Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circadian rhythms in neurodegenerative disorders

Abstract

Endogenous biological clocks, orchestrated by the suprachiasmatic nucleus, time the circadian rhythms that synchronize physiological and behavioural functions in humans. The circadian system influences most physiological processes, including sleep, alertness and cognitive performance. Disruption of circadian homeostasis has deleterious effects on human health. Neurodegenerative disorders involve a wide range of symptoms, many of which exhibit diurnal variations in frequency and intensity. These disorders also disrupt circadian homeostasis, which in turn has negative effects on symptoms and quality of life. Emerging evidence points to a bidirectional relationship between circadian homeostasis and neurodegeneration, suggesting that circadian function might have an important role in the progression of neurodegenerative disorders. Therefore, the circadian system has become an attractive target for research and clinical care innovations. Studying circadian disruption in neurodegenerative disorders could expand our understanding of the pathophysiology of neurodegeneration and facilitate the development of novel, circadian-based interventions for these disabling disorders. In this Review, we discuss the alterations to the circadian system that occur in movement (Parkinson disease and Huntington disease) and cognitive (Alzheimer disease and frontotemporal dementia) neurodegenerative disorders and provide directions for future investigations in this field.

Key points

  • Numerous manifestations associated with Parkinson disease, Huntington disease, Alzheimer disease and frontotemporal dementia exhibit diurnal fluctuations, which might have circadian origins.

  • Neurodegenerative processes disrupt the structure and function of the circadian system.

  • Circadian disruption might be a risk factor for the development of neurodegenerative disorders.

  • Circadian-based interventions, such as timed light exposure, timed physical activity and melatonin, might improve some symptoms of neurodegenerative disorders and possibly affect the progression of neurodegeneration by restoring circadian homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Organization of human circadian system.
Fig. 2: The relationships between circadian and sleep dysregulation and neurodegenerative disorders.

Similar content being viewed by others

References

  1. Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Patke, A., Young, M. W. & Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol. 21, 67–84 (2020). A review of the molecular mechanisms of circadian rhythms.

    CAS  PubMed  Google Scholar 

  3. Ono, D., Honma, K. I. & Honma, S. GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm. J. Neurochem. 157, 31–41 (2021).

    CAS  PubMed  Google Scholar 

  4. Cassone, V. M., Speh, J. C., Card, J. P. & Moore, R. Y. Comparative anatomy of the mammalian hypothalamic suprachiasmatic nucleus. J. Biol. Rhythm. 3, 71–91 (1988).

    CAS  Google Scholar 

  5. Swaab, D. F., Fliers, E. & Partiman, T. S. The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res. 342, 37–44 (1985).

    CAS  PubMed  Google Scholar 

  6. Golombek, D. A. & Rosenstein, R. E. Physiology of circadian entrainment. Physiol. Rev. 90, 1063–1102 (2010).

    CAS  PubMed  Google Scholar 

  7. Dardente, H. & Cermakian, N. Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol. Int. 24, 195–213 (2007).

    CAS  PubMed  Google Scholar 

  8. Moore, R. Y. The suprachiasmatic nucleus and the circadian timing system. Prog. Mol. Biol. Transl. Sci. 119, 1–28 (2013).

    PubMed  Google Scholar 

  9. Brown, A. J., Pendergast, J. S. & Yamazaki, S. Peripheral circadian oscillators. Yale J. Biol. Med. 92, 327–335 (2019). A review of peripheral circadian clocks.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mure, L. S. et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359, eaao0318 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Prim. 3, 17013 (2017).

    PubMed  Google Scholar 

  13. Titova, N. & Chaudhuri, K. R. Non-motor Parkinson disease: new concepts and personalised management. Med. J. Aust. 208, 404–409 (2018).

    PubMed  Google Scholar 

  14. Videnovic, A. & Willis, G. L. Circadian system — a novel diagnostic and therapeutic target in Parkinson’s disease? Mov. Disord. 31, 260–269 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. van Wamelen, D. J. et al. Slave to the rhythm: Seasonal differences in non-motor symptoms in Parkinson’s disease. Parkinsonism Relat. Disord. 63, 73–76 (2019).

    PubMed  Google Scholar 

  16. Korshunov, K. S., Blakemore, L. J. & Trombley, P. Q. Dopamine: a modulator of circadian rhythms in the central nervous system. Front. Cell Neurosci. 11, 91 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Vallee, A., Lecarpentier, Y., Guillevin, R. & Vallee, J. N. Circadian rhythms, neuroinflammation and oxidative stress in the story of Parkinson’s disease. Cells 9, 314 (2020).

    CAS  PubMed Central  Google Scholar 

  18. Fifel, K. & Videnovic, A. Circadian alterations in patients with neurodegenerative diseases: neuropathological basis of underlying network mechanisms. Neurobiol. Dis. 144, 105029 (2020). This review outlines the neuropathological basis of circadian dysregulation in common neurodegenerative disorders.

    PubMed  Google Scholar 

  19. Esquiva, G. & Hannibal, J. Melanopsin-expressing retinal ganglion cells in aging and disease. Histol. Histopathol. 34, 1299–1311 (2019).

    CAS  PubMed  Google Scholar 

  20. Ortuno-Lizaran, I. et al. Degeneration of human photosensitive retinal ganglion cells may explain sleep and circadian rhythms disorders in Parkinson’s disease. Acta Neuropathol. Commun. 6, 90 (2018). This study revealed changes in retinal ganglion cells in individuals with PD; these cells are an important component of the circadian system.

    PubMed  PubMed Central  Google Scholar 

  21. La Morgia, C., Ross-Cisneros, F. N., Sadun, A. A. & Carelli, V. Retinal ganglion cells and circadian rhythms in Alzheimer’s disease, Parkinson’s disease, and beyond. Front. Neurol. 8, 162 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Joyce, D. S., Feigl, B., Kerr, G., Roeder, L. & Zele, A. J. Melanopsin-mediated pupil function is impaired in Parkinson’s disease. Sci. Rep. 8, 7796 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Chougule, P. S., Najjar, R. P., Finkelstein, M. T., Kandiah, N. & Milea, D. Light-induced pupillary responses in Alzheimer’s disease. Front. Neurol. 10, 360 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Videnovic, A. et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol. 71, 463–469 (2014). This study revealed a diminished amplitude of melatonin rhythm in individuals with moderate PD.

    PubMed  PubMed Central  Google Scholar 

  25. Breen, D. P. et al. Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol. 71, 589–595 (2014). This study revealed diminished amplitude of melatonin rhythm and clock gene expression in patients with early-stage PD.

    PubMed  PubMed Central  Google Scholar 

  26. De Pablo-Fernandez, E., Courtney, R., Warner, T. T. & Holton, J. L. A Histologic study of the circadian system in Parkinson disease, multiple system atrophy, and progressive supranuclear palsy. JAMA Neurol. 75, 1008–1012 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. Critchley, P. H. et al. Fatigue and melatonin in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 54, 91–92 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Abbott, R. D. et al. Excessive daytime sleepiness and subsequent development of Parkinson disease. Neurology 65, 1442–1446 (2005).

    CAS  PubMed  Google Scholar 

  29. Postuma, R. B. et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain 142, 744–759 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Obayashi, K. et al. Circadian activity rhythm in Parkinson’s disease: findings from the PHASE study. Sleep Med. 85, 8–14 (2021).

    PubMed  Google Scholar 

  31. Van Someren, E. J. Actigraphic monitoring of movement and rest-activity rhythms in aging, Alzheimer’s disease, and Parkinson’s disease. IEEE Trans. Rehabil. Eng. 5, 394–398 (1997).

    PubMed  Google Scholar 

  32. Brooks, C. et al. Variations in rest-activity rhythm are associated with clinically measured disease severity in Parkinson’s disease. Chronobiol. Int. 37, 699–711 (2020).

    PubMed  Google Scholar 

  33. Gros, P. & Videnovic, A. Overview of sleep and circadian rhythm disorders in parkinson disease. Clin. Geriatr. Med. 36, 119–130 (2020).

    PubMed  Google Scholar 

  34. Grippo, R. M. & Guler, A. D. Dopamine signaling in circadian photoentrainment: consequences of desynchrony. Yale J. Biol. Med. 92, 271–281 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, J. W., Moon, Y. T. & Kim, K. D. Nocturia: the circadian voiding disorder. Investig. Clin. Urol. 57, 165–173 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Batla, A., Phe, V., De Min, L. & Panicker, J. N. Nocturia in Parkinson’s disease: why does it occur and how to manage? Mov. Disord. Clin. Pract. 3, 443–451 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 147, 147ra111 (2012).

    Google Scholar 

  38. Holth, J. K. et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science 363, 880–884 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Vichayanrat, E. et al. Twenty-four-hour ambulatory blood pressure and heart rate profiles in diagnosing orthostatic hypotension in Parkinson’s disease and multiple system atrophy. Eur. J. Neurol. 24, 90–97 (2017).

    CAS  PubMed  Google Scholar 

  40. Vallelonga, F. et al. Blood pressure circadian rhythm alterations in α-synucleinopathies. J. Neurol. 266, 1141–1152 (2019). This investigation revealed different patterns of circadian rhythms of blood pressure in synucleinopathies.

    PubMed  Google Scholar 

  41. Buijs, R. M., Hermes, M. H. & Kalsbeek, A. The suprachiasmatic nucleus-paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system. Prog. Brain Res. 119, 365–382 (1998).

    CAS  PubMed  Google Scholar 

  42. Salsone, M. et al. Cardiac sympathetic index identifies patients with Parkinson’s disease and REM behavior disorder. Parkinsonism Relat. Disord. 26, 62–66 (2016).

    PubMed  Google Scholar 

  43. Arnao, V. et al. Impaired circadian heart rate variability in Parkinson’s disease: a time-domain analysis in ambulatory setting. BMC Neurol. 20, 152 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wallace, E. R., Segerstrom, S. C., van Horne, C. G., Schmitt, F. A. & Koehl, L. M. Meta-analysis of cognition in Parkinson’s disease mild cognitive impairment and dementia progression. Neuropsychol. Rev. https://doi.org/10.1007/s11065-021-09502-7 (2021).

    Article  PubMed  Google Scholar 

  45. Sohail, S. et al. Sleep fragmentation and Parkinson’s disease pathology in older adults without Parkinson’s disease. Mov. Disord. 32, 1729–1737 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. Wu, J. Q., Li, P., Stavitsky Gilbert, K., Hu, K. & Cronin-Golomb, A. Circadian rest-activity rhythms predict cognitive function in early parkinson’s disease independently of sleep. Mov. Disord. Clin. Pract. 5, 614–619 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. Leng, Y., Musiek, E. S., Hu, K., Cappuccio, F. P. & Yaffe, K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 18, 307–318 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Leng, Y. et al. Association of circadian abnormalities in older adults with an increased risk of developing parkinson disease. JAMA Neurol. 77, 1270–1278 (2020).

    PubMed  PubMed Central  Google Scholar 

  49. Fertl, E., Auff, E., Doppelbauer, A. & Waldhauser, F. Circadian secretion pattern of melatonin in Parkinson’s disease. J. Neural Transm. Park. Dis. Dement. Sect. 3, 41–47 (1991).

    CAS  PubMed  Google Scholar 

  50. Fertl, E., Auff, E., Doppelbauer, A. & Waldhauser, F. Circadian secretion pattern of melatonin in de novo parkinsonian patients: evidence for phase-shifting properties of l-dopa. J. Neural Transm. Park. Dis. Dement. Sect. 5, 227–234 (1993).

    CAS  PubMed  Google Scholar 

  51. Bordet, R. et al. Study of circadian melatonin secretion pattern at different stages of Parkinson’s disease. Clin. Neuropharmacol. 26, 65–72 (2003).

    CAS  PubMed  Google Scholar 

  52. Li, L. et al. Elevated plasma melatonin levels are correlated with the non-motor symptoms in parkinson’s disease: a cross-sectional study. Front. Neurosci. 14, 505 (2020).

    PubMed  PubMed Central  Google Scholar 

  53. Bolitho, S. J. et al. Disturbances in melatonin secretion and circadian sleep-wake regulation in Parkinson disease. Sleep Med. 15, 342–347 (2014).

    CAS  PubMed  Google Scholar 

  54. Kataoka, H., Saeki, K., Kurumatani, N., Sugie, K. & Obayashi, K. Melatonin secretion in patients with Parkinson’s disease receiving different-dose levodopa therapy. Sleep Med. 75, 309–314 (2020).

    PubMed  Google Scholar 

  55. Ostrin, L. A. Ocular and systemic melatonin and the influence of light exposure. Clin. Exp. Optom. 102, 99–108 (2019).

    PubMed  Google Scholar 

  56. Hartmann, A., Veldhuis, J. D., Deuschle, M., Standhardt, H. & Heuser, I. Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: ultradian secretory pulsatility and diurnal variation. Neurobiol. Aging 18, 285–289 (1997).

    CAS  PubMed  Google Scholar 

  57. Ray, S. & Agarwal, P. Depression and anxiety in Parkinson disease. Clin. Geriatr. Med. 36, 93–104 (2020).

    PubMed  Google Scholar 

  58. Mendoza, J. Circadian insights into the biology of depression: symptoms, treatments and animal models. Behav. Brain Res. 376, 112186 (2019).

    PubMed  Google Scholar 

  59. Pierangeli, G. et al. Nocturnal body core temperature falls in Parkinson’s disease but not in multiple-system atrophy. Mov. Disord. 16, 226–232 (2001).

    CAS  PubMed  Google Scholar 

  60. Zhong, G., Bolitho, S., Grunstein, R., Naismith, S. L. & Lewis, S. J. The relationship between thermoregulation and REM sleep behaviour disorder in Parkinson’s disease. PLoS One 8, e72661 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Suzuki, K. et al. Circadian variation of core body temperature in Parkinson disease patients with depression: a potential biological marker for depression in Parkinson disease. Neuropsychobiology 56, 172–179 (2007).

    PubMed  Google Scholar 

  62. Raupach, A. K. et al. Assessing the role of nocturnal core body temperature dysregulation as a biomarker of neurodegeneration. J. Sleep Res. 29, e12939 (2020).

    PubMed  Google Scholar 

  63. Cai, Y., Liu, S., Sothern, R. B., Xu, S. & Chan, P. Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson’s disease. Eur. J. Neurol. 17, 550–554 (2010).

    CAS  PubMed  Google Scholar 

  64. Gu, Z. et al. Association of ARNTL and PER1 genes with Parkinson’s disease: a case-control study of Han Chinese. Sci. Rep. 5, 15891 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hogl, B., Stefani, A. & Videnovic, A. Idiopathic REM sleep behaviour disorder and neurodegeneration — an update. Nat. Rev. Neurol. 14, 40–55 (2018). A comprehensive review of RBD and its association with neurodegenerative disorders.

    PubMed  Google Scholar 

  66. Feriante, J. & Araujo, J. F. Physiology, REM Sleep (StatPearls Publishing, 2021).

  67. Weissova, K. et al. Circadian rhythms of melatonin and peripheral clock gene expression in idiopathic REM sleep behavior disorder. Sleep Med. 52, 1–6 (2018).

    PubMed  Google Scholar 

  68. Stoof, J. C. & Kebabian, J. W. Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci. 35, 2281–2296 (1984).

    CAS  PubMed  Google Scholar 

  69. Videnovic, A., Lazar, A. S., Barker, R. A. & Overeem, S. ‘The clocks that time us’ — circadian rhythms in neurodegenerative disorders. Nat. Rev. Neurol. 10, 683–693 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Doktor, B., Damulewicz, M. & Pyza, E. Effects of MUL1 and PARKIN on the circadian clock, brain and behaviour in Drosophila Parkinson’s disease models. BMC Neurosci. 20, 24 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. Julienne, H., Buhl, E., Leslie, D. S. & Hodge, J. J. L. Drosophila PINK1 and parkin loss-of-function mutants display a range of non-motor Parkinson’s disease phenotypes. Neurobiol. Dis. 104, 15–23 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, W. W. et al. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson’s disease mouse model. FASEB J. 34, 6570–6581 (2020).

    CAS  PubMed  Google Scholar 

  73. Wang, Y. et al. Disruption of the circadian clock alters antioxidative defense via the SIRT1-BMAL1 pathway in 6-OHDA-induced models of Parkinson’s disease. Oxid. Med. Cell Longev. 2018, 4854732 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Lauretti, E., Di Meco, A., Merali, S. & Pratico, D. Circadian rhythm dysfunction: a novel environmental risk factor for Parkinson’s disease. Mol. Psychiatry 22, 280–286 (2017). This investigation reported the modulation of neuropathological changes within substantia nigra that pre-existed circadian dysregulation in animal models of PD.

    CAS  PubMed  Google Scholar 

  75. Kim, J. et al. Abrogation of the circadian nuclear receptor REV-ERBα exacerbates 6-hydroxydopamine-induced dopaminergic neurodegeneration. Mol. Cell 41, 742–752 (2018).

    CAS  Google Scholar 

  76. Huang, L., Zhang, D., Ji, J., Wang, Y. & Zhang, R. Central retina changes in Parkinson’s disease: a systematic review and meta-analysis. J. Neurol. https://doi.org/10.1007/s00415-020-10304-9 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lin, J. B., Tsubota, K. & Apte, R. S. A glimpse at the aging eye. NPJ Aging Mech. Dis. 2, 16003 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. Fifel, K. & Videnovic, A. Chronotherapies for Parkinson’s disease. Prog. Neurobiol. 174, 16–27 (2019). A review of circadian-based interventions for PD.

    PubMed  PubMed Central  Google Scholar 

  79. Willis, G. L., Moore, C. & Armstrong, S. M. A historical justification for and retrospective analysis of the systematic application of light therapy in Parkinson’s disease. Rev. Neurosci. 23, 199–226 (2012).

    CAS  PubMed  Google Scholar 

  80. Willis, G. L. & Turner, E. J. Primary and secondary features of Parkinson’s disease improve with strategic exposure to bright light: a case series study. Chronobiol. Int. 24, 521–537 (2007).

    PubMed  Google Scholar 

  81. Martino, J. K., Freelance, C. B. & Willis, G. L. The effect of light exposure on insomnia and nocturnal movement in Parkinson’s disease: an open label, retrospective, longitudinal study. Sleep. Med. 44, 24–31 (2018).

    PubMed  Google Scholar 

  82. Paus, S. et al. Bright light therapy in Parkinson’s disease: a pilot study. Mov. Disord. 22, 1495–1498 (2007).

    PubMed  Google Scholar 

  83. Videnovic, A. et al. Timed light therapy for sleep and daytime sleepiness associated with parkinson disease: a randomized clinical trial. JAMA Neurol. 74, 411–418 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Rutten, S. et al. Bright light therapy for depression in Parkinson disease: a randomized controlled trial. Neurology 92, e1145–e1156 (2019).

    PubMed  Google Scholar 

  85. Rios Romenets, S. et al. Doxepin and cognitive behavioural therapy for insomnia in patients with Parkinson’s disease — a randomized study. Parkinsonism Relat. Disord. 19, 670–675 (2013).

    CAS  PubMed  Google Scholar 

  86. Feng, Y. S. et al. The benefits and mechanisms of exercise training for Parkinson’s disease. Life Sci. 245, 117345 (2020).

    CAS  PubMed  Google Scholar 

  87. Amara, A. W. et al. Randomized, controlled trial of exercise on objective and subjective sleep in Parkinson’s disease. Mov. Disord. 35, 947–958 (2020).

    PubMed  PubMed Central  Google Scholar 

  88. Zisapel, N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol. 175, 3190–3199 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Delgado-Lara, D. L. et al. Effect of melatonin administration on the PER1 and BMAL1 clock genes in patients with Parkinson’s disease. Biomed. Pharmacother. 129, 110485 (2020).

    CAS  PubMed  Google Scholar 

  90. Amara, A. W., Chahine, L. M. & Videnovic, A. Treatment of sleep dysfunction in Parkinson’s disease. Curr. Treat. Options Neurol. 19, 26 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Dowling, G. A. et al. Melatonin for sleep disturbances in Parkinson’s disease. Sleep. Med. 6, 459–466 (2005).

    PubMed  Google Scholar 

  92. Morrison, P. J. Accurate prevalence and uptake of testing for Huntington’s disease. Lancet Neurol. 9, 1147 (2010).

    PubMed  Google Scholar 

  93. Harper, P. S. The epidemiology of Huntington’s disease. Hum. Genet. 89, 365–376 (1992).

    CAS  PubMed  Google Scholar 

  94. Bates, G. P. et al. Huntington disease. Nat. Rev. Dis. Prim. 1, 15005 (2015).

    PubMed  Google Scholar 

  95. Pringsheim, T. et al. The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov. Disord. 27, 1083–1091 (2012).

    PubMed  Google Scholar 

  96. Gusella, J. F. et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306, 234–238 (1983).

    CAS  PubMed  Google Scholar 

  97. Gilliam, T. C. et al. A DNA segment encoding two genes very tightly linked to Huntington’s disease. Science 238, 950–952 (1987).

    CAS  PubMed  Google Scholar 

  98. No Authors Listed. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72, 971–983 (1993).

    Google Scholar 

  99. Bamford, K. A., Caine, E. D., Kido, D. K., Cox, C. & Shoulson, I. A prospective evaluation of cognitive decline in early Huntington’s disease: functional and radiographic correlates. Neurology 45, 1867–1873 (1995).

    CAS  PubMed  Google Scholar 

  100. Paulsen, J. S., Ready, R. E., Hamilton, J. M., Mega, M. S. & Cummings, J. L. Neuropsychiatric aspects of Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 71, 310–314 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Goodman, A. O. et al. Asymptomatic sleep abnormalities are a common early feature in patients with Huntington’s disease. Curr. Neurol. Neurosci. Rep. 11, 211–217 (2011).

    PubMed  Google Scholar 

  102. Hansotia, P., Wall, R. & Berendes, J. Sleep disturbances and severity of Huntington’s disease. Neurology 35, 1672–1674 (1985).

    CAS  PubMed  Google Scholar 

  103. Emser, W., Brenner, M., Stober, T. & Schimrigk, K. Changes in nocturnal sleep in Huntington’s and Parkinson’s disease. J. Neurol. 235, 177–179 (1988).

    CAS  PubMed  Google Scholar 

  104. Silvestri, R. et al. Sleep features in Tourette’s syndrome, neuroacanthocytosis and Huntington’s chorea. Neurophysiol. Clin. 25, 66–77 (1995).

    CAS  PubMed  Google Scholar 

  105. Cuturic, M., Abramson, R. K., Vallini, D., Frank, E. M. & Shamsnia, M. Sleep patterns in patients with Huntington’s disease and their unaffected first-degree relatives: a brief report. Behav. Sleep Med. 7, 245–254 (2009).

    PubMed  Google Scholar 

  106. Arnulf, I. et al. Rapid eye movement sleep disturbances in Huntington disease. Arch. Neurol. 65, 482–488 (2008).

    PubMed  Google Scholar 

  107. Morton, A. J. et al. Disintegration of the sleep-wake cycle and circadian timing in Huntington’s disease. J. Neurosci. 25, 157–163 (2005). This study revealed disruption of circadian rhythms throughout the course of HD, in animal models and individuals affected by the disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kudo, T. et al. Dysfunctions in circadian behavior and physiology in mouse models of Huntington’s disease. Exp. Neurol. 228, 80–90 (2011). This study revealed reduced rhythms of spontaneous neuronal activity and clock gene expression within the suprachiasmatic nucleus in several animal models of HD.

    CAS  PubMed  Google Scholar 

  109. Herzog-Krzywoszanska, R. & Krzywoszanski, L. Sleep disorders in Huntington’s disease. Front. Psychiatry 10, 221 (2019).

    PubMed  PubMed Central  Google Scholar 

  110. Taylor, N. & Bramble, D. Sleep disturbance and Huntingdon’s disease. Br. J. Psychiatry 171, 393 (1997).

    CAS  PubMed  Google Scholar 

  111. Goodman, A. O., Morton, A. J. & Barker, R. A. Identifying sleep disturbances in Huntington’s disease using a simple disease-focused questionnaire. PLoS Curr. 2, RRN1189 (2010).

    PubMed  PubMed Central  Google Scholar 

  112. Aziz, N. A., Anguelova, G. V., Marinus, J., Lammers, G. J. & Roos, R. A. Sleep and circadian rhythm alterations correlate with depression and cognitive impairment in Huntington’s disease. Parkinsonism Relat. Disord. 16, 345–350 (2010).

    PubMed  Google Scholar 

  113. Diago, E. B. et al. Circadian rhythm, cognition, and mood disorders in Huntington’s disease. J. Huntingt. Dis. 7, 193–198 (2018).

    Google Scholar 

  114. Epping, E. A. & Paulsen, J. S. Depression in the early stages of Huntington disease. Neurodegener. Dis. Manag. 1, 407–414 (2011).

    PubMed  Google Scholar 

  115. Paoli, R. A. et al. Neuropsychiatric burden in huntington’s disease. Brain Sci. 7, 67 (2017).

    PubMed Central  Google Scholar 

  116. Saenz-Farret, M. et al. Neuropsychiatric symptoms and premanifest Huntington’s disease. Mov. Disord. 32, 481 (2017).

    PubMed  Google Scholar 

  117. Wiegand, M. et al. Nocturnal sleep in Huntington’s disease. J. Neurol. 238, 203–220 (1991).

    CAS  PubMed  Google Scholar 

  118. van Vugt, J. P., van Hilten, B. J. & Roos, R. A. Hypokinesia in Huntington’s disease. Mov. Disord. 11, 384–388 (1996).

    PubMed  Google Scholar 

  119. van Vugt, J. P. et al. Quantitative assessment of daytime motor activity provides a responsive measure of functional decline in patients with Huntington’s disease. Mov. Disord. 16, 481–488 (2001).

    PubMed  Google Scholar 

  120. Hurelbrink, C. B., Lewis, S. J. & Barker, R. A. The use of the Actiwatch-Neurologica system to objectively assess the involuntary movements and sleep-wake activity in patients with mild-moderate Huntington’s disease. J. Neurol. 252, 642–647 (2005).

    PubMed  Google Scholar 

  121. Townhill, J. et al. Using Actiwatch to monitor circadian rhythm disturbance in Huntington’ disease: a cautionary note. J. Neurosci. Methods 265, 13–18 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. Aziz, N. A. et al. Delayed onset of the diurnal melatonin rise in patients with Huntington’s disease. J. Neurol. 256, 1961–1965 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kalliolia, E. et al. Plasma melatonin is reduced in Huntington’s disease. Mov. Disord. 29, 1511–1515 (2014).

    CAS  PubMed  Google Scholar 

  124. Shirbin, C. A. et al. Cortisol and depression in pre-diagnosed and early stage Huntington’s disease. Psychoneuroendocrinology 38, 2439–2447 (2013).

    CAS  PubMed  Google Scholar 

  125. Heuser, I. J., Chase, T. N. & Mouradian, M. M. The limbic-hypothalamic-pituitary-adrenal axis in Huntington’s disease. Biol. Psychiatry 30, 943–952 (1991).

    CAS  PubMed  Google Scholar 

  126. Saleh, N. et al. Neuroendocrine disturbances in Huntington’s disease. PLoS One 4, e4962 (2009).

    PubMed  PubMed Central  Google Scholar 

  127. Aziz, N. A. et al. Increased hypothalamic-pituitary-adrenal axis activity in Huntington’s disease. J. Clin. Endocrinol. Metab. 94, 1223–1228 (2009).

    CAS  PubMed  Google Scholar 

  128. Adamczak-Ratajczak, A. et al. Circadian rhythms of melatonin and cortisol in manifest Huntington’s disease and in acute cortical ischemic stroke. J. Physiol. Pharmacol. 68, 539–546 (2017).

    CAS  PubMed  Google Scholar 

  129. Kalsbeek, A., Buijs, R. M., van Heerikhuize, J. J., Arts, M. & van der Woude, T. P. Vasopressin-containing neurons of the suprachiasmatic nuclei inhibit corticosterone release. Brain Res. 580, 62–67 (1992).

    CAS  PubMed  Google Scholar 

  130. van Wamelen, D. J. et al. Suprachiasmatic nucleus neuropeptide expression in patients with Huntington’s Disease. Sleep 36, 117–125 (2013).

    PubMed  PubMed Central  Google Scholar 

  131. Bartlett, D. M. et al. Investigating the relationships between hypothalamic volume and measures of circadian rhythm and habitual sleep in premanifest Huntington’s disease. Neurobiol. Sleep Circadian Rhythms 6, 1–8 (2019).

    PubMed  Google Scholar 

  132. Pouladi, M. A., Morton, A. J. & Hayden, M. R. Choosing an animal model for the study of Huntington’s disease. Nat. Rev. Neurosci. 14, 708–721 (2013).

    CAS  PubMed  Google Scholar 

  133. Rieke, L. et al. Activity behaviour of minipigs transgenic for the Huntington gene. J. Huntingt. Dis. 8, 23–31 (2019).

    CAS  Google Scholar 

  134. Kantor, S., Szabo, L., Varga, J., Cuesta, M. & Morton, A. J. Progressive sleep and electroencephalogram changes in mice carrying the Huntington’s disease mutation. Brain 136, 2147–2158 (2013).

    PubMed  Google Scholar 

  135. Fisher, S. P. et al. Longitudinal analysis of the electroencephalogram and sleep phenotype in the R6/2 mouse model of Huntington’s disease. Brain 136, 2159–2172 (2013).

    PubMed  Google Scholar 

  136. Fahrenkrug, J., Popovic, N., Georg, B., Brundin, P. & Hannibal, J. Decreased VIP and VPAC2 receptor expression in the biological clock of the R6/2 Huntington’s disease mouse. J. Mol. Neurosci. 31, 139–148 (2007).

    CAS  PubMed  Google Scholar 

  137. Rudenko, O., Tkach, V., Berezin, V. & Bock, E. Detection of early behavioral markers of Huntington’s disease in R6/2 mice employing an automated social home cage. Behav. Brain Res. 203, 188–199 (2009).

    PubMed  Google Scholar 

  138. Bode, F. J. et al. Increased numbers of motor activity peaks during light cycle are associated with reductions in adrenergic alpha(2)-receptor levels in a transgenic Huntington’s disease rat model. Behav. Brain Res. 205, 175–182 (2009).

    CAS  PubMed  Google Scholar 

  139. Pietropaolo, S., Delage, P., Cayzac, S., Crusio, W. E. & Cho, Y. H. Sex-dependent changes in social behaviors in motor pre-symptomatic R6/1 mice. PLoS One 6, e19965 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Loh, D. H., Kudo, T., Truong, D., Wu, Y. & Colwell, C. S. The Q175 mouse model of Huntington’s disease shows gene dosage- and age-related decline in circadian rhythms of activity and sleep. PLoS One 8, e69993 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Morton, A. J. et al. Early and progressive circadian abnormalities in Huntington’s disease sheep are unmasked by social environment. Hum. Mol. Genet. 23, 3375–3383 (2014).

    CAS  PubMed  Google Scholar 

  142. Dufour, B. D. & McBride, J. L. Corticosterone dysregulation exacerbates disease progression in the R6/2 transgenic mouse model of Huntington’s disease. Exp. Neurol. 283, 308–317 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Morton, A. J. et al. Increased plasma melatonin in presymptomatic Huntington disease sheep (Ovis aries): Compensatory neuroprotection in a neurodegenerative disease? J. Pineal Res. 68, e12624 (2020).

    CAS  PubMed  Google Scholar 

  144. Xu, F., Kula-Eversole, E., Iwanaszko, M., Lim, C. & Allada, R. Ataxin2 functions via CrebA to mediate Huntingtin toxicity in circadian clock neurons. PLoS Genet. 15, e1008356 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Farago, A., Zsindely, N. & Bodai, L. Mutant huntingtin disturbs circadian clock gene expression and sleep patterns in Drosophila. Sci. Rep. 9, 7174 (2019).

    PubMed  PubMed Central  Google Scholar 

  146. Xu, F. et al. Circadian clocks function in concert with heat shock organizing protein to modulate mutant huntingtin aggregation and toxicity. Cell Rep. 27, 59–70 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Neueder, A. et al. HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington’s disease mouse models. Sci. Rep. 7, 12556 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. Pallier, P. N. et al. Pharmacological imposition of sleep slows cognitive decline and reverses dysregulation of circadian gene expression in a transgenic mouse model of Huntington’s disease. J. Neurosci. 27, 7869–7878 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Kuljis, D., Kudo, T., Tahara, Y., Ghiani, C. A. & Colwell, C. S. Pathophysiology in the suprachiasmatic nucleus in mouse models of Huntington’s disease. J. Neurosci. Res. 96, 1862–1875 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Ouk, K., Aungier, J., Ware, M. & Morton, A. J. Abnormal photic entrainment to phase-delaying stimuli in the R6/2 mouse model of Huntington’s disease, despite retinal responsiveness to light. eNeuro https://doi.org/10.1523/ENEURO.0088-19.2019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Lin, M. S. et al. Degeneration of ipRGCs in mouse models of huntington’s disease disrupts non-image-forming behaviors before motor impairment. J. Neurosci. 39, 1505–1524 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Ouk, K., Hughes, S., Pothecary, C. A., Peirson, S. N. & Morton, A. J. Attenuated pupillary light responses and downregulation of opsin expression parallel decline in circadian disruption in two different mouse models of Huntington’s disease. Hum. Mol. Genet. 25, 5418–5432 (2016).

    CAS  PubMed Central  Google Scholar 

  153. Ouk, K., Aungier, J. & Morton, A. J. Progressive gene dose-dependent disruption of the methamphetamine-sensitive circadian oscillator-driven rhythms in a knock-in mouse model of Huntington’s disease. Exp. Neurol. 286, 69–82 (2016).

    CAS  PubMed  Google Scholar 

  154. Ouk, K., Aungier, J., Cuesta, M. & Morton, A. J. Chronic paroxetine treatment prevents disruption of methamphetamine-sensitive circadian oscillator in a transgenic mouse model of Huntington’s disease. Neuropharmacology 131, 337–350 (2018).

    CAS  PubMed  Google Scholar 

  155. Pallier, P. N. & Morton, A. J. Management of sleep/wake cycles improves cognitive function in a transgenic mouse model of Huntington’s disease. Brain Res. 1279, 90–98 (2009).

    CAS  PubMed  Google Scholar 

  156. Wood, N. I. et al. Responses to environmental enrichment differ with sex and genotype in a transgenic mouse model of Huntington’s disease. PLoS One 5, e9077 (2010).

    PubMed  PubMed Central  Google Scholar 

  157. Kuljis, D. A. et al. Sex differences in circadian dysfunction in the BACHD mouse model of Huntington’s disease. PLoS One 11, e0147583 (2016).

    PubMed  PubMed Central  Google Scholar 

  158. Delfino, L., Mason, R. P., Kyriacou, C. P., Giorgini, F. & Rosato, E. Rab8 promotes mutant HTT aggregation, reduces neurodegeneration, and ameliorates behavioural alterations in a Drosophila model of Huntington’s disease. J. Huntingt. Dis. 9, 253–263 (2020).

    CAS  Google Scholar 

  159. Yu-Taeger, L. et al. Intranasal administration of mesenchymal stem cells ameliorates the abnormal dopamine transmission system and inflammatory reaction in the R6/2 mouse model of huntington disease. Cells 8, 595 (2019).

    CAS  PubMed Central  Google Scholar 

  160. Rudenko, O. et al. Ghrelin-mediated improvements in the metabolic phenotype in the R6/2 mouse model of Huntington’s disease. J. Neuroendocrinol. 31, e12699 (2019).

    PubMed  Google Scholar 

  161. Whittaker, D. S. et al. Circadian-based treatment strategy effective in the BACHD mouse model of Huntington’s disease. J. Biol. Rhythm. 33, 535–554 (2018).

    CAS  Google Scholar 

  162. Wang, H. B. et al. Time-restricted feeding improves circadian dysfunction as well as motor symptoms in the Q175 mouse model of Huntington’s disease. eNeuro https://doi.org/10.1523/ENEURO.0431-17.2017 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Wang, H. B. et al. Blue light therapy improves circadian dysfunction as well as motor symptoms in two mouse models of Huntington’s disease. Neurobiol. Sleep Circadian Rhythm. 2, 39–52 (2017).

    Google Scholar 

  164. Ouk, K., Aungier, J. & Morton, A. J. Prolonged day length exposure improves circadian deficits and survival in a transgenic mouse model of Huntington’s disease. Neurobiol. Sleep Circadian Rhythm. 2, 27–38 (2017).

    Google Scholar 

  165. Cuesta, M., Aungier, J. & Morton, A. J. Behavioral therapy reverses circadian deficits in a transgenic mouse model of Huntington’s disease. Neurobiol. Dis. 63, 85–91 (2014).

    PubMed  Google Scholar 

  166. van Wamelen, D. J., Roos, R. A. & Aziz, N. A. Therapeutic strategies for circadian rhythm and sleep disturbances in Huntington disease. Neurodegener. Dis. Manag. 5, 549–555 (2015).

    PubMed  Google Scholar 

  167. Carman, J. S., Post, R. M., Buswell, R. & Goodwin, F. K. Negative effects of melatonin on depression. Am. J. Psychiatry 133, 1181–1186 (1976).

    CAS  PubMed  Google Scholar 

  168. Bartlett, D. M. et al. Multidisciplinary rehabilitation reduces hypothalamic grey matter volume loss in individuals with preclinical Huntington’s disease: A nine-month pilot study. J. Neurol. Sci. 408, 116522 (2020).

    PubMed  Google Scholar 

  169. Rossi, C. et al. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur. J. Neurosci. 24, 1850–1856 (2006).

    PubMed  Google Scholar 

  170. Ballard, C. et al. Alzheimer’s disease. Lancet 377, 1019–1031 (2011).

    PubMed  Google Scholar 

  171. Ittner, L. M. & Gotz, J. Amyloid-beta and tau — a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neurosci. 12, 65–72 (2011).

    CAS  PubMed  Google Scholar 

  172. Long, J. M. & Holtzman, D. M. Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179, 312–339 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    CAS  PubMed  Google Scholar 

  174. Wu, Y. H. & Swaab, D. F. Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer’s disease. Sleep Med. 8, 623–636 (2007).

    PubMed  Google Scholar 

  175. Bianchetti, A. et al. Predictors of mortality and institutionalization in Alzheimer disease patients 1 year after discharge from an Alzheimer dementia unit. Dementia 6, 108–112 (1995).

    CAS  PubMed  Google Scholar 

  176. Pollak, C. P. & Perlick, D. Sleep problems and institutionalization of the elderly. J. Geriatr. Psychiatry Neurol. 4, 204–210 (1991).

    CAS  PubMed  Google Scholar 

  177. Todd, W. D. et al. A hypothalamic circuit for the circadian control of aggression. Nat. Neurosci. 21, 717–724 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Paillard, T., Noe, F., Bru, N., Couderc, M. & Debove, L. The impact of time of day on the gait and balance control of Alzheimer’s patients. Chronobiol. Int. 33, 161–168 (2016).

    CAS  PubMed  Google Scholar 

  179. Harper, D. G. et al. Dementia severity and Lewy bodies affect circadian rhythms in Alzheimer disease. Neurobiol. Aging 25, 771–781 (2004).

    CAS  PubMed  Google Scholar 

  180. Musiek, E. S. et al. Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. JAMA Neurol. 75, 582–590 (2018). This study examined changes in circadian rest–activity patterns in preclinical AD compared with normal ageing.

    PubMed  Google Scholar 

  181. Ortiz-Tudela, E. et al. The characterization of biological rhythms in mild cognitive impairment. Biomed. Res. Int. 2014, 524971 (2014).

    PubMed  PubMed Central  Google Scholar 

  182. Naismith, S. L. et al. Circadian misalignment and sleep disruption in mild cognitive impairment. J. Alzheimers Dis. 38, 857–866 (2014).

    CAS  PubMed  Google Scholar 

  183. Ju, Y. E. et al. Sleep quality and preclinical Alzheimer disease. JAMA Neurol. 70, 587–593 (2013).

    PubMed  PubMed Central  Google Scholar 

  184. Wang, J. L. et al. Suprachiasmatic neuron numbers and rest-activity circadian rhythms in older humans. Ann. Neurol. 78, 317–322 (2015).

    PubMed  PubMed Central  Google Scholar 

  185. Weissova, K., Bartos, A., Sladek, M., Novakova, M. & Sumova, A. Moderate changes in the circadian system of Alzheimer’s disease patients detected in their home environment. PLoS One 11, e0146200 (2016).

    PubMed  PubMed Central  Google Scholar 

  186. Hooghiemstra, A. M., Eggermont, L. H., Scheltens, P., van der Flier, W. M. & Scherder, E. J. The rest-activity rhythm and physical activity in early-onset dementia. Alzheimer Dis. Assoc. Disord. 29, 45–49 (2015).

    PubMed  Google Scholar 

  187. Liguori, C. et al. Orexinergic system dysregulation, sleep impairment, and cognitive decline in Alzheimer disease. JAMA Neurol. 71, 1498–1505 (2014).

    PubMed  Google Scholar 

  188. Witting, W., Kwa, I. H., Eikelenboom, P., Mirmiran, M. & Swaab, D. F. Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biol. Psychiatry 27, 563–572 (1990).

    CAS  PubMed  Google Scholar 

  189. van Someren, E. J. et al. Circadian rest-activity rhythm disturbances in Alzheimer’s disease. Biol. Psychiatry 40, 259–270 (1996).

    PubMed  Google Scholar 

  190. Tranah, G. J. et al. Circadian activity rhythms and risk of incident dementia and mild cognitive impairment in older women. Ann. Neurol. 70, 722–732 (2011).

    PubMed  PubMed Central  Google Scholar 

  191. Wams, E. J., Wilcock, G. K., Foster, R. G. & Wulff, K. Sleep-wake patterns and cognition of older adults with amnestic mild cognitive impairment (aMCI): a comparison with cognitively healthy adults and moderate Alzheimer’s disease patients. Curr. Alzheimer Res. 14, 1030–1041 (2017).

    CAS  PubMed  Google Scholar 

  192. Satlin, A., Volicer, L., Stopa, E. G. & Harper, D. Circadian locomotor activity and core-body temperature rhythms in Alzheimer’s disease. Neurobiol. Aging 16, 765–771 (1995).

    CAS  PubMed  Google Scholar 

  193. Harper, D. G. et al. Disturbance of endogenous circadian rhythm in aging and Alzheimer disease. Am. J. Geriatr. Psychiatry 13, 359–368 (2005).

    PubMed  Google Scholar 

  194. Abulafia, C. et al. Relationship between cognitive and sleep-wake variables in asymptomatic offspring of patients with late-onset Alzheimer’s disease. Front. Aging Neurosci. 9, 93 (2017).

    PubMed  PubMed Central  Google Scholar 

  195. Most, E. I., Scheltens, P. & Van Someren, E. J. Increased skin temperature in Alzheimer’s disease is associated with sleepiness. J. Neural Transm. 119, 1185–1194 (2012).

    PubMed  Google Scholar 

  196. Hu, K., Scheer, F. A., Ivanov, P., Buijs, R. M. & Shea, S. A. The suprachiasmatic nucleus functions beyond circadian rhythm generation. Neuroscience 149, 508–517 (2007).

    CAS  PubMed  Google Scholar 

  197. Hu, K., Van Someren, E. J., Shea, S. A. & Scheer, F. A. Reduction of scale invariance of activity fluctuations with aging and Alzheimer’s disease: Involvement of the circadian pacemaker. Proc. Natl Acad. Sci. USA 106, 2490–2494 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Hu, K., Harper, D. G., Shea, S. A., Stopa, E. G. & Scheer, F. A. Noninvasive fractal biomarker of clock neurotransmitter disturbance in humans with dementia. Sci. Rep. 3, 2229 (2013).

    PubMed  PubMed Central  Google Scholar 

  199. Li, P. et al. Interaction between the progression of Alzheimer’s disease and fractal degradation. Neurobiol. Aging 83, 21–30 (2019). This study examined fractal degradation in AD and demonstrated its degradation throughout the course of AD.

    PubMed  PubMed Central  Google Scholar 

  200. Skene, D. J. & Swaab, D. F. Melatonin rhythmicity: effect of age and Alzheimer’s disease. Exp. Gerontol. 38, 199–206 (2003).

    CAS  PubMed  Google Scholar 

  201. Rosales-Corral, S. A. et al. Alzheimer’s disease: pathological mechanisms and the beneficial role of melatonin. J. Pineal Res. 52, 167–202 (2012).

    CAS  PubMed  Google Scholar 

  202. Lin, L. et al. Melatonin in Alzheimer’s disease. Int. J. Mol. Sci. 14, 14575–14593 (2013).

    PubMed  PubMed Central  Google Scholar 

  203. Liu, R. Y., Zhou, J. N., van Heerikhuize, J., Hofman, M. A. & Swaab, D. F. Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-ε4/4 genotype. J. Clin. Endocrinol. Metab. 84, 323–327 (1999).

    CAS  PubMed  Google Scholar 

  204. Manni, R. et al. Evening melatonin timing secretion in real life conditions in patients with Alzheimer disease of mild to moderate severity. Sleep Med. 63, 122–126 (2019).

    PubMed  Google Scholar 

  205. Zhou, J. N., Liu, R. Y., Kamphorst, W., Hofman, M. A. & Swaab, D. F. Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J. Pineal Res. 35, 125–130 (2003).

    CAS  PubMed  Google Scholar 

  206. Wu, Y. H. et al. Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J. Clin. Endocrinol. Metab. 88, 5898–5906 (2003).

    CAS  PubMed  Google Scholar 

  207. Mishima, K. et al. Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer’s type with disturbed sleep-waking. Biol. Psychiatry 45, 417–421 (1999).

    CAS  PubMed  Google Scholar 

  208. Shan, L., Bossers, K., Unmehopa, U., Bao, A. M. & Swaab, D. F. Alterations in the histaminergic system in Alzheimer’s disease: a postmortem study. Neurobiol. Aging 33, 2585–2598 (2012).

    CAS  PubMed  Google Scholar 

  209. Shan, L. et al. Diurnal fluctuation in histidine decarboxylase expression, the rate limiting enzyme for histamine production, and its disorder in neurodegenerative diseases. Sleep 35, 713–715 (2012).

    PubMed  PubMed Central  Google Scholar 

  210. Janssens, J. et al. Sampling issues of cerebrospinal fluid and plasma monoamines: Investigation of the circadian rhythm and rostrocaudal concentration gradient. Neurochem. Int. 128, 154–162 (2019).

    CAS  PubMed  Google Scholar 

  211. Lucey, B. P., Fagan, A. M., Holtzman, D. M., Morris, J. C. & Bateman, R. J. Diurnal oscillation of CSF Aβ and other AD biomarkers. Mol. Neurodegener. 12, 36 (2017).

    PubMed  PubMed Central  Google Scholar 

  212. Rozga, M., Bittner, T., Batrla, R. & Karl, J. Preanalytical sample handling recommendations for Alzheimer’s disease plasma biomarkers. Alzheimers Dement. 11, 291–300 (2019).

    Google Scholar 

  213. Kang, J. E. et al. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science 326, 1005–1007 (2009). This study demonstrated influences of the sleep–wake cycles and orexin system on Aβ dynamics.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Baloyannis, S. J., Mavroudis, I., Mitilineos, D., Baloyannis, I. S. & Costa, V. G. The hypothalamus in Alzheimer’s disease: a Golgi and electron microscope study. Am. J. Alzheimers Dis. Other Demen. 30, 478–487 (2015).

    PubMed  Google Scholar 

  215. Wu, Y. H., Zhou, J. N., Van Heerikhuize, J., Jockers, R. & Swaab, D. F. Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol. Aging 28, 1239–1247 (2007).

    CAS  PubMed  Google Scholar 

  216. Stopa, E. G. et al. Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J. Neuropathol. Exp. Neurol. 58, 29–39 (1999).

    CAS  PubMed  Google Scholar 

  217. Coogan, A. N., Rawlings, N., Luckman, S. M. & Piggins, H. D. Effects of neurotensin on discharge rates of rat suprachiasmatic nucleus neurons in vitro. Neuroscience 103, 663–672 (2001).

    CAS  PubMed  Google Scholar 

  218. Zhou, J. N., Hofman, M. A. & Swaab, D. F. VIP neurons in the human SCN in relation to sex, age, and Alzheimer’s disease. Neurobiol. Aging 16, 571–576 (1995).

    CAS  PubMed  Google Scholar 

  219. Liu, R. Y. et al. Decreased vasopressin gene expression in the biological clock of Alzheimer disease patients with and without depression. J. Neuropathol. Exp. Neurol. 59, 314–322 (2000).

    CAS  PubMed  Google Scholar 

  220. La Morgia, C. et al. Melanopsin retinal ganglion cell loss in Alzheimer disease. Ann. Neurol. 79, 90–109 (2016).

    PubMed  Google Scholar 

  221. Oh, A. J. et al. Pupillometry evaluation of melanopsin retinal ganglion cell function and sleep-wake activity in pre-symptomatic Alzheimer’s disease. PLoS One 14, e0226197 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Romagnoli, M. et al. Chromatic pupillometry findings in Alzheimer’s disease. Front. Neurosci. 14, 780 (2020). This study reported ambormailities in the pupillary light response in early AD.

    PubMed  PubMed Central  Google Scholar 

  223. Jagannath, A., Taylor, L., Wakaf, Z., Vasudevan, S. R. & Foster, R. G. The genetics of circadian rhythms, sleep and health. Hum. Mol. Genet. 26, R128–R138 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Andreani, T. S., Itoh, T. Q., Yildirim, E., Hwangbo, D. S. & Allada, R. Genetics of circadian rhythms. Sleep Med. Clin. 10, 413–421 (2015).

    PubMed  PubMed Central  Google Scholar 

  225. Cronin, P. et al. Circadian alterations during early stages of Alzheimer’s disease are associated with aberrant cycles of DNA methylation in BMAL1. Alzheimers Dement. 13, 689–700 (2017).

    PubMed  Google Scholar 

  226. Hulme, B. et al. Epigenetic regulation of BMAL1 with sleep disturbances and Alzheimer’s disease. J. Alzheimers Dis. 77, 1783–1792 (2020).

    CAS  PubMed  Google Scholar 

  227. Wu, Y. H. et al. Pineal clock gene oscillation is disturbed in Alzheimer’s disease, due to functional disconnection from the “master clock”. FASEB J. 20, 1874–1876 (2006).

    CAS  PubMed  Google Scholar 

  228. Sulkava, S. et al. Melatonin receptor type 1A gene linked to Alzheimer’s disease in old age. Sleep 41, zsy103 (2018).

    PubMed Central  Google Scholar 

  229. Hwang, J. Y. et al. Moderating effect of APOE ε4 on the relationship between sleep-wake cycle and brain β-amyloid. Neurology 90, e1167–e1173 (2018).

    CAS  PubMed  Google Scholar 

  230. Navigatore-Fonzo, L. et al. Daily rhythms of cognition-related factors are modified in an experimental model of Alzheimer’s disease. Brain Res. 1660, 27–35 (2017).

    CAS  PubMed  Google Scholar 

  231. Baker, E. et al. Gene-based analysis in HRC imputed genome wide association data identifies three novel genes for Alzheimer’s disease. PLoS One 14, e0218111 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Luo, C., Widlund, H. R. & Puigserver, P. PGC-1 coactivators: shepherding the mitochondrial biogenesis of tumors. Trends Cancer 2, 619–631 (2016).

    PubMed  PubMed Central  Google Scholar 

  233. Katsouri, L. et al. PPARγ-coactivator-1α gene transfer reduces neuronal loss and amyloid-β generation by reducing β-secretase in an Alzheimer’s disease model. Proc. Natl Acad. Sci. USA 113, 12292–12297 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Liu, C., Li, S., Liu, T., Borjigin, J. & Lin, J. D. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature 447, 477–481 (2007).

    CAS  PubMed  Google Scholar 

  235. Jetten, A. M. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl. Recept. Signal. 7, e003 (2009).

    PubMed  PubMed Central  Google Scholar 

  236. Zhu, Y. et al. Exploring shared pathogenesis of Alzheimer’s disease and type 2 diabetes mellitus via co-expression networks analysis. Curr. Alzheimer Res. 17, 566–575 (2020).

    CAS  PubMed  Google Scholar 

  237. Lim, A. S. et al. Diurnal and seasonal molecular rhythms in human neocortex and their relation to Alzheimer’s disease. Nat. Commun. 8, 14931 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Oddo, S. et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421 (2003).

    CAS  PubMed  Google Scholar 

  239. Sterniczuk, R., Dyck, R. H., Laferla, F. M. & Antle, M. C. Characterization of the 3xTg-AD mouse model of Alzheimer’s disease: part 1. Circadian changes. Brain Res. 1348, 139–148 (2010).

    CAS  PubMed  Google Scholar 

  240. Knight, E. M. et al. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD) mice. Dis. Model. Mech. 6, 160–170 (2013).

    CAS  PubMed  Google Scholar 

  241. Wu, M. et al. Abnormal circadian locomotor rhythms and Per gene expression in six-month-old triple transgenic mice model of Alzheimer’s disease. Neurosci. Lett. 676, 13–18 (2018).

    CAS  PubMed  Google Scholar 

  242. Gorman, M. R. & Yellon, S. Lifespan daily locomotor activity rhythms in a mouse model of amyloid-induced neuropathology. Chronobiol. Int. 27, 1159–1177 (2010).

    PubMed  Google Scholar 

  243. Ambree, O. et al. Activity changes and marked stereotypic behavior precede Aβ pathology in TgCRND8 Alzheimer mice. Neurobiol. Aging 27, 955–964 (2006).

    CAS  PubMed  Google Scholar 

  244. Furtado, A. et al. The rhythmicity of clock genes is disrupted in the choroid plexus of the APP/PS1 mouse model of Alzheimer’s disease. J. Alzheimers Dis. 77, 795–806 (2020).

    CAS  PubMed  Google Scholar 

  245. Yao, Y. et al. Non-invasive 40-Hz light flicker ameliorates Alzheimer’s-associated rhythm disorder via regulating central circadian clock in mice. Front. Physiol. 11, 294 (2020).

    PubMed  PubMed Central  Google Scholar 

  246. Nagare, R., Possidente, B., Lagalwar, S. & Figueiro, M. G. Robust light-dark patterns and reduced amyloid load in an Alzheimer’s disease transgenic mouse model. Sci. Rep. 10, 11436 (2020). This study showed that increasing light levels might reduce amyloid load in an AD transgenic mouse model.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Deibel, S. H., Young, B., Mohajerani, M. H. & McDonald, R. J. Activity rhythms are largely intact in APPNL-G-F Alzheimer’s disease mice. J. Alzheimers Dis. 71, 213–225 (2019).

    PubMed  Google Scholar 

  248. Kent, B. A. et al. Delayed daily activity and reduced NREM slow-wave power in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Neurobiol. Aging 78, 74–86 (2019).

    CAS  PubMed  Google Scholar 

  249. Petrasek, T. et al. The McGill transgenic rat model of Alzheimer’s disease displays cognitive and motor impairments, changes in anxiety and social behavior, and altered circadian activity. Front. Aging Neurosci. 10, 250 (2018).

    PubMed  PubMed Central  Google Scholar 

  250. Boggs, K. N., Kakalec, P. A., Smith, M. L., Howell, S. N. & Flinn, J. M. Circadian wheel running behavior is altered in an APP/E4 mouse model of late onset Alzheimer’s disease. Physiol. Behav. 182, 137–142 (2017).

    CAS  PubMed  Google Scholar 

  251. Stevanovic, K. et al. Disruption of normal circadian clock function in a mouse model of tauopathy. Exp. Neurol. 294, 58–67 (2017).

    CAS  PubMed  Google Scholar 

  252. Oyegbami, O. et al. Abnormal clock gene expression and locomotor activity rhythms in two month-old female APPSwe/PS1dE9 MICE. Curr. Alzheimer Res. 14, 850–860 (2017).

    CAS  PubMed  Google Scholar 

  253. Song, H. et al. Abeta-induced degradation of BMAL1 and CBP leads to circadian rhythm disruption in Alzheimer’s disease. Mol. Neurodegener. 10, 13 (2015).

    PubMed  PubMed Central  Google Scholar 

  254. Graybeal, J. J. et al. Human ApoE epsilon4 alters circadian rhythm activity, IL-1β, and GFAP in CRND8 mice. J. Alzheimers Dis. 43, 823–834 (2015).

    CAS  PubMed  Google Scholar 

  255. Myung, J. et al. The choroid plexus is an important circadian clock component. Nat. Commun. 9, 1062 (2018).

    PubMed  PubMed Central  Google Scholar 

  256. Myung, J., Wu, D., Simonneaux, V. & Lane, T. J. Strong circadian rhythms in the choroid plexus: implications for sleep-independent brain metabolite clearance. J. Exp. Neurosci. 12, 1179069518783762 (2018).

    PubMed  PubMed Central  Google Scholar 

  257. Duarte, A. C. et al. Age, sex hormones, and circadian rhythm regulate the expression of amyloid-β scavengers at the choroid plexus. Int. J. Mol. Sci. 21, 6813 (2020).

    CAS  PubMed Central  Google Scholar 

  258. Ma, Z., Jiang, W. & Zhang, E. E. Orexin signaling regulates both the hippocampal clock and the circadian oscillation of Alzheimer’s disease-risk genes. Sci. Rep. 6, 36035 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Woodie, L. N. et al. Western diet-induced obesity disrupts the diurnal rhythmicity of hippocampal core clock gene expression in a mouse model. Brain Behav. Immun. 88, 815–825 (2020).

    CAS  PubMed  Google Scholar 

  260. Buhl, E., Higham, J. P. & Hodge, J. J. L. Alzheimer’s disease-associated tau alters Drosophila circadian activity, sleep and clock neuron electrophysiology. Neurobiol. Dis. 130, 104507 (2019).

    CAS  PubMed  Google Scholar 

  261. Younan, N. D., Chen, K. F., Rose, R. S., Crowther, D. C. & Viles, J. H. Prion protein stabilizes amyloid-beta (Abeta) oligomers and enhances Aβ neurotoxicity in a Drosophila model of Alzheimer’s disease. J. Biol. Chem. 293, 13090–13099 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Blake, M. R. et al. Manipulations of amyloid precursor protein cleavage disrupt the circadian clock in aging Drosophila. Neurobiol. Dis. 77, 117–126 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Chen, K. F., Possidente, B., Lomas, D. A. & Crowther, D. C. The central molecular clock is robust in the face of behavioural arrhythmia in a Drosophila model of Alzheimer’s disease. Dis. Model. Mech. 7, 445–458 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Hoore, M., Khailaie, S., Montaseri, G., Mitra, T. & Meyer-Hermann, M. Mathematical model shows how sleep may affect amyloid-β fibrillization. Biophys. J. 119, 862–872 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Kress, G. J. et al. Regulation of amyloid-beta dynamics and pathology by the circadian clock. J. Exp. Med. 215, 1059–1068 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Guisle, I. et al. Circadian and sleep/wake-dependent variations in tau phosphorylation are driven by temperature. Sleep 43, zsz266 (2020).

    PubMed  Google Scholar 

  267. Lee, J. et al. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer’s disease. Aging Cell 19, e13078 (2020).

    CAS  PubMed  Google Scholar 

  268. Bokenberger, K. et al. Shift work and risk of incident dementia: a study of two population-based cohorts. Eur. J. Epidemiol. 33, 977–987 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Shi, L. et al. Sleep disturbances increase the risk of dementia: a systematic review and meta-analysis. Sleep Med. Rev. 40, 4–16 (2018).

    PubMed  Google Scholar 

  270. Wang, J. Z. & Wang, Z. F. Role of melatonin in Alzheimer-like neurodegeneration. Acta Pharmacol. Sin. 27, 41–49 (2006).

    PubMed  Google Scholar 

  271. Slats, D., Claassen, J. A., Verbeek, M. M. & Overeem, S. Reciprocal interactions between sleep, circadian rhythms and Alzheimer’s disease: focus on the role of hypocretin and melatonin. Ageing Res. Rev. 12, 188–200 (2013).

    CAS  PubMed  Google Scholar 

  272. Shukla, M., Govitrapong, P., Boontem, P., Reiter, R. J. & Satayavivad, J. Mechanisms of melatonin in alleviating Alzheimer’s disease. Curr. Neuropharmacol. 15, 1010–1031 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Ju, Y. E., Lucey, B. P. & Holtzman, D. M. Sleep and Alzheimer disease pathology — a bidirectional relationship. Nat. Rev. Neurol. 10, 115–119 (2014).

    CAS  PubMed  Google Scholar 

  274. Noble, W. & Spires-Jones, T. L. Sleep well to slow Alzheimer’s progression? Science 363, 813–814 (2019).

    CAS  PubMed  Google Scholar 

  275. Irwin, M. R. & Vitiello, M. V. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol. 18, 296–306 (2019).

    CAS  PubMed  Google Scholar 

  276. Asayama, K. et al. Double blind study of melatonin effects on the sleep-wake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia. J. Nippon Med. Sch. 70, 334–341 (2003).

    PubMed  Google Scholar 

  277. Cardinali, D. P., Furio, A. M. & Brusco, L. I. Clinical aspects of melatonin intervention in Alzheimer’s disease progression. Curr. Neuropharmacol. 8, 218–227 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Dowling, G. A. et al. Melatonin and bright-light treatment for rest-activity disruption in institutionalized patients with Alzheimer’s disease. J. Am. Geriatr. Soc. 56, 239–246 (2008).

    PubMed  Google Scholar 

  279. Mahlberg, R. & Walther, S. Actigraphy in agitated patients with dementia. Monitoring treatment outcomes. Z. Gerontol. Geriatr. 40, 178–184 (2007).

    CAS  PubMed  Google Scholar 

  280. Singer, C. et al. A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer’s disease. Sleep 26, 893–901 (2003).

    PubMed  Google Scholar 

  281. Gehrman, P. R. et al. Melatonin fails to improve sleep or agitation in double-blind randomized placebo-controlled trial of institutionalized patients with Alzheimer disease. Am. J. Geriatr. Psychiatry 17, 166–169 (2009).

    PubMed  PubMed Central  Google Scholar 

  282. Jansen, S. L., Forbes, D. A., Duncan, V. & Morgan, D. G. Melatonin for cognitive impairment. Cochrane Database Syst. Rev. 1, CD003802 (2006).

    Google Scholar 

  283. McCleery, J., Cohen, D. A. & Sharpley, A. L. Pharmacotherapies for sleep disturbances in dementia. Cochrane Database Syst. Rev. 11, CD009178 (2016).

    PubMed  Google Scholar 

  284. Vecchierini, M. F., Kilic-Huck, U. & Quera-Salva, M. A., Members of the MEL Consensus Group of the SFRMS. Melatonin (MEL) and its use in neurological diseases and insomnia: recommendations of the French Medical and Research Sleep Society (SFRMS). Rev. Neurol. 177, 245–259 (2020).

    PubMed  Google Scholar 

  285. Lyketsos, C. G., Lindell Veiel, L., Baker, A. & Steele, C. A randomized, controlled trial of bright light therapy for agitated behaviors in dementia patients residing in long-term care. Int. J. Geriatr. Psychiatry 14, 520–525 (1999).

    CAS  PubMed  Google Scholar 

  286. Ancoli-Israel, S. et al. Increased light exposure consolidates sleep and strengthens circadian rhythms in severe Alzheimer’s disease patients. Behav. Sleep Med. 1, 22–36 (2003).

    PubMed  Google Scholar 

  287. Burns, A., Allen, H., Tomenson, B., Duignan, D. & Byrne, J. Bright light therapy for agitation in dementia: a randomized controlled trial. Int. Psychogeriatr. 21, 711–721 (2009).

    PubMed  Google Scholar 

  288. McCurry, S. M. et al. Increasing walking and bright light exposure to improve sleep in community-dwelling persons with Alzheimer’s disease: results of a randomized, controlled trial. J. Am. Geriatr. Soc. 59, 1393–1402 (2011).

    PubMed  PubMed Central  Google Scholar 

  289. Dowling, G. A. et al. Effect of morning bright light treatment for rest-activity disruption in institutionalized patients with severe Alzheimer’s disease. Int. Psychogeriatr. 17, 221–236 (2005).

    PubMed  PubMed Central  Google Scholar 

  290. Dowling, G. A., Mastick, J., Hubbard, E. M., Luxenberg, J. S. & Burr, R. L. Effect of timed bright light treatment for rest-activity disruption in institutionalized patients with Alzheimer’s disease. Int. J. Geriatr. Psychiatry 20, 738–743 (2005).

    PubMed  PubMed Central  Google Scholar 

  291. Figueiro, M. G. et al. Effects of a tailored lighting intervention on sleep quality, rest-activity, mood, and behavior in older adults with alzheimer disease and related dementias: a randomized clinical trial. J. Clin. Sleep Med. 15, 1757–1767 (2019).

    PubMed  PubMed Central  Google Scholar 

  292. Bromundt, V. et al. Effects of a dawn-dusk simulation on circadian rest-activity cycles, sleep, mood and well-being in dementia patients. Exp. Gerontol. 124, 110641 (2019).

    PubMed  Google Scholar 

  293. Mitolo, M. et al. Effects of light treatment on sleep, cognition, mood, and behavior in Alzheimer’s disease: a systematic review. Dement. Geriatr. Cogn. Disord. 46, 371–384 (2018).

    PubMed  Google Scholar 

  294. Fiala, M. et al. Omega-3 fatty acids increase amyloid-beta immunity, energy, and circadian rhythm for cognitive protection of Alzheimer’s disease patients beyond cholinesterase inhibitors. J. Alzheimers Dis. 75, 993–1002 (2020).

    CAS  PubMed  Google Scholar 

  295. Venturelli, M. et al. Effectiveness of exercise- and cognitive-based treatments on salivary cortisol levels and sundowning syndrome symptoms in patients with Alzheimer’s disease. J. Alzheimers Dis. 53, 1631–1640 (2016).

    CAS  PubMed  Google Scholar 

  296. Zhou, F. et al. Suvorexant ameliorates cognitive impairments and pathology in APP/PS1 transgenic mice. Neurobiol. Aging 91, 66–75 (2020).

    CAS  PubMed  Google Scholar 

  297. Sundaram, S. et al. Inhibition of casein kinase 1delta/epsilonimproves cognitive-affective behavior and reduces amyloid load in the APP-PS1 mouse model of Alzheimer’s disease. Sci. Rep. 9, 13743 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Adler, P., Mayne, J., Walker, K., Ning, Z. & Figeys, D. Therapeutic targeting of casein kinase 1delta/epsilon in an Alzheimer’s disease mouse model. J. Proteome Res. 18, 3383–3393 (2019).

    CAS  PubMed  Google Scholar 

  299. Wang, L. et al. D-Ser2-oxyntomodulin ameliorated Aβ31-35-induced circadian rhythm disorder in mice. CNS Neurosci. Ther. 26, 343–354 (2020).

    CAS  PubMed  Google Scholar 

  300. Chan, Y. C., Wu, C. S., Wu, T. C., Lin, Y. H. & Chang, S. J. A standardized extract of Asparagus officinalis stem (ETAS®) ameliorates cognitive impairment, inhibits amyloid beta deposition via BACE-1 and normalizes circadian rhythm signaling via MT1 and MT2. Nutrients 11, 1631 (2019).

    CAS  PubMed Central  Google Scholar 

  301. Bang, J., Spina, S. & Miller, B. L. Frontotemporal dementia. Lancet 386, 1672–1682 (2015).

    PubMed  PubMed Central  Google Scholar 

  302. Onyike, C. U. & Diehl-Schmid, J. The epidemiology of frontotemporal dementia. Int. Rev. Psychiatry 25, 130–137 (2013).

    PubMed  PubMed Central  Google Scholar 

  303. Meeter, L. H., Kaat, L. D., Rohrer, J. D. & van Swieten, J. C. Imaging and fluid biomarkers in frontotemporal dementia. Nat. Rev. Neurol. 13, 406–419 (2017).

    CAS  PubMed  Google Scholar 

  304. Harper, D. G. et al. Differential circadian rhythm disturbances in men with Alzheimer disease and frontotemporal degeneration. Arch. Gen. Psychiatry 58, 353–360 (2001). This study revealed differences in ciracdian rhythms among individuals with AD, FTD and healthy older individuals.

    CAS  PubMed  Google Scholar 

  305. McCarter, S. J., St Louis, E. K. & Boeve, B. F. Sleep disturbances in frontotemporal dementia. Curr. Neurol. Neurosci. Rep. 16, 85 (2016).

    PubMed  Google Scholar 

  306. Merrilees, J., Hubbard, E., Mastick, J., Miller, B. L. & Dowling, G. A. Rest-activity and behavioral disruption in a patient with frontotemporal dementia. Neurocase 15, 515–526 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  307. Coban, A. et al. Reduced orexin-A levels in frontotemporal dementia: possible association with sleep disturbance. Am. J. Alzheimers Dis. Other Demen. 28, 606–611 (2013).

    PubMed  Google Scholar 

  308. Dedeene, L. et al. Circadian sleep/wake-associated cells show dipeptide repeat protein aggregates in C9orf72-related ALS and FTLD cases. Acta Neuropathol. Commun. 7, 189 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  309. Vercruysse, P., Vieau, D., Blum, D., Petersen, A. & Dupuis, L. Hypothalamic alterations in neurodegenerative diseases and their relation to abnormal energy metabolism. Front. Mol. Neurosci. 11, 2 (2018).

    PubMed  PubMed Central  Google Scholar 

  310. Zhang, T. et al. Sleep and circadian abnormalities precede cognitive deficits in R521C FUS knockin rats. Neurobiol. Aging 72, 159–170 (2018).

    CAS  PubMed  Google Scholar 

  311. Jiang, X. et al. Neurodegeneration-associated FUS is a novel regulator of circadian gene expression. Transl. Neurodegener. 7, 24 (2018).

    PubMed  PubMed Central  Google Scholar 

  312. Holton, C. M. et al. Longitudinal changes in EEG power, sleep cycles and behaviour in a tau model of neurodegeneration. Alzheimers Res. Ther. 12, 84 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  313. Lee, D. et al. Expression of mutant CHMP2B linked to neurodegeneration in humans disrupts circadian rhythms in Drosophila. FASEB Bioadv. 1, 511–520 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  314. Cassar, M., Law, A. D., Chow, E. S., Giebultowicz, J. M. & Kretzschmar, D. Disease-associated mutant tau prevents circadian changes in the cytoskeleton of central pacemaker neurons. Front. Neurosci. 14, 232 (2020).

    PubMed  PubMed Central  Google Scholar 

  315. Mufti, K. et al. Comprehensive analysis of familial parkinsonism genes in rapid-eye-movement sleep behavior disorder. Mov. Disord. 36, 235–240 (2021).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Aleksandar Videnovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks Chris Colwell, Simon Lewis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Actigraphy

An objective method of measuring motor activity as a proxy for rest and activity periods over days to weeks using a non-invasive accelerometer.

Mesor

A circadian rhythm-adjusted mean.

Acrophase

The time at which the peak of a rhythm occurs.

Phase advance

The onset of the cycle is advanced.

Sundowning

A set of symptoms characterized by confusion, anxiety, agitation or aggression, which usually occur in the late afternoon and early evening.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassan, M., Videnovic, A. Circadian rhythms in neurodegenerative disorders. Nat Rev Neurol 18, 7–24 (2022). https://doi.org/10.1038/s41582-021-00577-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00577-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing