness of alemtuzumab compared with natalizumab, fingolimod, and interferon beta in relapsing-remitting multiple sclerosis: a cohort study. Lancet Neurol. 16, 271–281 (2017).

    CAS  PubMed  Google Scholar 

  141. Brown, J. W. L. et al. Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA 321, 175–187 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Narayan, R. N., Forsthuber, T. & Stuve, O. Emerging drugs for primary progressive multiple sclerosis. Expert Opin. Emerg. Drugs 23, 97–110 (2018).

    CAS  PubMed  Google Scholar 

  143. Biewenga, G. P., Haenen, G. R. & Bast, A. The pharmacology of the antioxidant lipoic acid. Gen. Pharmacol. 29, 315–331 (1997).

    CAS  PubMed  Google Scholar 

  144. Packer, L., Tritschler, H. J. & Wessel, K. Neuroprotection by the metabolic antioxidant α-lipoic acid. Free Radic. Biol. Med. 22, 359–378 (1997).

    CAS  PubMed  Google Scholar 

  145. Whiteman, M., Tritschler, H. & Halliwell, B. Protection against peroxynitrite-dependent tyrosine nitration and α1-antiproteinase inactivation by oxidized and reduced lipoic acid. FEBS Lett. 379, 74–76 (1996).

    CAS  PubMed  Google Scholar 

  146. Lovell, M. A., Xie, C., Xiong, S. & Markesbery, W. R. Protection against amyloid beta peptide and iron/hydrogen peroxide toxicity by alpha lipoic acid. J. Alzheimers Dis. 5, 229–239 (2003).

    CAS  PubMed  Google Scholar 

  147. George, J. D., Kim, E., Spain, R., Bourdette, D. & Salinthone, S. Effects of lipoic acid on migration of human B cells and monocyte-enriched peripheral blood mononuclear cells in relapsing remitting multiple sclerosis. J. Neuroimmunol. 315, 24–27 (2018).

    CAS  PubMed  Google Scholar 

  148. Fiedler, S. E., Spain, R. I., Kim, E. & Salinthone, S. Lipoic acid modulates inflammatory responses of monocytes and monocyte-derived macrophages from healthy and relapsing-remitting multiple sclerosis patients. Immunol. Cell Biol. 99, 107–115 (2021).

    CAS  PubMed  Google Scholar 

  149. Marracci, G. H., Jones, R. E., McKeon, G. P. & Bourdette, D. N. Alpha lipoic acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis. J. Neuroimmunol. 131, 104–114 (2002).

    CAS  PubMed  Google Scholar 

  150. Sanadgol, N. et al. Alpha lipoic acid mitigates toxic-induced demyelination in the corpus callosum by lessening of oxidative stress and stimulation of polydendrocytes proliferation. Metab. Brain Dis. 33, 27–37 (2018).

    CAS  PubMed  Google Scholar 

  151. Spain, R. et al. Lipoic acid in secondary progressive MS: a randomized controlled pilot trial. Neurol. Neuroimmunol. Neuroinflamm 4, e374 (2017).

    PubMed  PubMed Central  Google Scholar 

  152. Loy, B. D., Fling, B. W., Horak, F. B., Bourdette, D. N. & Spain, R. I. Effects of lipoic acid on walking performance, gait, and balance in secondary progressive multiple sclerosis. Complement. Ther. Med. 41, 169–174 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. Rip, J., Van Der Ploeg, E. K., Hendriks, R. W. & Corneth, O. B. J. The role of Bruton’s tyrosine kinase in immune cell signaling and systemic autoimmunity. Crit. Rev. Immunol. 38, 17–62 (2018).

    PubMed  Google Scholar 

  154. Torke, S. et al. Inhibition of Bruton’s tyrosine kinase interferes with pathogenic B-cell development in inflammatory CNS demyelinating disease. Acta Neuropathol. 140, 535–548 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Crofford, L. J., Nyhoff, L. E., Sheehan, J. H. & Kendall, P. L. The role of Bruton’s tyrosine kinase in autoimmunity and implications for therapy. Expert Rev. Clin. Immunol. 12, 763–773 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Bhargava, P. et al. Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition. Brain 144, 1396–1408 (2021).

    PubMed  PubMed Central  Google Scholar 

  157. Montalban, X. et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N. Engl. J. Med. 380, 2406–2417 (2019).

    CAS  PubMed  Google Scholar 

  158. Weber, A. N. R. et al. Bruton’s tyrosine kinase: an emerging key player in innate immunity. Front. Immunol. 8, 1454 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. Ni Gabhann, J. et al. Btk regulates macrophage polarization in response to lipopolysaccharide. PLoS ONE 9, e85834 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. Nam, H. Y. et al. Ibrutinib suppresses LPS-induced neuroinflammatory responses in BV2 microglial cells and wild-type mice. J. Neuroinflammation 15, 271 (2018).

    PubMed  PubMed Central  Google Scholar 

  161. Goldwirt, L., Beccaria, K., Ple, A., Sauvageon, H. & Mourah, S. Ibrutinib brain distribution: a preclinical study. Cancer Chemother. Pharmacol. 81, 783–789 (2018).

    CAS  PubMed  Google Scholar 

  162. Gruber, R. C. et al. Poster P0311: Decoding Bruton’s tyrosine kinase signaling in neuroinflammation. Presented at the 8th Joint ACTRIMS-ECTRIMS Meeting (MSVirtual2020) (2020).

  163. Al-Harbi, N. O. et al. Therapeutic treatment with Ibrutinib attenuates imiquimod-induced psoriasis-like inflammation in mice through downregulation of oxidative and inflammatory mediators in neutrophils and dendritic cells. Eur. J. Pharmacol. 877, 173088 (2020).

    CAS  PubMed  Google Scholar 

  164. Mangla, A. et al. Pleiotropic consequences of Bruton tyrosine kinase deficiency in myeloid lineages lead to poor inflammatory responses. Blood 104, 1191–1197 (2004).

    CAS  PubMed  Google Scholar 

  165. Martin, E. et al. Bruton’s tyrosine kinase inhibition promotes myelin repair. Brain Plast. 5, 123–133 (2020).

    PubMed  PubMed Central  Google Scholar 

  166. Dolgin, E. BTK blockers make headway in multiple sclerosis. Nat. Biotechnol. 39, 3–5 (2021).

    CAS  PubMed  Google Scholar 

  167. Suzumura, A., Ito, A., Yoshikawa, M. & Sawada, M. Ibudilast suppresses TNFα production by glial cells functioning mainly as type III phosphodiesterase inhibitor in the CNS. Brain Res. 837, 203–212 (1999).

    CAS  PubMed  Google Scholar 

  168. Mizuno, T. et al. Neuroprotective role of phosphodiesterase inhibitor ibudilast on neuronal cell death induced by activated microglia. Neuropharmacology 46, 404–411 (2004).

    CAS  PubMed  Google Scholar 

  169. Fujimoto, T., Sakoda, S., Fujimura, H. & Yanagihara, T. Ibudilast, a phosphodiesterase inhibitor, ameliorates experimental autoimmune encephalomyelitis in Dark August rats. J. Neuroimmunol. 95, 35–42 (1999).

    CAS  PubMed  Google Scholar 

  170. Fox, R. J. et al. Phase 2 trial of ibudilast in progressive multiple sclerosis. N. Engl. J. Med. 379, 846–855 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Naismith, R. T. et al. Effects of ibudilast on MRI measures in the phase 2 SPRINT-MS study. Neurology 96, e491–e500 (2021).

    CAS  PubMed  Google Scholar 

  172. Fox, R. J. et al. Neurofilament light chain in a phase 2 clinical trial of ibudilast in progressive multiple sclerosis. Mult. Scler. https://doi.org/10.1177/1352458520986956 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Botti, R. E., Triscari, J., Pan, H. Y. & Zayat, J. Concentrations of pravastatin and lovastatin in cerebrospinal fluid in healthy subjects. Clin. Neuropharmacol. 14, 256–261 (1991).

    CAS  PubMed  Google Scholar 

  174. Youssef, S. et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420, 78–84 (2002).

    CAS  PubMed  Google Scholar 

  175. Zhang, X., Tao, Y., Troiani, L. & Markovic-Plese, S. Simvastatin inhibits IFN regulatory factor 4 expression and Th17 cell differentiation in CD4+ T cells derived from patients with multiple sclerosis. J. Immunol. 187, 3431–3437 (2011).

    CAS  PubMed  Google Scholar 

  176. Lawman, S., Mauri, C., Jury, E. C., Cook, H. T. & Ehrenstein, M. R. Atorvastatin inhibits autoreactive B cell activation and delays lupus development in New Zealand black/white F1 mice. J. Immunol. 173, 7641–7646 (2004).

    CAS  PubMed  Google Scholar 

  177. Lindberg, C., Crisby, M., Winblad, B. & Schultzberg, M. Effects of statins on microglia. J. Neurosci. Res. 82, 10–19 (2005).

    CAS  PubMed  Google Scholar 

  178. Guasti, L. et al. Prolonged statin-associated reduction in neutrophil reactive oxygen species and angiotensin II type 1 receptor expression: 1-year follow-up. Eur. Heart J. 29, 1118–1126 (2008).

    CAS  PubMed  Google Scholar 

  179. Wagner, A. H., Kohler, T., Ruckschloss, U., Just, I. & Hecker, M. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler. Thromb. Vasc. Biol. 20, 61–69 (2000).

    CAS  PubMed  Google Scholar 

  180. Tong, H. et al. Simvastatin inhibits activation of NADPH oxidase/p38 MAPK pathway and enhances expression of antioxidant protein in Parkinson disease models. Front. Mol. Neurosci. 11, 165 (2018).

    PubMed  PubMed Central  Google Scholar 

  181. Paintlia, A. S., Paintlia, M. K., Singh, A. K. & Singh, I. Inhibition of rho family functions by lovastatin promotes myelin repair in ameliorating experimental autoimmune encephalomyelitis. Mol. Pharmacol. 73, 1381–1393 (2008).

    CAS  PubMed  Google Scholar 

  182. Dolga, A. M. et al. Lovastatin induces neuroprotection through tumor necrosis factor receptor 2 signaling pathways. J. Alzheimers Dis. 13, 111–122 (2008).

    CAS  PubMed  Google Scholar 

  183. Chataway, J. et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet 383, 2213–2221 (2014).

    CAS  PubMed  Google Scholar 

  184. Chan, D. et al. Effect of high-dose simvastatin on cognitive, neuropsychiatric, and health-related quality-of-life measures in secondary progressive multiple sclerosis: secondary analyses from the MS-STAT randomised, placebo-controlled trial. Lancet Neurol. 16, 591–600 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Wei, Y., Nygard, G. A., Ellertson, S. L. & Khalil, S. K. Stereoselective disposition of hydroxychloroquine and its metabolite in rats. Chirality 7, 598–604 (1995).

    CAS  PubMed  Google Scholar 

  186. Koch, M. W. et al. Hydroxychloroquine reduces microglial activity and attenuates experimental autoimmune encephalomyelitis. J. Neurol. Sci. 358, 131–137 (2015).

    CAS  PubMed  Google Scholar 

  187. Faissner, S. et al. Unexpected additive effects of minocycline and hydroxychloroquine in models of multiple sclerosis: prospective combination treatment for progressive disease? Mult. Scler. 24, 1543–1556 (2018).

    CAS  PubMed  Google Scholar 

  188. Brown, D., Moezzi, D., Dong, Y., Koch, M. & Yong, V. W. Combination of hydroxychloroquine and indapamide attenuates neurodegeneration in models relevant to multiple sclerosis. Neurotherapeutics 18, 387–400 (2021).

    CAS  PubMed  Google Scholar 

  189. Koch, M. W. et al. Hydroxychloroquine for primary progressive multiple sclerosis. Ann. Neurol. https://doi.org/10.1002/ana.26239 (2021).

  190. Sun, Y. et al. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J. Neuroimmunol. 292, 58–67 (2016).

    CAS  PubMed  Google Scholar 

  191. Nath, N. et al. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J. Immunol. 182, 8005–8014 (2009).

    CAS  PubMed  Google Scholar 

  192. Algire, C. et al. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev. Res. 5, 536–543 (2012).

    CAS  Google Scholar 

  193. Neumann, B. et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell 25, 473–485.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Nakashima, Y. & Suzue, R. Effect of nicotinic acid on myelin lipids in brain of developing rat. J. Nutr. Sci. Vitaminol. 28, 491–500 (1982).

    CAS  PubMed  Google Scholar 

  195. Zhang, J. et al. Niaspan treatment improves neurological functional recovery in experimental autoimmune encephalomyelitis mice. Neurobiol. Dis. 32, 273–280 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Rawji, K. S. et al. Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system. Acta Neuropathol. 139, 893–909 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Kaneko, S. et al. Protecting axonal degeneration by increasing nicotinamide adenine dinucleotide levels in experimental autoimmune encephalomyelitis models. J. Neurosci. 26, 9794–9804 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

V.W.Y. is funded by operating research grants from the MS Society of Canada and the Canadian Institutes of Health Research. We thank F. Yong for schematizing Fig. 1.

Review criteria

A full search of the PubMed database was conducted, combining ‘progressive multiple sclerosis’ with the following terms: ‘pathology and mechanisms’, ‘inflammation OR microglia OR oxidative injury OR mitochondria dysfunction OR iron’, ‘neurodegeneration’, ‘remyelination’ and ‘disease-modifying therapy(ies) OR immunomodulator OR clinical trial OR drug OR therapy’. For therapeutics, we used the search term ‘randomized controlled clinical drugs trials in progressive MS’. Other papers were discovered by hand-searching the references of reviews of disease-modifying therapies in progressive multiple sclerosis. We further analysed the reference lists of several key papers to identify additional papers and cross-references.

Author information

Authors and Affiliations

Authors

Contributions

H.Y.F.Y. prepared the first draft including Figs 2–4 and the tables, and revised the manuscript. V.W.Y. supervised the initial draft, revised the manuscript and approved the final version.

Corresponding author

Correspondence to V. Wee Yong.

Ethics declarations

Competing interests

V.W.Y. has received honoraria from Biogen, Novartis, Roche, Sanofi-Genzyme and Teva for industry-sponsored talks, and consulting fees from EMD Serono, Novartis, Roche, Sanofi-Genzyme and Teva. He is the recipient of unrestricted educational grants from Biogen, EMD Serono, Novartis, Roche, Sanofi-Genzyme and Teva to support educational activities of the Alberta MS Network, which he directs. H.Y.F.Y. declares no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks H. Lassmann, A. Thompson and R. Reynolds for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, H.Y.F., Yong, V.W. Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nat Rev Neurol 18, 40–55 (2022). https://doi.org/10.1038/s41582-021-00581-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00581-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing