Zoonotic and vector-borne parasites and epilepsy in low-income and middle-income countries

An Author Correction to this article was published on 26 May 2020

This article has been updated (view changelog)

Abstract

Zoonotic and vector-borne parasites are important preventable risk factors for epilepsy. Three parasitic infections — cerebral malaria, Taenia solium cysticercosis and onchocerciasis — have an established association with epilepsy. Parasitoses are widely prevalent in low-income and middle-income countries, which are home to 80% of the people with epilepsy in the world. Once a parasitic infection has taken hold in the brain, therapeutic measures do not seem to influence the development of epilepsy in the long term. Consequently, strategies to control, eliminate and eradicate parasites represent the most feasible way to reduce the epilepsy burden at present. The elucidation of immune mechanisms underpinning the parasitic infections, some of which are parasite-specific, opens up new therapeutic possibilities. In this Review, we explore the pathophysiological basis of the link between parasitic infections and epilepsy, and we consider preventive and therapeutic approaches to reduce the burden of epilepsy attributable to parasitic disorders. We conclude that a concerted approach involving medical, veterinary, parasitological and ecological experts, backed by robust political support and sustainable funding, is the key to reducing this burden.

Key points

  • The preventable risk factors for epilepsy include CNS infections, among which parasitic disorders constitute an important subgroup.

  • Parasitic disorders that have been linked to epilepsy, including cerebral malaria, Taenia solium neurocysticercosis, onchocerciasis and toxocariasis, are especially prevalent in resource-limited settings.

  • Effective treatments are in place for many parasitic disorders, but the long-term impact of these treatments on the development of epilepsy has not been assessed.

  • Currently, primary prevention — that is, control, elimination and eradication of parasitic disorders — remains the only viable approach to reduce the epilepsy burden associated with these conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Global distribution of parasitic infections.
Fig. 2: Life cycle and transmission of Plasmodium.
Fig. 3: Life cycle and transmission of Taenia solium.
Fig. 4: Life cycle and transmission of Onchocerca volvulus.

Change history

  • 26 May 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    World Health Organization. Epilepsy. WHO https://www.who.int/news-room/fact-sheets/detail/epilepsy (2019).

  2. 2.

    GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736–1788 (2018).

    Article  Google Scholar 

  3. 3.

    GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).

    Article  Google Scholar 

  4. 4.

    Thurman, D. J. et al. The primary prevention of epilepsy: a report of the Prevention Task Force of the International League Against Epilepsy. Epilepsia 59, 905–914 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    World Health Organization. Global burden of epilepsy and the need for coordinated action at the country level to address its health, social and public knowledge implications (WHO, 2015).

  6. 6.

    Torgerson, P. R. & Macpherson, C. N. The socioeconomic burden of parasitic zoonoses: global trends. Vet. Parasitol. 182, 79–95 (2011).

    PubMed  Article  Google Scholar 

  7. 7.

    Karesh, W. B. et al. Ecology of zoonoses: natural and unnatural histories. Lancet 380, 1936–1945 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Fiest, K. M. et al. Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurology 88, 296–303 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Colebunders, R. et al. From river blindness to river epilepsy: implications for onchocerciasis elimination programmes. PLoS Negl. Trop. Dis. 13, e0007407 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Raghava, M. V. et al. Detecting spatial clusters of Taenia solium infections in a rural block in South India. Trans. R. Soc. Trop. Med. Hyg. 104, 601–612 (2010).

    PubMed  Article  Google Scholar 

  11. 11.

    Newton, C. R., Hien, T. T. & White, N. Cerebral malaria. J. Neurol. Neurosurg. Psychiatry 69, 433–441 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Carpio, A., Fleury, A. & Hauser, W. A. Neurocysticercosis: five new things. Neurol. Clin. Pract. 3, 118–125 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Carabin, H. et al. Clinical manifestations associated with neurocysticercosis: a systematic review. PLoS Negl. Trop. Dis. 5, e1152 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Beghi, E. et al. Recommendation for a definition of acute symptomatic seizure. Epilepsia 51, 671–675 (2010).

    PubMed  Article  Google Scholar 

  15. 15.

    Fisher, R. S. et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55, 475–482 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Singh, G., Burneo, J. G. & Sander, J. W. From seizures to epilepsy and its substrates: neurocysticercosis. Epilepsia 54, 783–792 (2013).

    PubMed  Article  Google Scholar 

  17. 17.

    Vezzani, A., French, J., Bartfai, T. & Baram, T. Z. The role of inflammation in epilepsy. Nat. Rev. Neurol. 7, 31–40 (2011).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Terrone, G., Salamone, A. & Vezzani, A. Inflammation and epilepsy: preclinical findings and potential clinical translation. Curr. Pharm. Des. 23, 5569–5576 (2017).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Frigerio, F. et al. Neuroinflammation alters integrative properties of rat hippocampal pyramidal cells. Mol. Neurobiol. 55, 7500–7511 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Kostoula, C. et al. TLR3 preconditioning induces anti-inflammatory and anti-ictogenic effects in mice mediated by the IRF3/IFN-β axis. Brain Behav. Immun. 81, 598–607 (2019).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Dickstein, L. P. et al. Neuroinflammation in neocortical epilepsy measured by PET imaging of translocator protein. Epilepsia 60, 1248–1254 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    van Vliet, E. A., Aronica, E., Vezzani, A. & Ravizza, T. Review: neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: emerging evidence from preclinical and clinical studies. Neuropathol. Appl. Neurobiol. 44, 91–111 (2018).

    PubMed  Article  Google Scholar 

  23. 23.

    Nash, T. E. et al. Neurocysticercosis: a natural human model of epileptogenesis. Epilepsia 56, 177–183 (2015).

    PubMed  Article  Google Scholar 

  24. 24.

    Nájera, J. A., González-Silva, M. & Alonso, P. L. Some lessons for the future from the Global Malaria Eradication Programme (1955–1969). PLoS Med. 8, e1000412 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    World Health Organization. World malaria report 2017 (WHO, 2017).

  26. 26.

    Battle, K. E. et al. Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000–17: a spatial and temporal modelling study. Lancet 394, 332–343 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Weiss, D. J. et al. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: a spatial and temporal modelling study. Lancet 394, 322–331 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Wiebe, A. et al. Geographical distributions of African malaria vector sibling species and evidence for insecticide resistance. Malar. J. 16, 85 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Cohen, J. M. et al. Malaria resurgence: a systematic review and assessment of its causes. Malar. J. 11, 122 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Idro, R., Jenkins, N. E. & Newton, C. R. Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol. 4, 827–840 (2005).

    PubMed  Article  Google Scholar 

  31. 31.

    Crawley, J. et al. Seizures and status epilepticus in childhood cerebral malaria. QJM 89, 591–598 (1996).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Warrell, D. A. Cerebral malaria: clinical features, pathophysiology and treatment. Ann. Trop. Med. Parasitol. 91, 875–884 (1997).

    CAS  PubMed  Google Scholar 

  33. 33.

    Dondorp, A. M. et al. The relationship between age and the manifestations of and mortality associated with severe malaria. Clin. Infect. Dis. 47, 151–157 (2008).

    PubMed  Article  Google Scholar 

  34. 34.

    Dokunmu, T. M. et al. Asymptomatic malaria infections and Pfmdr1 mutations in an endemic area of Nigeria. Malar. J. 18, 218 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Taylor, T. E. et al. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat. Med. 10, 143–145 (2004).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Birbeck, G. L. et al. Blantyre Malaria Project Epilepsy Study (BMPES) of neurological outcomes in retinopathy-positive paediatric cerebral malaria survivors: a prospective cohort study. Lancet Neurol. 9, 1173–1181 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Birbeck, G. L. et al. Identification of malaria retinopathy improves the specificity of the clinical diagnosis of cerebral malaria: findings from a prospective cohort study. Am. J. Trop. Med. Hyg. 82, 231–234 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Kochar, D. K. et al. Cerebral malaria in Indian adults: a prospective study of 441 patients from Bikaner, north-west India. J. Assoc. Physicians India 50, 234–241 (2002).

    CAS  PubMed  Google Scholar 

  39. 39.

    Artemether-Quinine Meta-analysis Study Group. A meta-analysis using individual patient data of trials comparing artemether with quinine in the treatment of severe falciparum malaria. Trans. R. Soc. Trop. Med. Hyg. 95, 637–650 (2001).

    Article  Google Scholar 

  40. 40.

    Idro, R., Carter, J. A., Fegan, G., Neville, B. G. & Newton, C. R. Risk factors for persisting neurological and cognitive impairments following cerebral malaria. Arch. Dis. Child. 91, 142–148 (2006).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Christensen, S. S. & Eslick, G. D. Cerebral malaria as a risk factor for the development of epilepsy and other long-term neurological conditions: a meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 109, 233–238 (2015).

    PubMed  Article  Google Scholar 

  42. 42.

    Opoka, R. O., Bangirana, P., Boivin, M. J., John, C. C. & Byarugaba, J. Seizure activity and neurological sequelae in Ugandan children who have survived an episode of cerebral malaria. Afr. Health Sci. 9, 75–81 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Ngoungou, E. B. et al. Cerebral malaria and sequelar epilepsy: first matched case-control study in Gabon. Epilepsia 47, 2147–2153 (2006).

    PubMed  Article  Google Scholar 

  44. 44.

    Ngoungou, E. B. et al. Epilepsy as a consequence of cerebral malaria in area in which malaria is endemic in Mali, West Africa. Epilepsia 47, 873–879 (2006).

    PubMed  Google Scholar 

  45. 45.

    Carter, J. A. et al. Developmental impairments following severe falciparum malaria in children. Trop. Med. Int. Health 10, 3–10 (2005).

    PubMed  Article  Google Scholar 

  46. 46.

    Postels, D. G. et al. Neurologic outcomes in retinopathy-negative cerebral malaria survivors. Neurology 79, 1268–1272 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    de Oca, M. M., Engwerda, C. & Haque, A. Plasmodium berghei ANKA (PbA) infection of C57BL/6J mice: a model of severe malaria. Methods Mol. Biol. 1031, 203–213 (2013).

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Storm, J. et al. Cerebral malaria is associated with differential cytoadherence to brain endothelial cells. EMBO Mol. Med. 11, e9164 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Storm, J. & Craig, A. G. Pathogenesis of cerebral malaria — inflammation and cytoadherence. Front. Cell. Infect. Microbiol. 4, 100 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Jensen, A. R., Adams, Y. & Hviid, L. Cerebral Plasmodium falciparum malaria: the role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunol. Rev. 293, 230–252 (2020).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    O’Regan, N. et al. A novel role for von Willebrand factor in the pathogenesis of experimental cerebral malaria. Blood 127, 1192–1201 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Cruz, L. N., Wu, Y., Ulrich, H., Craig, A. G. & Garcia, C. R. Tumor necrosis factor reduces Plasmodium falciparum growth and activates calcium signaling in human malaria parasites. Biochim. Biophys. Acta 1860, 1489–1497 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Conroy, A. L. et al. Angiopoietin-2 levels are associated with retinopathy and predict mortality in Malawian children with cerebral malaria: a retrospective case–control study. Crit. Care Med. 40, 952–959 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Shabani, E. et al. Elevated cerebrospinal fluid tumour necrosis factor is associated with acute and long-term neurocognitive impairment in cerebral malaria. Parasite Immunol. 39, e12438 (2017).

    Article  CAS  Google Scholar 

  55. 55.

    Crawley, J. et al. Effect of phenobarbital on seizure frequency and mortality in childhood cerebral malaria: a randomised, controlled intervention study. Lancet 355, 701–706 (2000).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    White, N. J., Looareesuwan, S., Phillips, R. E., Chanthavanich, P. & Warrell, D. A. Single dose phenobarbitone prevents convulsions in cerebral malaria. Lancet 2, 64–66 (1988).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Birbeck, G. L. et al. A clinical trial of enteral levetiracetam for acute seizures in pediatric cerebral malaria. BMC Pediatr. 19, 399 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. 58.

    Gwer, S. A. et al. Fosphenytoin for seizure prevention in childhood coma in Africa: a randomized clinical trial. J. Crit. Care 28, 1086–1092 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Eisele, T. P., Keating, J., Littrell, M., Larsen, D. & Macintyre, K. Assessment of insecticide-treated bednet use among children and pregnant women across 15 countries using standardized national surveys. Am. J. Trop. Med. Hyg. 80, 209–214 (2009).

    PubMed  Article  Google Scholar 

  60. 60.

    Katureebe, A. et al. Measures of malaria burden after long-lasting insecticidal net distribution and indoor residual spraying at three sites in Uganda: a prospective observational study. PLoS Med. 13, e1002167 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Lengeler, C. Insecticide-treated nets for preventing malaria. Cochrane Database Syst. Rev. 11, CD000363 (2018).

    PubMed  Google Scholar 

  62. 62.

    West, P. A. et al. Enhanced protection against malaria by indoor residual spraying in addition to insecticide treated nets: is it dependent on transmission intensity or net usage. PLoS One 10, e0115661 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. 63.

    Westercamp, N. & Arguin, P. M. Malaria chemoprophylaxis: a proven public health intervention for international travelers. Travel Med. Infect. Dis. 13, 8–9 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Potchen, M. J. et al. Acute brain MRI findings in 120 Malawian children with cerebral malaria: new insights into an ancient disease. AJNR Am. J. Neuroradiol. 33, 1740–1746 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Postels, D. G. et al. Brain MRI of children with retinopathy-negative cerebral malaria. Am. J. Trop. Med. Hyg. 91, 943–949 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Mohanty, S. et al. Magnetic resonance imaging of cerebral malaria patients reveals distinct pathogenetic processes in different parts of the brain. mSphere 2, e00193-17 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Frölich, A. M. et al. Brain magnetic resonance imaging in imported malaria. Malar. J. 18, 74 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    García, H. H., Gonzalez, A. E., Evans, C. A. & Gilman, R. H., Cysticercosis Working Group in Peru. Taenia solium cysticercosis. Lancet 362, 547–556 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    World Health Organization. WHO estimates of the global burden of foodborne diseases (WHO, 2015).

  71. 71.

    Carpio, A., Placencia, M., Santillán, F. & Escobar, A. A proposal for classification of neurocysticercosis. Can. J. Neurol. Sci. 21, 43–47 (1994).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Singh, G. et al. Association between epilepsy and cysticercosis and toxocariasis: a population-based case–control study in a slum in India. Epilepsia 53, 2203–2208 (2012).

    PubMed  Article  Google Scholar 

  73. 73.

    Montano, S. M. et al. Neurocysticercosis: association between seizures, serology, and brain CT in rural Peru. Neurology 65, 229–233 (2005).

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Rajshekhar, V., Raghava, M. V., Prabhakaran, V., Oommen, A. & Muliyil, J. Active epilepsy as an index of burden of neurocysticercosis in Vellore district, India. Neurology 67, 2135–2139 (2006).

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Nsengiyumva, G. et al. Cysticercosis as a major risk factor for epilepsy in Burundi, east Africa. Epilepsia 44, 950–955 (2003).

    PubMed  Article  Google Scholar 

  76. 76.

    Garcia, H. H., Rodriguez, S., Friedland, J. S. & Cysticercosis Working Group in Peru. Immunology of Taenia solium taeniasis and human cysticercosis. Parasite Immunol. 36, 388–396 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Fleury, A., Cardenas, G., Adalid-Peralta, L., Fragoso, G. & Sciutto, E. Immunopathology in Taenia solium neurocysticercosis. Parasite Immunol. 38, 147–157 (2016).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Chavarría, A. et al. TH2 profile in asymptomatic Taenia solium human neurocysticercosis. Microbes Infect. 5, 1109–1115 (2003).

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Robinson, P., Atmar, R. L., Lewis, D. E. & White, A. C. Granuloma cytokines in murine cysticercosis. Infect. Immun. 65, 2925–2931 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Stringer, J. L., Marks, L. M., White, A. C. & Robinson, P. Epileptogenic activity of granulomas associated with murine cysticercosis. Exp. Neurol. 183, 532–536 (2003).

    PubMed  Article  Google Scholar 

  81. 81.

    Verma, A. et al. Toll-like receptor 4 polymorphism and its association with symptomatic neurocysticercosis. J. Infect. Dis. 202, 1219–1225 (2010).

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Verma, A. et al. Association of MMP-2 and MMP-9 with clinical outcome of neurocysticercosis. Parasitology 138, 1423–1428 (2011).

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Nash, T. E. et al. Calcific neurocysticercosis and epileptogenesis. Neurology 62, 1934–1938 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Nash, T. E. et al. Perilesional brain oedema and seizure activity in patients with calcified neurocysticercosis: a prospective cohort and nested case–control study. Lancet Neurol. 7, 1099–1105 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Chawla, S. et al. Demonstration of scolex in calcified cysticercus lesion using gradient echo with or without corrected phase imaging and its clinical implications. Clin. Radiol. 57, 826–834 (2002).

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Gupta, R. K., Kumar, R., Chawla, S. & Pradhan, S. Demonstration of scolex within calcified cysticercus cyst: its possible role in the pathogenesis of perilesional edema. Epilepsia 43, 1502–1508 (2002).

    PubMed  Article  Google Scholar 

  87. 87.

    White, A. C. et al. Diagnosis and treatment of neurocysticercosis: 2017 clinical practice guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Am. J. Trop. Med. Hyg. 98, 945–966 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Garcia, H. H. et al. Efficacy of combined antiparasitic therapy with praziquantel and albendazole for neurocysticercosis: a double-blind, randomised controlled trial. Lancet Infect. Dis. 14, 687–695 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Garcia, H. H. et al. A trial of antiparasitic treatment to reduce the rate of seizures due to cerebral cysticercosis. N. Engl. J. Med. 350, 249–258 (2004).

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Carpio, A. et al. Effects of albendazole treatment on neurocysticercosis: a randomised controlled trial. J. Neurol. Neurosurg. Psychiatry 79, 1050–1055 (2008).

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Nash, T. E., Pretell, J. & Garcia, H. H. Calcified cysticerci provoke perilesional edema and seizures. Clin. Infect. Dis. 33, 1649–1653 (2001).

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Carpio, A. et al. Exploring the complex associations over time among albendazole treatment, cyst evolution, and seizure outcomes in neurocysticercosis. Epilepsia 60, 1820–1828 (2019).

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Otte, W. M., Singla, M., Sander, J. W. & Singh, G. Drug therapy for solitary cysticercus granuloma: a systematic review and meta-analysis. Neurology 80, 152–162 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Zhao, B. C. et al. Albendazole and corticosteroids for the treatment of solitary cysticercus granuloma: a network meta-analysis. PLoS Negl. Trop. Dis. 10, e0004418 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95.

    The Carter Center. Summary of the twenty-first meeting of the International Task Force for Disease Eradication (II) (Carter Center, 2013).

  96. 96.

    United Nations Children’s Fund & World Health Organization. Progress on sanitation and drinking water: 2015 update and MDG assessment (UNICEF & WHO, 2015).

  97. 97.

    United Nations. Sustainable development goals. UN https://sustainabledevelopment.un.org/?menu=1300 (2015).

  98. 98.

    Garn, J. V. et al. The impact of sanitation interventions on latrine coverage and latrine use: a systematic review and meta-analysis. Int. J. Hyg. Environ. Health 220, 329–340 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Orgill-Meyer, J. et al. Long-term impact of a community-led sanitation campaign in India, 2005–2016. Bull. World Health Organ. 97, 523–533A (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Gilman, R. H. et al. Prevention and control of Taenia solium taeniasis/cysticercosis in Peru. Pathog. Glob. Health 106, 312–318 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Garcia, H. H., O‘Neal, S. E., Gilman, R. H. & Cysticercosis Working Group in Peru. Elimination of Taenia solium transmission in Peru. N. Engl. J. Med. 375, 1196–1197 (2016).

    PubMed  Article  Google Scholar 

  102. 102.

    Sarti, E. et al. Development and evaluation of a health education intervention against Taenia solium in a rural community in Mexico. Am. J. Trop. Med. Hyg. 56, 127–132 (1997).

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Hobbs, E. C. et al. Preliminary assessment of the computer-based Taenia solium educational program ‘The Vicious Worm’ on knowledge uptake in primary school students in rural areas in eastern Zambia. Trop. Med. Int. Health 23, 306–314 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Hobbs, E. C. et al. Effects of ‘The Vicious Worm’ educational tool on Taenia solium knowledge retention in Zambian primary school students after one year. PLoS Negl. Trop. Dis. 13, e0007336 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    An, G. et al. Pharmacokinetics, safety, and tolerability of oxfendazole in healthy volunteers: a randomized, placebo-controlled first-in-human single-dose escalation study. Antimicrob. Agents Chemother. 63, e02255-18 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Del Brutto, O. H. & García, H. H. Taenia solium cysticercosis — the lessons of history. J. Neurol. Sci. 359, 392–395 (2015).

    PubMed  Article  Google Scholar 

  107. 107.

    Murdoch, M. E. Onchodermatitis: where are we now. Trop. Med. Infect. Dis. 3, E94 (2018).

    PubMed  Google Scholar 

  108. 108.

    Colebunders, R., Stolk, W. A., Siewe Fodjo, J. N., Mackenzie, C. D. & Hopkins, A. Elimination of onchocerciasis in Africa by 2025: an ambitious target requires ambitious interventions. Infect. Dis. Poverty 8, 83 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Mukendi, D. et al. High prevalence of epilepsy in an onchocerciasis endemic health zone in the Democratic Republic of the Congo, despite 14 years of community-directed treatment with ivermectin: a mixed-method assessment. Int. J. Infect. Dis. 79, 187–194 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Mmbando, B. P. et al. High prevalence of epilepsy in two rural onchocerciasis endemic villages in the Mahenge area, Tanzania, after 20 years of community directed treatment with ivermectin. Infect. Dis. Poverty 7, 64 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Mandro, M. et al. Onchocerca volvulus as a risk factor for developing epilepsy in onchocerciasis endemic regions in the Democratic Republic of Congo: a case control study. Infect. Dis. Poverty 7, 79 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Colebunders, R. et al. Prevalence of river epilepsy in the Orientale Province in the Democratic Republic of the Congo. PLoS Negl. Trop. Dis. 10, e0004478 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  113. 113.

    Colebunders, R. et al. Risk factors for epilepsy in Bas-Uélé Province, Democratic Republic of the Congo: a case–control study. Int. J. Infect. Dis. 49, 1–8 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Colebunders, R. et al. High prevalence of onchocerciasis-associated epilepsy in villages in Maridi County, Republic of South Sudan: a community-based survey. Seizure 63, 93–101 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Konig, R., Nanri, A., Meindl, M. & Matuja, W. The role of Onchocerca volvulus in the development of epilepsy in a rural area of Tanzania. Parasitology 137, 1559–1568 (2010).

    PubMed  Article  CAS  Google Scholar 

  116. 116.

    Winkler, A. S. Neurocysticercosis in sub-Saharan Africa: a review of prevalence, clinical characteristics, diagnosis, and management. Pathog. Glob. Health 106, 261–274 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Akombi, B. J. & Renzaho, A. M. Perinatal mortality in Sub-Saharan Africa: a meta-analysis of demographic and health surveys. Ann. Glob. Health 85, 106 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Kamuyu, G. et al. Exposure to multiple parasites is associated with the prevalence of active convulsive epilepsy in sub-Saharan Africa. PLoS Negl. Trop. Dis. 8, e2908 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Chesnais, C. B. et al. The temporal relationship between onchocerciasis and epilepsy: a population-based cohort study. Lancet Infect. Dis. 18, 1278–1286 (2018).

    PubMed  Article  Google Scholar 

  120. 120.

    Mwaka, A. D., Semakula, J. R., Abbo, C. & Idro, R. Nodding syndrome: recent insights into etiology, pathophysiology, and treatment. Res. Rep. Trop. Med. 9, 89–93 (2018).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Foltz, J. L. et al. An epidemiologic investigation of potential risk factors for nodding syndrome in Kitgum District, Uganda. PLoS One 8, e66419 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Föger, K. et al. Nakalanga syndrome: clinical characteristics, potential causes, and its relationship with recently described nodding syndrome. PLoS Negl. Trop. Dis. 11, e0005201 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Sejvar, J. J. et al. Clinical, neurological, and electrophysiological features of nodding syndrome in Kitgum, Uganda: an observational case series. Lancet Neurol. 12, 166–174 (2013).

    PubMed  Article  Google Scholar 

  124. 124.

    Siewe, J. F. N. et al. Clinical presentations of onchocerciasis-associated epilepsy (OAE) in Cameroon. Epilepsy Behav. 90, 70–78 (2019).

    PubMed  Article  Google Scholar 

  125. 125.

    Colebunders, R. et al. Clinical characteristics of onchocerciasis-associated epilepsy in villages in Maridi County, Republic of South Sudan. Seizure 62, 108–115 (2018).

    PubMed  Article  Google Scholar 

  126. 126.

    Colebunders, R., Nelson Siewe, F. J. & Hotterbeekx, A. Onchocerciasis-associated epilepsy, an additional reason for strengthening onchocerciasis elimination programs. Trends Parasitol. 34, 208–216 (2018).

    PubMed  Article  Google Scholar 

  127. 127.

    Paganelli, R., Ngu, J. L. & Levinsky, R. J. Circulating immune complexes in onchocerciasis. Clin. Exp. Immunol. 39, 570–575 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Pearlman, E. & Gillette-Ferguson, I. Onchocerca volvulus, Wolbachia and river blindness. Chem. Immunol. Allergy 92, 254–265 (2007).

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Winkler, A. S. et al. MRI findings in people with epilepsy and nodding syndrome in an area endemic for onchocerciasis: an observational study. Afr. Health Sci. 13, 529–540 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Johnson, T. P. et al. Nodding syndrome may be an autoimmune reaction to the parasitic worm Onchocerca volvulus. Sci. Transl Med. 9, eaaf6953 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  131. 131.

    Hotterbeekx, A. et al. Neuroinflammation and not tauopathy is a predominant pathological signature of nodding syndrome. J. Neuropathol. Exp. Neurol. 78, 1049–1058 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Idro, R. et al. Nodding syndrome in Ugandan children — clinical features, brain imaging and complications: a case series. BMJ Open. 3, e002540 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Boatin, B. A. The current state of the Onchocerciasis Control Programme in West Africa. Trop. Doct. 33, 209–214 (2003).

    PubMed  Article  Google Scholar 

  134. 134.

    Campbell, W. C., Fisher, M. H., Stapley, E. O., Albers-Schönberg, G. & Jacob, T. A. Ivermectin: a potent new antiparasitic agent. Science 221, 823–828 (1983).

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Omura, S. & Crump, A. The life and times of ivermectin — a success story. Nat. Rev. Microbiol. 2, 984–989 (2004).

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Hopkins, A. D. Neglected tropical diseases in Africa: a new paradigm. Int. Health 8 (Suppl. 1), i28–i33 (2016).

    PubMed  Article  Google Scholar 

  137. 137.

    World Health Organization Regional Office for Africa. Expanded special project for elimination of neglected tropical disease (WHO, 2019).

  138. 138.

    Murray, C. J. L., Lopez, A. D., World Health Organization, World Bank & Harvard School of Public Health. The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020 (Harvard Univ. Press, 1996).

  139. 139.

    Boullé, C. et al. Impact of 19 years of mass drug administration with ivermectin on epilepsy burden in a hyperendemic onchocerciasis area in Cameroon. Parasit. Vectors 12, 114 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Rubinsky-Elefant, G., Hirata, C. E., Yamamoto, J. H. & Ferreira, M. U. Human toxocariasis: diagnosis, worldwide seroprevalences and clinical expression of the systemic and ocular forms. Ann. Trop. Med. Parasitol. 104, 3–23 (2010).

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    Nicoletti, A. Toxocariasis. Handb. Clin. Neurol. 114, 217–228 (2013).

    PubMed  Article  Google Scholar 

  142. 142.

    Nicoletti, A. et al. Epilepsy, cysticercosis, and toxocariasis: a population-based case–control study in rural Bolivia. Neurology 58, 1256–1261 (2002).

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Nicoletti, A. et al. Epilepsy and toxocariasis: a case–control study in Burundi. Epilepsia 48, 894–899 (2007).

    PubMed  Article  Google Scholar 

  144. 144.

    Nicoletti, A. et al. Epilepsy and toxocariasis: a case–control study in Italy. Epilepsia 49, 594–599 (2008).

    PubMed  Article  Google Scholar 

  145. 145.

    Glickman, L. T., Cypess, R. H., Crumrine, P. K. & Gitlin, D. A. Toxocara infection and epilepsy in children. J. Pediatr. 94, 75–78 (1979).

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Allahdin, S., Khademvatan, S., Rafiei, A., Momen, A. & Rafiei, R. Frequency of Toxoplasma and Toxocara Sp. antibodies in epileptic patients, in South Western Iran. Iran. J. Child. Neurol. 9, 32–40 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. 147.

    Noormahomed, E. V. et al. A cross-sectional serological study of cysticercosis, schistosomiasis, toxocariasis and echinococcosis in HIV-1 infected people in Beira, Mozambique. PLoS Negl. Trop. Dis. 8, e3121 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  148. 148.

    Eraky, M. A., Abdel-Hady, S. & Abdallah, K. F. Seropositivity of Toxoplasma gondii and Toxocara spp. in children with cryptogenic epilepsy, Benha, Egypt. Korean J. Parasitol. 54, 335–338 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Zibaei, M., Firoozeh, F., Bahrami, P. & Sadjjadi, S. M. Investigation of anti-Toxocara antibodies in epileptic patients and comparison of two methods: ELISA and western blotting. Epilepsy Res. Treat. 2013, 156815 (2013).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Winkler, A. S. et al. Anticysticercal and antitoxocaral antibodies in people with epilepsy in rural Tanzania. Trans. R. Soc. Trop. Med. Hyg. 102, 1032–1038 (2008).

    PubMed  Article  Google Scholar 

  151. 151.

    Luna, J. et al. Updated evidence of the association between toxocariasis and epilepsy: systematic review and meta-analysis. PLoS Negl. Trop. Dis. 12, e0006665 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    King, C. H. & Galvani, A. P. Underestimation of the global burden of schistosomiasis. Lancet 391, 307–308 (2018).

    PubMed  Article  Google Scholar 

  153. 153.

    Coyle, C. M. Schistosomiasis of the nervous system. Handb. Clin. Neurol. 114, 271–281 (2013).

    PubMed  Article  Google Scholar 

  154. 154.

    Xia, Y., Ju, Y., Chen, J. & You, C. Cerebral paragonimiasis: a retrospective analysis of 27 cases. J. Neurosurg. Pediatr. 15, 101–106 (2015).

    PubMed  Article  Google Scholar 

  155. 155.

    Franco, J. R., Simarro, P. P., Diarra, A. & Jannin, J. G. Epidemiology of human African trypanosomiasis. Clin. Epidemiol. 6, 257–275 (2014).

    PubMed  PubMed Central  Google Scholar 

  156. 156.

    Kennedy, P. G. E. Update on human African trypanosomiasis (sleeping sickness). J. Neurol. 266, 2334–2337 (2019).

    CAS  PubMed  Article  Google Scholar 

  157. 157.

    Svrckova, P., Nabarro, L., Chiodini, P. L. & Jäger, H. R. Disseminated cerebral hydatid disease (multiple intracranial echinococcosis). Pract. Neurol. 19, 156–163 (2019).

    PubMed  Article  Google Scholar 

  158. 158.

    Wang, Z. D. et al. Prevalence and burden of Toxoplasma gondii infection in HIV-infected people: a systematic review and meta-analysis. Lancet HIV. 4, e177–e188 (2017).

    PubMed  Article  Google Scholar 

  159. 159.

    American Veterinary Medical Association. One health: a new professional imperative (AVMA, 2018).

  160. 160.

    Siewe Fodjo, J. N. et al. Epidemiology of onchocerciasis-associated epilepsy in the Mbam and Sanaga river valleys of Cameroon: impact of more than 13 years of ivermectin. Infect. Dis. Poverty 7, 114 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  161. 161.

    Patil, P. R., Gemma, S., Campiani, G. & Craig, A. G. Broad inhibition of Plasmodium falciparum cytoadherence by (+)-epigallocatechin gallate. Malar. J. 10, 348 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  162. 162.

    Roser, M. & Ritchie, H. Malaria. Our world in Data https://ourworldindata.org/malaria (2019).

  163. 163.

    World Health Organization. Endemicity of Taenia solium, 2015. WHO https://www.who.int/taeniasis/Endemicity_Taenia_Solium_2015.jpg (2016).

  164. 164.

    World Health Organization. Distribution of onchocerciasis, worldwide, 2013. WHO https://www.who.int/onchocerciasis/distribution/Distribution_onchocerciasis_2013.pdf?ua=1 (2014).

  165. 165.

    Centers for Disease Control and Prevention. Malaria. CDC https://www.cdc.gov/dpdx/malaria/index.html (2019).

  166. 166.

    Garcia, H. H., Del Brutto, O. H. & Cysticercosis Working Group in Peru. Neurocysticercosis: updated concepts about an old disease. Lancet Neurol. 4, 653–661 (2005).

    PubMed  Article  Google Scholar 

  167. 167.

    Colebunders, R. et al. From river blindness control to elimination: bridge over troubled water. Infect. Dis. Poverty 7, 21 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  168. 168.

    Centers for Disease Control and Prevention. Onchocerciasis. CDC https://www.cdc.gov/dpdx/onchocerciasis/index.html (2017).

Download references

Acknowledgements

This work was carried out at the National Institute for Health Research University College London Hospitals Biomedical Research Centre, which receives a proportion of funding from the UK Department of Health’s Research Centres funding scheme. S.A.A. is a Commonwealth Scholar and is funded by the UK Department of International Development. J.W.S. receives research support from the Dr Marvin Weil Epilepsy Research Fund, from the UK Epilepsy Society and the Christelijke Vereniging voor de Verpleging van Lijders aan Epilepsie, Netherlands.

Author information

Affiliations

Authors

Contributions

The article was conceptualized by G.S. and J.W.S. All authors researched data for the article and reviewed and/or edited the manuscript before submission. G.S. produced the first draft and all others made substantial contributions to discussion of the content.

Corresponding authors

Correspondence to Gagandeep Singh or Josemir W. Sander.

Ethics declarations

Competing interests

J.W.S. has received personal fees from Eisai, UCB and Zogenix and grants from UCB and GW Pharmaceuticals outside the submitted work. His current position is endowed by the Epilepsy Society. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks A. Carpio and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related link

WHO Global Health Observatory Data Repository: http://apps.who.int/ghodata/

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Angwafor, S.A., Njamnshi, A.K. et al. Zoonotic and vector-borne parasites and epilepsy in low-income and middle-income countries. Nat Rev Neurol 16, 333–345 (2020). https://doi.org/10.1038/s41582-020-0361-3

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing