Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Virtual reality in research and rehabilitation of gait and balance in Parkinson disease

Abstract

Virtual reality (VR) technology has emerged as a promising tool for studying and rehabilitating gait and balance impairments in people with Parkinson disease (PD) as it allows users to be engaged in an enriched and highly individualized complex environment. This Review examines the rationale and evidence for using VR in the assessment and rehabilitation of people with PD, makes recommendations for future research and discusses the use of VR in the clinic. In the assessment of people with PD, VR has been used to manipulate environments to enhance study of the behavioural and neural underpinnings of gait and balance, improving understanding of the motor–cognitive neural circuitry involved. Despite suggestions that VR can provide rehabilitation that is more effective and less labour intensive than non-VR rehabilitation, little evidence exists to date to support these claims. Nevertheless, much unrealized potential exists for the use of VR to provide personalized assessment and rehabilitation that optimizes motor learning in both the clinic and home environments and adapts to changes in individuals over time. Design of such systems will require collaboration between all stakeholders to maximize useability, engagement, safety and effectiveness.

Key points

  • Virtual reality (VR) might provide unique opportunities to improve understanding of the behavioural and neural underpinnings of gait and balance in people with Parkinson disease.

  • VR environments can be manipulated in ways that are not possible and/or safe in the real world, with the potential to improve assessment and training of multisensory motor–cognitive integration.

  • Non-immersive VR rehabilitation improves gait and balance when compared with no intervention, but is not superior to non-VR rehabilitation of similar exercise type and dose.

  • Future applications of VR should be tailored to deliver personalized interventions according to each person’s profile of deficits and rehabilitation needs.

  • Future developments of VR rehabilitation interventions require collaboration between therapists, technology experts and people with Parkinson disease to ensure optimal, engaging exercise that is acceptable for long-term use.

  • Therapists should consider the conceptual framework, along with the pros and cons, when selecting VR paradigms to optimize training effects with carry-over into everyday activities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Model of precision rehabilitation using VR to stratify and treat different deficit profiles in PD.

References

  1. 1.

    Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).

    CAS  PubMed  Google Scholar 

  2. 2.

    Wu, T. & Hallett, M. A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain 128, 2250–2259 (2005).

    PubMed  Google Scholar 

  3. 3.

    Del Din, S., Godfrey, A., Galna, B., Lord, S. & Rochester, L. Free-living gait characteristics in ageing and Parkinson’s disease: impact of environment and ambulatory bout length. J. Neuroeng. Rehabil. 13, 46 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Marinelli, L. et al. Learning “How to Learn”: super declarative motor learning is impaired in Parkinson’s disease. Neural Plast. 2017, 3162087 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Stuart, S., Lord, S., Hill, E. & Rochester, L. Gait in Parkinson’s disease: a visuo-cognitive challenge. Neurosci. Biobehav. Rev. 62, 76–88 (2016).

    PubMed  Google Scholar 

  6. 6.

    Fasano, A., Canning, C. G., Hausdorff, J. M., Lord, S. & Rochester, L. Falls in Parkinson’s disease: a complex and evolving picture. Mov. Disord. 32, 1524–1536 (2017).

    PubMed  Google Scholar 

  7. 7.

    Pickering, R. M. et al. A meta-analysis of six prospective studies of falling in Parkinson’s disease. Mov. Disord. 22, 1892–1900 (2007).

    PubMed  Google Scholar 

  8. 8.

    Seppi, K. & Ray Chaudhuri, K. Update on treatments for nonmotor symptoms of Parkinson’s disease — an evidence-based medicine review. Mov. Disord. 34, 180–198 (2019).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Strouwen, C. et al. Determinants of dual-task training effect size in Parkinson disease: who will benefit most? J. Neurol. Phys. Ther. 43, 3–11 (2019).

    PubMed  Google Scholar 

  10. 10.

    Bloem, B. R., de Vries, N. M. & Ebersbach, G. Nonpharmacological treatments for patients with Parkinson’s disease. Mov. Disord. 30, 1504–1520 (2015).

    PubMed  Google Scholar 

  11. 11.

    Mak, M. K., Wong-Yu, I. S., Shen, X. & Chung, C. L. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat. Rev. Neurol. 13, 689–703 (2017).

    PubMed  Google Scholar 

  12. 12.

    Tomlinson, C. L. et al. Physiotherapy versus placebo or no intervention in Parkinson’s disease. Cochrane Database Syst. Rev. 9, CD002817 (2013).

    Google Scholar 

  13. 13.

    Nonnekes, J. & Nieuwboer, A. Towards personalized rehabilitation for gait impairments in Parkinson’s disease. J. Parkinsons Dis. 8, S101–S106 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Ellis, T. & Rochester, L. Mobilizing Parkinson’s disease: the future of exercise. J. Parkinsons Dis. 8, S95–S100 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Ellis, T. D., Dibble, L. E. & Peterson, D. S. Moving beyond effectiveness. J. Neurol. Phys. Ther. 43, 1–2 (2019).

    PubMed  Google Scholar 

  16. 16.

    Bohil, C. J., Alicea, B. & Biocca, F. A. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 12, 752–762 (2011).

    CAS  PubMed  Google Scholar 

  17. 17.

    Rose, T., Nam, C. S. & Chen, K. B. Immersion of virtual reality for rehabilitation — review. Appl. Erg. 69, 153–161 (2018).

    Google Scholar 

  18. 18.

    Weiss P., Kizony R., Feintuch U. & Katz N. in Textbook of Neural Repair and Rehabilitation (eds Selzer, M., Cohen, L., Gage, F., Clarke, S. & Duncan, P.) 182–197 (Cambridge Univ. Press, 2006).

  19. 19.

    Perez-Marcos, D. Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation. J. Neuroeng. Rehabil. 15, 113 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Tieri, G., Morone, G., Paolucci, S. & Iosa, M. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Expert. Rev. Med. Devices 15, 107–117 (2018).

    CAS  PubMed  Google Scholar 

  21. 21.

    Bluett, B., Bayram, E. & Litvan, I. The virtual reality of Parkinson’s disease freezing of gait: a systematic review. Parkinsonism Relat. Disord. 61, 26–33 (2019).

    PubMed  Google Scholar 

  22. 22.

    Barry, G., Galna, B. & Rochester, L. The role of exergaming in Parkinson’s disease rehabilitation: a systematic review of the evidence. J. Neuroeng. Rehabil. 11, 33 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Dockx, K. et al. Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database Syst. Rev. 12, CD010760 (2016).

    PubMed  Google Scholar 

  24. 24.

    Garcia-Agundez, A. et al. Recent advances in rehabilitation for Parkinson’s disease with exergames: a systematic review. J. Neuroeng. Rehabil. 16, 17 (2019).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Santos, P. et al. Effects of the Nintendo Wii training on balance rehabilitation and quality of life of patients with Parkinson’s disease: a systematic review and meta-analysis. NeuroRehabilitation 44, 569–577 (2019).

    PubMed  Google Scholar 

  26. 26.

    Wang, B. et al. Effect of virtual reality on balance and gait ability in patients with Parkinson’s disease: a systematic review and meta-analysis. Clin. Rehabil. 33, 1130–1138 (2019).

    PubMed  Google Scholar 

  27. 27.

    Nutt, J. G. et al. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 10, 734–744 (2011).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Fasano, A., Herman, T., Tessitore, A., Strafella, A. P. & Bohnen, N. I. Neuroimaging of freezing of gait. J. Parkinsons Dis. 5, 241–254 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Gilat, M. et al. Freezing of gait: promising avenues for future treatment. Parkinsonism Relat. Disord. 52, 7–16 (2018).

    PubMed  Google Scholar 

  30. 30.

    Gilat, M. et al. Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson’s disease. Neuroimage 152, 207–220 (2017).

    CAS  PubMed  Google Scholar 

  31. 31.

    Hausdorff, J. M., Balash, J. & Giladi, N. Effects of cognitive challenge on gait variability in patients with Parkinson’s disease. J. Geriatr. Psychiatry Neurol. 16, 53–58 (2003).

    PubMed  Google Scholar 

  32. 32.

    Bohnen, N. I. & Jahn, K. Imaging: what can it tell us about parkinsonian gait? Mov. Disord. 28, 1492–1500 (2013).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Gilat, M., Dijkstra, B. W., D’Cruz, N., Nieuwboer, A. & Lewis, S. J. G. Functional MRI to study gait impairment in Parkinson’s disease: a systematic review and exploratory ALE meta-analysis. Curr. Neurol. Neurosci. Rep. 19, 49 (2019).

    PubMed  Google Scholar 

  34. 34.

    Lewis, S. J. & Shine, J. M. The next step: a common neural mechanism for freezing of gait. Neuroscientist 22, 72–82 (2016).

    PubMed  Google Scholar 

  35. 35.

    Nonnekes, J. et al. Compensation strategies for gait impairments in Parkinson disease: a review. JAMA Neurol. 76, 718–725 (2019).

    PubMed  Google Scholar 

  36. 36.

    Peterson, D. S. & Horak, F. B. Neural control of walking in people with parkinsonism. Physiology 31, 95–107 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Bharti, K. et al. Neuroimaging advances in Parkinson’s disease with freezing of gait: a systematic review. Neuroimage Clin. 24, 102059 (2019).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Bekkers, E. M. J. et al. Clinical balance scales indicate worse postural control in people with Parkinson’s disease who exhibit freezing of gait compared to those who do not: a meta-analysis. Gait Posture 56, 134–140 (2017).

    PubMed  Google Scholar 

  39. 39.

    Hillel, I. et al. Is every-day walking in older adults more analogous to dual-task walking or to usual walking? Elucidating the gaps between gait performance in the lab and during 24/7 monitoring. Eur. Rev. Aging Phys. Act. 16, 6 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Franchignoni, F., Horak, F., Godi, M., Nardone, A. & Giordano, A. Using psychometric techniques to improve the balance evaluation systems test: the mini-BESTest. J. Rehabil. Med. 42, 323–331 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    O’Regan, J. K. & Noe, A. A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24, 939–973 (2001).

    PubMed  Google Scholar 

  42. 42.

    Janeh, O. et al. Gait training in virtual reality: short-term effects of different virtual manipulation techniques in Parkinson’s disease. Cells 8, 419 (2019).

    PubMed Central  Google Scholar 

  43. 43.

    Penko, A. L. et al. Dual-task interference disrupts Parkinson’s gait across multiple cognitive domains. Neuroscience 379, 375–382 (2018).

    CAS  PubMed  Google Scholar 

  44. 44.

    Ehgoetz Martens, K. A., Ellard, C. G. & Almeida, Q. J. Does anxiety cause freezing of gait in Parkinson’s disease? PLoS One 9, e106561 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Tan, T., Almeida, Q. J. & Rahimi, F. Proprioceptive deficits in Parkinson’s disease patients with freezing of gait. Neuroscience 192, 746–752 (2011).

    CAS  PubMed  Google Scholar 

  46. 46.

    Smith, P. F. Vestibular functions and Parkinson’s disease. Front. Neurol. 9, 1085 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Stuart, S., Lord, S., Galna, B. & Rochester, L. Saccade frequency response to visual cues during gait in Parkinson’s disease: the selective role of attention. Eur. J. Neurosci. 47, 769–778 (2018).

    PubMed  Google Scholar 

  48. 48.

    Maidan, I., Bernad-Elazari, H., Giladi, N., Hausdorff, J. M. & Mirelman, A. When is higher level cognitive control needed for locomotor tasks among patients with Parkinson’s disease? Brain Topogr. 30, 531–538 (2017).

    PubMed  Google Scholar 

  49. 49.

    Almeida, Q. J. & Lebold, C. A. Freezing of gait in Parkinson’s disease: a perceptual cause for a motor impairment? J. Neurol. Neurosurg. Psychiat. 81, 513–518 (2010).

    CAS  PubMed  Google Scholar 

  50. 50.

    Ehgoetz Martens, K. A., Pieruccini-Faria, F. & Almeida, Q. J. Could sensory mechanisms be a core factor that underlies freezing of gait in Parkinson’s disease? PLoS One 8, e62602 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Hwang, S., Agada, P., Grill, S., Kiemel, T. & Jeka, J. J. A central processing sensory deficit with Parkinson’s disease. Exp. Brain Res. 234, 2369–2379 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Pereira, M. P., Gobbi, L. T. & Almeida, Q. J. Freezing of gait in Parkinson’s disease: evidence of sensory rather than attentional mechanisms through muscle vibration. Parkinsonism Relat. Disord. 29, 78–82 (2016).

    PubMed  Google Scholar 

  53. 53.

    Ramkhalawansingh, R., Butler, J. S. & Campos, J. L. Visual–vestibular integration during self-motion perception in younger and older adults. Psychol. Aging 33, 798–813 (2018).

    PubMed  Google Scholar 

  54. 54.

    Lieberman, A. Are freezing of gait (FOG) and panic related? J. Neurol. Sci. 248, 219–222 (2006).

    PubMed  Google Scholar 

  55. 55.

    Park, H. S., Yoon, J. W., Kim, J., Iseki, K. & Hallett, M. Development of a VR-based treadmill control interface for gait assessment of patients with Parkinson’s disease. IEEE Int. Conf. Rehabil. Robot. 2011, 5975463 (2011).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Chee, R., Murphy, A., Danoudis, M., Georgiou-Karistianis, N. & Iansek, R. Gait freezing in Parkinson’s disease and the stride length sequence effect interaction. Brain 132, 2151–2160 (2009).

    PubMed  Google Scholar 

  57. 57.

    Shine, J. M. et al. Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson’s disease. Brain 136, 1204–1215 (2013).

    PubMed  Google Scholar 

  58. 58.

    Shine, J. M. et al. Modeling freezing of gait in Parkinson’s disease with a virtual reality paradigm. Gait Posture 38, 104–108 (2013).

    CAS  PubMed  Google Scholar 

  59. 59.

    Gilat, M. et al. Brain activation underlying turning in Parkinson’s disease patients with and without freezing of gait: a virtual reality fMRI study. NPJ Parkinsons Dis. 1, 15020 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Matar, E., Shine, J. M., Naismith, S. L. & Lewis, S. J. Using virtual reality to explore the role of conflict resolution and environmental salience in freezing of gait in Parkinson’s disease. Parkinsonism Relat. Disord. 19, 937–942 (2013).

    PubMed  Google Scholar 

  61. 61.

    Hausdorff, J. M. Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos 19, 026113 (2009).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Georgiades, M. J. et al. Investigating motor initiation and inhibition deficits in patients with Parkinson’s disease and freezing of gait using a virtual reality paradigm. Neuroscience 337, 153–162 (2016).

    CAS  PubMed  Google Scholar 

  63. 63.

    Cohen, R. G. et al. Inhibition, executive function, and freezing of gait. J. Parkinsons Dis. 4, 111–122 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Naismith, S. L., Shine, J. M. & Lewis, S. J. The specific contributions of set-shifting to freezing of gait in Parkinson’s disease. Mov. Disord. 25, 1000–1004 (2010).

    PubMed  Google Scholar 

  65. 65.

    Vandenbossche, J. et al. Conflict and freezing of gait in Parkinson’s disease: support for a response control deficit. Neuroscience 206, 144–154 (2012).

    CAS  PubMed  Google Scholar 

  66. 66.

    Geerse, D. J., Roerdink, M., Marinus, J. & van Hilten, J. J. Assessing walking adaptability in Parkinson’s disease: “The Interactive Walkway”. Front. Neurol. 9, 1096 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Janssen, S. et al. Usability of three-dimensional augmented visual cues delivered by smart glasses on (freezing of) gait in Parkinson’s disease. Front. Neurol. 8, 279 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Killane, I. et al. Dual motor–cognitive virtual reality training impacts dual-task performance in freezing of gait. IEEE J. Biomed. Health Inf. 19, 1855–1861 (2015).

    Google Scholar 

  69. 69.

    Hausdorff, J. M. et al. Impaired regulation of stride variability in Parkinson’s disease subjects with freezing of gait. Exp. Brain Res. 149, 187–194 (2003).

    CAS  PubMed  Google Scholar 

  70. 70.

    Roeles, S. et al. Gait stability in response to platform, belt, and sensory perturbations in young and older adults. Med. Biol. Eng. Comput. 56, 2325–2335 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Seuthe, J. et al. Split-belt treadmill walking in patients with Parkinson’s disease: a systematic review. Gait Posture 69, 187–194 (2019).

    PubMed  Google Scholar 

  72. 72.

    Chiarovano, E., Wang, W., Reynolds, P. & MacDougall, H. G. Imbalance: objective measures versus subjective self-report in clinical practice. Gait Posture 59, 217–221 (2018).

    PubMed  Google Scholar 

  73. 73.

    Chiarovano, E. et al. Balance in virtual reality: effect of age and bilateral vestibular loss. Front. Neurol. 8, 5 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Chiarovano, E. et al. Maintaining balance when looking at a virtual reality three-dimensional display of a field of moving dots or at a virtual reality scene. Front. Neurol. 6, 164 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Bekkers, E. M. J. et al. Balancing between the two: are freezing of gait and postural instability in Parkinson’s disease connected? Neurosci. Biobehav. Rev. 94, 113–125 (2018).

    CAS  PubMed  Google Scholar 

  76. 76.

    Peterson, D. S., Pickett, K. A., Duncan, R. P., Perlmutter, J. S. & Earhart, G. M. Brain activity during complex imagined gait tasks in Parkinson disease. Clin. Neurophysiol. 125, 995–1005 (2014).

    PubMed  Google Scholar 

  77. 77.

    Agosta, F. et al. Brain plasticity in Parkinson’s disease with freezing of gait induced by action observation training. J. Neurol. 264, 88–101 (2017).

    PubMed  Google Scholar 

  78. 78.

    Hardwick, R. M., Caspers, S., Eickhoff, S. B. & Swinnen, S. P. Neural correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci. Biobehav. Rev. 94, 31–44 (2018).

    PubMed  Google Scholar 

  79. 79.

    Ehgoetz Martens, K. A. et al. The functional network signature of heterogeneity in freezing of gait. Brain 141, 1145–1160 (2018).

    PubMed  Google Scholar 

  80. 80.

    Shine, J. M. et al. Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain 136, 3671–3681 (2013).

    PubMed  Google Scholar 

  81. 81.

    Matar, E. et al. Identifying the neural correlates of doorway freezing in Parkinson’s disease. Hum. Brain Mapp. 40, 2055–2064 (2019).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Georgiades, M. J. et al. Hitting the brakes: pathological subthalamic nucleus activity in Parkinson’s disease gait freezing. Brain 142, 3906–3916 (2019).

    PubMed  Google Scholar 

  83. 83.

    Schaafsma, J. D. et al. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur. J. Neurol. 10, 391–398 (2003).

    CAS  PubMed  Google Scholar 

  84. 84.

    Conradsson, D. et al. The effects of highly challenging balance training in elderly with Parkinson’s disease: a randomized controlled trial. Neurorehabil. Neural Repair 29, 827–836 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Mehrholz, J. et al. Treadmill training for patients with Parkinson’s disease. Cochrane Database Syst. Rev. 8, CD007830 (2015).

    Google Scholar 

  86. 86.

    Shen, X., Wong-Yu, I. S. & Mak, M. K. Effects of exercise on falls, balance, and gait ability in Parkinson’s disease: a meta-analysis. Neurorehabil Neural Repair. 30, 512–527 (2016).

    PubMed  Google Scholar 

  87. 87.

    Strouwen, C. et al. Training dual tasks together or apart in Parkinson’s disease: results from the DUALITY trial. Mov. Disord. 32, 1201–1210 (2017).

    PubMed  Google Scholar 

  88. 88.

    Lofgren, N. et al. Factors associated with responsiveness to gait and balance training in people with Parkinson disease. J. Neurol. Phys. Ther. 43, 42–49 (2019).

    PubMed  Google Scholar 

  89. 89.

    Canning, C. G. et al. Exercise for falls prevention in Parkinson disease: a randomized controlled trial. Neurology 84, 304–312 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Chivers Seymour, K. et al. Multicentre, randomised controlled trial of PDSAFE, a physiotherapist-delivered fall prevention programme for people with Parkinson’s. J. Neurol. Neurosurg. Psychiat. 90, 774–782 (2019).

    PubMed  Google Scholar 

  91. 91.

    Allen, N. E. et al. Exercise and motor training in people with Parkinson’s disease: a systematic review of participant characteristics, intervention delivery, retention rates, adherence, and adverse events in clinical trials. Parkinsons Dis. 2012, 854328 (2012).

    PubMed  Google Scholar 

  92. 92.

    Del Din, S. et al. Gait analysis with wearables predicts conversion to Parkinson disease. Ann. Neurol. 86, 357–367 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Galna, B., Lord, S., Burn, D. J. & Rochester, L. Progression of gait dysfunction in incident Parkinson’s disease: impact of medication and phenotype. Mov. Disord. 30, 359–367 (2015).

    CAS  PubMed  Google Scholar 

  94. 94.

    Lord, S. et al. Ambulatory activity in incident Parkinson’s: more than meets the eye? J. Neurol. 260, 2964–2972 (2013).

    PubMed  Google Scholar 

  95. 95.

    Krakauer, J. W., Hadjiosif, A. M., Xu, J., Wong, A. L. & Haith, A. M. Motor learning. Compr. Physiol. 9, 613–663 (2019).

    PubMed  Google Scholar 

  96. 96.

    Pauwels, L., Vancleef, K., Swinnen, S. P. & Beets, I. A. Challenge to promote change: both young and older adults benefit from contextual interference. Front. Aging Neurosci. 7, 157 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Petzinger, G. M. et al. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol. 12, 716–726 (2013).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Cano Porras, D. et al. Advanced virtual reality-based rehabilitation of balance and gait in clinical practice. Ther. Adv. Chronic Dis. 10, 2040622319868379 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Cano Porras, D., Siemonsma, P., Inzelberg, R., Zeilig, G. & Plotnik, M. Advantages of virtual reality in the rehabilitation of balance and gait: systematic review. Neurology 90, 1017–1025 (2018).

    PubMed  Google Scholar 

  100. 100.

    Celinder, D. & Peoples, H. Stroke patients’ experiences with Wii Sports® during inpatient rehabilitation. Scand. J. Occup. Ther. 19, 457–463 (2012).

    PubMed  Google Scholar 

  101. 101.

    De Keersmaecker, E. et al. Virtual reality during gait training: does it improve gait function in persons with central nervous system movement disorders? A systematic review and meta-analysis. NeuroRehabilitation 44, 43–66 (2019).

    PubMed  Google Scholar 

  102. 102.

    dos Santos Mendes, F. A. et al. Motor learning, retention and transfer after virtual-reality-based training in Parkinson’s disease— effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy 98, 217–223 (2012).

    PubMed  Google Scholar 

  103. 103.

    Esculier, J. F., Vaudrin, J., Beriault, P., Gagnon, K. & Tremblay, L. E. Home-based balance training programme using Wii Fit with balance board for Parkinsons’s disease: a pilot study. J. Rehabil. Med. 44, 144–150 (2012).

    PubMed  Google Scholar 

  104. 104.

    Hamilton, C., Lovarini, M., McCluskey, A., Folly de Campos, T. & Hassett, L. Experiences of therapists using feedback-based technology to improve physical function in rehabilitation settings: a qualitative systematic review. Disabil. Rehabil. 41, 1739–1750 (2018).

    PubMed  Google Scholar 

  105. 105.

    Hassett L., van den Berg M. & Allen N. in Everyday Technologies in Healthcare Florida (eds Hayre, C., Muller, D. & Scherer, M.) 141–174 (CRC, 2019).

  106. 106.

    Keshner, E. A. Virtual reality and physical rehabilitation: a new toy or a new research and rehabilitation tool? J. Neuroeng. Rehabil. 1, 8 (2004).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Keshner, E. A. & Fung, J. The quest to apply VR technology to rehabilitation: tribulations and treasures. J. Vestib. Res. 27, 1–5 (2017).

    PubMed  Google Scholar 

  108. 108.

    Lewis, G. N. & Rosie, J. A. Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users? Disabil. Rehabil. 34, 1880–1886 (2012).

    PubMed  Google Scholar 

  109. 109.

    Mirelman, A., Maidan, I. & Deutsch, J. E. Virtual reality and motor imagery: promising tools for assessment and therapy in Parkinson’s disease. Mov. Disord. 28, 1597–1608 (2013).

    PubMed  Google Scholar 

  110. 110.

    Mirelman, A. et al. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson’s disease? J. Gerontol. A Biol. Sci. Med. Sci. 66, 234–240 (2011).

    PubMed  Google Scholar 

  111. 111.

    Parijat, P., Lockhart, T. E. & Liu, J. Effects of perturbation-based slip training using a virtual reality environment on slip-induced falls. Ann. Biomed. Eng. 43, 958–967 (2015).

    PubMed  Google Scholar 

  112. 112.

    Peterson, S. M., Rios, E. & Ferris, D. P. Transient visual perturbations boost short-term balance learning in virtual reality by modulating electrocortical activity. J. Neurophysiol. 120, 1998–2010 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Plow, M. & Finlayson, M. A qualitative study exploring the usability of Nintendo Wii Fit among persons with multiple sclerosis. Occup. Ther. Int. 21, 21–32 (2014).

    PubMed  Google Scholar 

  114. 114.

    Weech, S., Kenny, S. & Barnett-Cowan, M. Presence and cybersickness in virtual reality are negatively related: a review. Front. Psychol. 10, 158 (2019).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Wingham, J., Adie, K., Turner, D., Schofield, C. & Pritchard, C. Participant and caregiver experience of the Nintendo Wii Sports™ after stroke: qualitative study of the trial of Wii™ in stroke (TWIST). Clin. Rehabil. 29, 295–305 (2015).

    PubMed  Google Scholar 

  116. 116.

    Shea, B. J. et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 358, j4008 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Juras, G. et al. Standards of virtual reality application in balance training programs in clinical practice: a systematic review. Games Health J. 8, 101–111 (2019).

    PubMed  Google Scholar 

  118. 118.

    Godi, M. et al. Comparison of reliability, validity, and responsiveness of the mini-BESTest and Berg Balance Scale in patients with balance disorders. Phys. Ther. 93, 158–167 (2013).

    PubMed  Google Scholar 

  119. 119.

    de Melo, G. E. L. et al. Effect of virtual reality training on walking distance and physical fitness in individuals with Parkinson’s disease. NeuroRehabilitation 42, 473–480 (2018).

    PubMed  Google Scholar 

  120. 120.

    Feng, H. et al. Virtual reality rehabilitation versus conventional physical therapy for improving balance and gait in Parkinson’s disease patients: a randomized controlled trial. Med. Sci. Monit. 25, 4186–4192 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Ferraz, D. D. et al. The effects of functional training, bicycle exercise, and exergaming on walking capacity of elderly patients with Parkinson disease: a pilot randomized controlled single-blinded trial. Arch. Phys. Med. Rehabil. 99, 826–833 (2018).

    PubMed  Google Scholar 

  122. 122.

    Gandolfi, M. et al. Virtual reality telerehabilitation for postural instability in Parkinson’s disease: a multicenter, single-blind, randomized, controlled trial. Biomed. Res. Int. 2017, 7962826 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Lee, N. Y., Lee, D. K. & Song, H. S. Effect of virtual reality dance exercise on the balance, activities of daily living, and depressive disorder status of Parkinson’s disease patients. J. Phys. Ther. Sci. 27, 145–147 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Liao, Y., Yang, Y., Wu, Y. & Wang, R. Virtual reality-based Wii Fit training in improving muscle strength, sensory integration ability, and walking abilities in patients with Parkinson’s disease: a randomized controlled trial. Int. J. Gerontol. 9, 190–195 (2015).

    Google Scholar 

  125. 125.

    Liao, Y. Y. et al. Virtual reality-based training to improve obstacle-crossing performance and dynamic balance in patients with Parkinson’s disease. Neurorehabil. Neural Repair 29, 658–667 (2015).

    PubMed  Google Scholar 

  126. 126.

    Mirelman, A. et al. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial. Lancet 388, 1170–1182 (2016).

    PubMed  Google Scholar 

  127. 127.

    Maidan, I. et al. Disparate effects of training on brain activation in Parkinson disease. Neurology 89, 1804–1810 (2017).

    PubMed  Google Scholar 

  128. 128.

    Maidan, I. et al. Evidence for differential effects of 2 forms of exercise on prefrontal plasticity during walking in Parkinson’s disease. Neurorehabil. Neural Repair. 32, 200–208 (2018).

    PubMed  Google Scholar 

  129. 129.

    Dockx, K. et al. Fall-prone older people’s attitudes towards the use of virtual reality technology for fall prevention. Gerontology 63, 590–598 (2017).

    PubMed  Google Scholar 

  130. 130.

    Pedreira, G. et al. Virtual games and quality of life in Parkinson’s disease: a randomised controlled trial. Adv. Parkinson’s Dis. 2, 97–101 (2013).

    Google Scholar 

  131. 131.

    Pompeu, J. E. et al. Effect of Nintendo Wii-based motor and cognitive training on activities of daily living in patients with Parkinson’s disease: a randomised clinical trial. Physiotherapy 98, 196–204 (2012).

    PubMed  Google Scholar 

  132. 132.

    Ribas, C. G., Alves da Silva, L., Correa, M. R., Teive, H. G. & Valderramas, S. Effectiveness of exergaming in improving functional balance, fatigue and quality of life in Parkinson’s disease: a pilot randomized controlled trial. Parkinsonism Relat. Disord. 38, 13–18 (2017).

    PubMed  Google Scholar 

  133. 133.

    Shen, X. & Mak, M. K. Balance and gait training with augmented feedback improves balance confidence in people with Parkinson’s disease: a randomized controlled trial. Neurorehabil. Neural Repair 28, 524–535 (2014).

    PubMed  Google Scholar 

  134. 134.

    Shen, X. & Mak, M. K. Technology-assisted balance and gait training reduces falls in patients with Parkinson’s disease: a randomized controlled trial with 12-month follow-up. Neurorehabil. Neural Repair 29, 103–111 (2015).

    PubMed  Google Scholar 

  135. 135.

    Shih, M. C., Wang, R. Y., Cheng, S. J. & Yang, Y. R. Effects of a balance-based exergaming intervention using the kinect sensor on posture stability in individuals with Parkinson’s disease: a single-blinded randomized controlled trial. J. Neuroeng. Rehabil. 13, 78 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. 136.

    Song, J. et al. Home-based step training using videogame technology in people with Parkinson’s disease: a single-blinded randomised controlled trial. Clin. Rehabil. 32, 299–311 (2018).

    PubMed  Google Scholar 

  137. 137.

    Tollar, J., Nagy, F. & Hortobagyi, T. Vastly different exercise programs similarly improve Parkinsonian symptoms: a randomized clinical trial. Gerontology 65, 120–127 (2019).

    PubMed  Google Scholar 

  138. 138.

    van den Heuvel, M. R. et al. Effects of augmented visual feedback during balance training in Parkinson’s disease: a pilot randomized clinical trial. Parkinsonism Relat. Disord. 20, 1352–1358 (2014).

    PubMed  Google Scholar 

  139. 139.

    Yang, W. C., Wang, H. K., Wu, R. M., Lo, C. S. & Lin, K. H. Home-based virtual reality balance training and conventional balance training in Parkinson’s disease: a randomized controlled trial. J. Formos. Med. Assoc. 115, 734–743 (2016).

    PubMed  Google Scholar 

  140. 140.

    Yen, C. Y. et al. Effects of virtual reality-augmented balance training on sensory organization and attentional demand for postural control in people with Parkinson disease: a randomized controlled trial. Phys. Ther. 91, 862–874 (2011).

    PubMed  Google Scholar 

  141. 141.

    Maher, C. G., Sherrington, C., Herbert, R. D., Moseley, A. M. & Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 83, 713–721 (2003).

    PubMed  Google Scholar 

  142. 142.

    Mirelman, A. et al. V-TIME: a treadmill training program augmented by virtual reality to decrease fall risk in older adults: study design of a randomized controlled trial. BMC Neurol. 13, 15 (2013).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    van der Kolk, N. M. et al. Effectiveness of home-based and remotely supervised aerobic exercise in Parkinson’s disease: a double-blind, randomised controlled trial. Lancet Neurol. 18, 998–1008 (2019).

    PubMed  Google Scholar 

  144. 144.

    Espay, A. J., Brundin, P. & Lang, A. E. Precision medicine for disease modification in Parkinson disease. Nat. Rev. Neurol. 13, 119–126 (2017).

    PubMed  Google Scholar 

  145. 145.

    Kim, H. J. & Jeon, B. How close are we to individualized medicine for Parkinson’s disease? Expert. Rev. Neurother. 16, 815–830 (2016).

    CAS  PubMed  Google Scholar 

  146. 146.

    Ryden, L. E. & Lewis, S. J. G. Parkinson’s disease in the era of personalised medicine: one size does not fit all. Drugs Aging 36, 103–113 (2019).

    CAS  PubMed  Google Scholar 

  147. 147.

    Titova, N. & Chaudhuri, K. R. Personalized medicine and nonmotor symptoms in Parkinson’s disease. Int. Rev. Neurobiol. 134, 1257–1281 (2017).

    PubMed  Google Scholar 

  148. 148.

    Bloem, B. R. et al. The Personalized Parkinson project: examining disease progression through broad biomarkers in early Parkinson’s disease. BMC Neurol. 19, 160 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Coscia, M. et al. Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke. Brain 142, 2182–2197 (2019).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Wuest, S., van de Langenberg, R. & de Bruin, E. D. Design considerations for a theory-driven exergame-based rehabilitation program to improve walking of persons with stroke. Eur. Rev. Aging Phys. Act. 11, 119–129 (2014).

    PubMed  Google Scholar 

  152. 152.

    Yang, Y. R., Cheng, S. J., Lee, Y. J., Liu, Y. C. & Wang, R. Y. Cognitive and motor dual task gait training exerted specific training effects on dual task gait performance in individuals with Parkinson’s disease: a randomized controlled pilot study. PLoS One 14, e0218180 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Nieuwboer, A. et al. Cueing training in the home improves gait-related mobility in Parkinson’s disease: the RESCUE trial. J. Neurol. Neurosurg. Psychiatry 78, 134–140 (2007).

    CAS  PubMed  Google Scholar 

  154. 154.

    Nieuwboer, A., Rochester, L., Muncks, L. & Swinnen, S. P. Motor learning in Parkinson’s disease: limitations and potential for rehabilitation. Parkinsonism Relat. Disord. 15, S53–S58 (2009).

    PubMed  Google Scholar 

  155. 155.

    Serino, S. et al. Picture Interpretation Test (PIT) 360°: an innovative measure of executive functions. Sci. Rep. 7, 16000 (2017).

    PubMed  PubMed Central  Google Scholar 

  156. 156.

    Delbaere, K. et al. Evaluating the effectiveness of a home-based exercise programme delivered through a tablet computer for preventing falls in older community-dwelling people over 2 years: study protocol for the Standing Tall randomised controlled trial. BMJ Open. 5, e009173 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Ginis, P. et al. Feasibility and effects of home-based smartphone-delivered automated feedback training for gait in people with Parkinson’s disease: a pilot randomized controlled trial. Parkinsonism Relat. Disord. 22, 28–34 (2016).

    PubMed  Google Scholar 

  158. 158.

    Sanchez-Vives, M. V. & Slater, M. From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6, 332–339 (2005).

    CAS  PubMed  Google Scholar 

  159. 159.

    Warland, A. et al. The feasibility, acceptability and preliminary efficacy of a low-cost, virtual-reality based, upper-limb stroke rehabilitation device: a mixed methods study. Disabil. Rehabil. 41, 2119–2134 (2019).

    PubMed  Google Scholar 

  160. 160.

    Pompeu, J. E. et al. Feasibility, safety and outcomes of playing Kinect Adventures! for people with Parkinson’s disease: a pilot study. Physiotherapy 100, 162–168 (2014).

    CAS  PubMed  Google Scholar 

  161. 161.

    Deutsch, J. E. et al. Nintendo Wii Sports and Wii Fit game analysis, validation, and application to stroke rehabilitation. Top. Stroke Rehabil. 18, 701–719 (2011).

    PubMed  Google Scholar 

  162. 162.

    O’Brien, C., Clemson, L. & Canning, C. G. Multiple factors, including non-motor impairments, influence decision making with regard to exercise participation in Parkinson’s disease: a qualitative enquiry. Disabil. Rehabil. 38, 472–481 (2016).

    PubMed  Google Scholar 

  163. 163.

    O’Callaghan, C. et al. Visual hallucinations are characterized by impaired sensory evidence accumulation: insights from hierarchical drift diffusion modeling in Parkinson’s disease. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 680–688 (2017).

    PubMed  Google Scholar 

  164. 164.

    Riva, G., Wiederhold, B. K. & Mantovani, F. Neuroscience of virtual reality: from virtual exposure to embodied medicine. Cyberpsychol Behav. Soc. Netw. 22, 82–96 (2019).

    PubMed  PubMed Central  Google Scholar 

  165. 165.

    Wells G. A., et al. Newcastle–Ottawa Scale for non-randomised studies http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (2008).

  166. 166.

    Hoogeboom, T. J. et al. Therapeutic validity and effectiveness of preoperative exercise on functional recovery after joint replacement: a systematic review and meta-analysis. PLoS One 7, e38031 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Higgins, J. P. et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343, d5928 (2011).

    PubMed  PubMed Central  Google Scholar 

  168. 168.

    Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.G. is funded by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No. 838576.

Review criteria

To identify relevant virtual reality (VR) studies we searched for articles from 1 January 2010 to 1 November 2019. A PubMed search was performed using the terms: “parkinson*” AND “virtual reality” OR “augmented reality” AND “gait” OR “balance” OR “freezing”. The resulting 33 hits and their reference lists were screened for possible insights into the use of VR for exploring the underlying mechanisms of gait and balance impairments in Parkinson disease. To identify relevant systematic reviews of VR interventions, a PubMed search was performed using the terms: “parkinson*” AND “virtual reality” OR “virtual rehabilitation” OR “augmented reality” OR “exergam*” OR “videogam*” OR “video gam*” AND “systematic review”. From the 398 reviews we identified 11 relevant systematic reviews published in English. To identify relevant randomized controlled trials, the reference lists of all relevant systematic reviews were reviewed and relevant randomized controlled trials were extracted. In addition, a PubMed search was performed using the terms: “parkinson*” AND “virtual reality” OR “augmented reality” OR “exergam*” OR “videogam*” OR “video gam*” AND “random*”. These two strategies yielded a total of 828 articles including 17 relevant randomized controlled trials published in English.

Author information

Affiliations

Authors

Contributions

C.G.C., N.E.A., S.S.P. and M.G researched data for the article, made a substantial contribution to discussion of content, and wrote and reviewed/edited the manuscript before submission. E.N. and A.N. made a substantial contribution to the discussion of content, and wrote and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Colleen G. Canning.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks Giuseppe Riva and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Mobilise-D: https://www.mobilise-d.eu/

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Canning, C.G., Allen, N.E., Nackaerts, E. et al. Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nat Rev Neurol 16, 409–425 (2020). https://doi.org/10.1038/s41582-020-0370-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing