Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies

Abstract

Intraventricular haemorrhage (IVH) continues to be a major complication of prematurity that can result in cerebral palsy and cognitive impairment in survivors. No optimal therapy exists to prevent IVH or to treat its consequences. IVH varies in severity and can present as a bleed confined to the germinal matrix, small-to-large IVH or periventricular haemorrhagic infarction. Moderate-to-severe haemorrhage dilates the ventricle and damages the periventricular white matter. This white matter injury results from a constellation of blood-induced pathological reactions, including oxidative stress, glutamate excitotoxicity, inflammation, perturbed signalling pathways and remodelling of the extracellular matrix. Potential therapies for IVH are currently undergoing investigation in preclinical models and evidence from clinical trials suggests that stem cell treatment and/or endoscopic removal of clots from the cerebral ventricles could transform the outcome of infants with IVH. This Review presents an integrated view of new insights into the mechanisms underlying white matter injury in premature infants with IVH and highlights the importance of early detection of disability and immediate intervention in optimizing the outcomes of IVH survivors.

Key points

  • Intraventricular haemorrhage (IVH) results in periventricular white matter injury (WMI) in premature infants of 23–32 weeks gestation; survivors can develop neurodevelopmental sequelae, including cerebral palsy, cognitive deficits and hydrocephalus.

  • IVH triggers robust inflammation around the cerebral ventricles, damages axons and induces both apoptosis and maturational arrest of oligodendrocyte progenitors, leading to reduced myelination of white matter.

  • A constellation of blood-induced reactions, including oxidative stress, glutamate excitotoxicity, inflammation, deranged signalling pathways and alteration of the extracellular matrix, contribute to WMI in infants with IVH.

  • The early diagnosis of neurobehavioural impairments, timely referral to deficit-specific early intervention and family-centred care are crucial to optimizing the neurodevelopmental outcomes of these infants.

  • Neuroimaging studies are important for the early diagnosis of neurodevelopmental impairments, predicting outcomes and evaluating the efficacy of therapeutic interventions in both individual patients and clinical trials.

  • New therapies being tested in preclinical models might reduce cerebral inflammation and promote myelination; ongoing clinical trials are investigating stem cell treatment and the endoscopic removal of clots.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Germinal matrix and IVH in human preterm infants.
Fig. 2: Sequential neuroimaging studies of a preterm infant with bilateral IVH and PVHI.
Fig. 3: Degenerating axons and reduced numbers of myelinated axons in an animal model of IVH.
Fig. 4: Mechanisms and treatment options for white matter injury.
Fig. 5: IVH induces apoptosis of oligodendrocyte progenitor cells and reduces myelination of white matter.
Fig. 6: Regulation of oligodendrogenesis.

Similar content being viewed by others

References

  1. Courtney, S. E. et al. High-frequency oscillatory ventilation versus conventional mechanical ventilation for very-low-birth-weight infants. N. Engl. J. Med. 347, 643–652 (2002).

    PubMed  Google Scholar 

  2. Horbar, J. D. et al. Trends in mortality and morbidity for very low birth weight infants, 1991-1999. Pediatrics 110, 143–151 (2002).

    PubMed  Google Scholar 

  3. McGowan, E. C. & Vohr, B. R. Neurodevelopmental follow-up of preterm infants: what is new? Pediatr. Clin. North Am. 66, 509–523 (2019).

    PubMed  Google Scholar 

  4. Vohr, B. R. Neurodevelopmental outcomes of extremely preterm infants. Clin. Perinatol. 41, 241–255 (2014).

    PubMed  Google Scholar 

  5. Stoll, B. J. et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 126, 443–456 (2010).

    PubMed  Google Scholar 

  6. Volpe, J. J. Intraventricular hemorrhage in the premature infant — current concepts. Part II. Ann. Neurol. 25, 109–116 (1989).

    CAS  PubMed  Google Scholar 

  7. Papile, L. A., Burstein, J., Burstein, R. & Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 g. J. Pediatr. 92, 529–534 (1978).

    CAS  PubMed  Google Scholar 

  8. Perlman, J. M. & Volpe, J. J. Cerebral blood flow velocity in relation to intraventricular hemorrhage in the premature newborn infant. J. Pediatr. 100, 956–959 (1982).

    CAS  PubMed  Google Scholar 

  9. Valdez Sandoval, P., Hernandez Rosales, P., Quinones Hernandez, D. G., Chavana Naranjo, E. A. & Garcia Navarro, V. Intraventricular hemorrhage and posthemorrhagic hydrocephalus in preterm infants: diagnosis, classification, and treatment options. Childs Nerv. Syst. 35, 917–927 (2019).

    PubMed  Google Scholar 

  10. Armstrong, D. L., Sauls, C. D. & Goddard-Finegold, J. Neuropathologic findings in short-term survivors of intraventricular hemorrhage. Am. J. Dis. Child. 141, 617–621 (1987).

    CAS  PubMed  Google Scholar 

  11. Rushton, D. I., Preston, P. R. & Durbin, G. M. Structure and evolution of echo dense lesions in the neonatal brain. A combined ultrasound and necropsy study. Arch. Dis. Child. 60, 798–808 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Skullerud, K. & Westre, B. Frequency and prognostic significance of germinal matrix hemorrhage, periventricular leukomalacia, and pontosubicular necrosis in preterm neonates. Acta Neuropathol. 70, 257–261 (1986).

    CAS  PubMed  Google Scholar 

  13. Bolisetty, S. et al. Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics 133, 55–62 (2014).

    PubMed  Google Scholar 

  14. Davis, A. S. et al. Outcomes of extremely preterm infants following severe intracranial hemorrhage. J. Perinatol. 34, 203–208 (2014).

    PubMed  Google Scholar 

  15. Vohr, B. R. et al. School-age outcomes of very low birth weight infants in the indomethacin intraventricular hemorrhage prevention trial. Pediatrics 111, e340–6 (2003).

    PubMed  Google Scholar 

  16. Nosarti, C. et al. Impaired executive functioning in young adults born very preterm. J. Int. Neuropsychol. Soc. 13, 571–581 (2007).

    PubMed  Google Scholar 

  17. Indredavik, M. S. et al. Low-birth-weight adolescents: psychiatric symptoms and cerebral MRI abnormalities. Pediatr. Neurol. 33, 259–266 (2005).

    PubMed  Google Scholar 

  18. Whitaker, A. H. et al. Neonatal head ultrasound abnormalities in preterm infants and adolescent psychiatric disorders. Arch. Gen. Psychiatry 68, 742–752 (2011).

    PubMed  Google Scholar 

  19. Taylor, H. G., Minich, N., Bangert, B., Filipek, P. A. & Hack, M. Long-term neuropsychological outcomes of very low birth weight: associations with early risks for periventricular brain insults. J. Int. Neuropsychol. Soc. 10, 987–1004 (2004).

    PubMed  Google Scholar 

  20. Volpe, J. J. Edward B. Neuhauser lecture. Current concepts of brain injury in the premature infant. AJR Am. J. Roentgenol. 153, 243–251 (1989).

    CAS  PubMed  Google Scholar 

  21. Larroche, J. C. Post-haemorrhagic hydrocephalus in infancy. Anatomical study. Biol. Neonate 20, 287–299 (1972).

    CAS  PubMed  Google Scholar 

  22. Buser, J. R. et al. Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann. Neurol. 71, 93–109 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. Bassan, H. et al. Ultrasonographic features and severity scoring of periventricular hemorrhagic infarction in relation to risk factors and outcome. Pediatrics 117, 2111–2118 (2006).

    PubMed  Google Scholar 

  24. Takashima, S., Mito, T. & Ando, Y. Pathogenesis of periventricular white matter hemorrhages in preterm infants. Brain Dev. 8, 25–30 (1986).

    CAS  PubMed  Google Scholar 

  25. Volpe, J. J. Intraventricular hemorrhage in the premature infant–current concepts. Part I. Ann. Neurol. 25, 3–11 (1989).

    CAS  PubMed  Google Scholar 

  26. Dummula, K. et al. Bone morphogenetic protein inhibition promotes neurological recovery after intraventricular hemorrhage. J. Neurosci. 31, 12068–12082 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ou, X. et al. Impaired white matter development in extremely low-birth-weight infants with previous brain hemorrhage. Am. J. Neuroradiol. 35, 1983–1989 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. van de Bor, M., Guit, G. L., Schreuder, A. M., Wondergem, J. & Vielvoye, G. J. Early detection of delayed myelination in preterm infants. Pediatrics 84, 407–411 (1989).

    PubMed  Google Scholar 

  29. Haynes, R. L., Billiards, S. S., Borenstein, N. S., Volpe, J. J. & Kinney, H. C. Diffuse axonal injury in periventricular leukomalacia as determined by apoptotic marker fractin. Pediatr. Res. 63, 656–661 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Georgiadis, P. et al. Characterization of acute brain injuries and neurobehavioral profiles in a rabbit model of germinal matrix hemorrhage. Stroke 39, 3378–3388 (2008).

    CAS  PubMed  Google Scholar 

  31. Chua, C. O. et al. Consequences of intraventricular hemorrhage in a rabbit pup model. Stroke 40, 3369–3377 (2009).

    PubMed  PubMed Central  Google Scholar 

  32. Goulding, D. S. et al. Acute brain inflammation, white matter oxidative stress, and myelin deficiency in a model of neonatal intraventricular hemorrhage. J. Neurosurg. Pediatr. https://doi.org/10.3171/2020.5.PEDS20124 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lin, S. et al. IGF-1 protects oligodendrocyte progenitor cells and improves neurological functions following cerebral hypoxia-ischemia in the neonatal rat. Brain Res. 1063, 15–26 (2005).

    CAS  PubMed  Google Scholar 

  34. Keep, R. F. et al. Brain endothelial cell junctions after cerebral hemorrhage: Changes, mechanisms and therapeutic targets. J. Cereb. Blood Flow. Metab. 38, 1255–1275 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Aronowski, J. & Zhao, X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42, 1781–1786 (2011).

    PubMed  PubMed Central  Google Scholar 

  36. Xue, M. et al. Does thrombin play a role in the pathogenesis of brain damage after periventricular hemorrhage? Brain Pathol. 15, 241–249 (2005).

    CAS  PubMed  Google Scholar 

  37. Xi, G., Keep, R. F. & Hoff, J. T. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 5, 53–63 (2006).

    PubMed  Google Scholar 

  38. Coughlin, S. R. Thrombin signalling and protease-activated receptors. Nature 407, 258–264 (2000).

    CAS  PubMed  Google Scholar 

  39. Gao, F. et al. Hydrocephalus after intraventricular hemorrhage: the role of thrombin. J. Cereb. Blood Flow. Metab. 34, 489–494 (2014).

    CAS  PubMed  Google Scholar 

  40. Lekic, T. et al. PAR-1, -4, and the mTOR pathway following germinal matrix hemorrhage. Acta Neurochir. Suppl. 121, 213–216 (2016).

    PubMed  Google Scholar 

  41. Yoon, H., Radulovic, M., Drucker, K. L., Wu, J. & Scarisbrick, I. A. The thrombin receptor is a critical extracellular switch controlling myelination. Glia 63, 846–859 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. Hao, X. D. et al. Thrombin disrupts vascular endothelial-cadherin and leads to hydrocephalus via protease-activated receptors-1 pathway. CNS Neurosci. Ther. 25, 1142–1150 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ley, D. et al. High presence of extracellular hemoglobin in the periventricular white matter following preterm intraventricular hemorrhage. Front. Physiol. 7, 330 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Romantsik, O. et al. The heme and radical scavenger α1-microglobulin (A1M) confers early protection of the immature brain following preterm intraventricular hemorrhage. J. Neuroinflammation 16, 122 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. Huang, F. P. et al. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J. Neurosurg. 96, 287–293 (2002).

    PubMed  Google Scholar 

  46. Wu, H., Wu, T., Xu, X., Wang, J. & Wang, J. Iron toxicity in mice with collagenase-induced intracerebral hemorrhage. J. Cereb. Blood Flow. Metab. 31, 1243–1250 (2011).

    CAS  PubMed  Google Scholar 

  47. Masuda, T. et al. Oral administration of metal chelator ameliorates motor dysfunction after a small hemorrhage near the internal capsule in rat. J. Neurosci. Res. 85, 213–222 (2007).

    CAS  PubMed  Google Scholar 

  48. Guo, J. et al. Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage. Brain Res. 1594, 115–124 (2015).

    CAS  PubMed  Google Scholar 

  49. Meng, H. et al. Deferoxamine alleviates chronic hydrocephalus after intraventricular hemorrhage through iron chelation and Wnt1/Wnt3a inhibition. Brain Res. 1602, 44–52 (2015).

    CAS  PubMed  Google Scholar 

  50. Wang, M. et al. Complement inhibition attenuates early erythrolysis in the hematoma and brain injury in aged rats. Stroke 50, 1859–1868 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ahmad, S., Bhatia, K., Kindelin, A. & Ducruet, A. F. The role of complement C3a receptor in stroke. Neuromolecular Med. 21, 467–473 (2019).

    CAS  PubMed  Google Scholar 

  52. Ducruet, A. F. et al. C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. J. Cereb. Blood Flow. Metab. 28, 1048–1058 (2008).

    CAS  PubMed  Google Scholar 

  53. Jarlestedt, K. et al. Receptor for complement peptide C3a: a therapeutic target for neonatal hypoxic-ischemic brain injury. FASEB J. 27, 3797–3804 (2013).

    PubMed  Google Scholar 

  54. Moran, J. et al. Intranasal C3a treatment ameliorates cognitive impairment in a mouse model of neonatal hypoxic-ischemic brain injury. Exp. Neurol. 290, 74–84 (2017).

    CAS  PubMed  Google Scholar 

  55. Stokowska, A. et al. Complement peptide C3a stimulates neural plasticity after experimental brain ischaemia. Brain 140, 353–369 (2017).

    PubMed  Google Scholar 

  56. Yung, Y. C., Stoddard, N. C., Mirendil, H. & Chun, J. Lysophosphatidic acid signaling in the nervous system. Neuron 85, 669–682 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yung, Y. C. et al. Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci. Transl. Med. 3, 99ra87 (2011).

    PubMed  PubMed Central  Google Scholar 

  58. Yu-Taeger, L. et al. Intranasal administration of mesenchymal stem cells ameliorates the abnormal dopamine transmission system and inflammatory reaction in the R6/2 mouse model of Huntington disease. Cells 8, 595 (2019).

    CAS  PubMed Central  Google Scholar 

  59. Lopez-Serrano, C. et al. Lysophosphatidic acid receptor type 2 activation contributes to secondary damage after spinal cord injury in mice. Brain Behav. Immun. 76, 258–267 (2019).

    CAS  PubMed  Google Scholar 

  60. Back, S. A. et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J. Neurosci. 21, 1302–1312 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Back, S. A., Riddle, A. & McClure, M. M. Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke 38, 724–730 (2007).

    PubMed  Google Scholar 

  62. Rakic, S. & Zecevic, N. Early oligodendrocyte progenitor cells in the human fetal telencephalon. Glia 41, 117–127 (2003).

    PubMed  Google Scholar 

  63. Vinukonda, G. et al. Neuroprotection in a rabbit model of intraventricular haemorrhage by cyclooxygenase-2, prostanoid receptor-1 or tumour necrosis factor-α inhibition. Brain 133, 2264–2280 (2010).

    PubMed  PubMed Central  Google Scholar 

  64. Nicolay, D. J., Doucette, J. R. & Nazarali, A. J. Transcriptional control of oligodendrogenesis. Glia 55, 1287–1299 (2007).

    PubMed  Google Scholar 

  65. Dohare, P. et al. AMPA-kainate receptor inhibition promotes neurologic recovery in premature rabbits with intraventricular hemorrhage. J. Neurosci. 36, 3363–3377 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zia, M. T. et al. Oxidative-nitrosative stress in a rabbit pup model of germinal matrix hemorrhage: role of NAD(P)H oxidase. Stroke 40, 2191–2198 (2009).

    PubMed  PubMed Central  Google Scholar 

  67. Yang, Q., Huang, Q., Hu, Z. & Tang, X. Potential neuroprotective treatment of stroke: targeting excitotoxicity, oxidative stress, and inflammation. Front. Neurosci. 13, 1036 (2019).

    PubMed  PubMed Central  Google Scholar 

  68. Tilleux, S. & Hermans, E. Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J. Neurosci. Res. 85, 2059–2070 (2007).

    CAS  PubMed  Google Scholar 

  69. Panfoli, I. et al. Oxidative stress as a primary risk factor for brain damage in preterm newborns. Front. Pediatr. 6, 369 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Hagberg, H. et al. The role of inflammation in perinatal brain injury. Nat. Rev. Neurol. 11, 192–208 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Xue, M., Balasubramaniam, J., Buist, R. J., Peeling, J. & Del Bigio, M. R. Periventricular/intraventricular hemorrhage in neonatal mouse cerebrum. J. Neuropathol. Exp. Neurol. 62, 1154–1165 (2003).

    PubMed  Google Scholar 

  72. Follett, P. L. et al. Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J. Neurosci. 24, 4412–4420 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Follett, P. L., Rosenberg, P. A., Volpe, J. J. & Jensen, F. E. NBQX attenuates excitotoxic injury in developing white matter. J. Neurosci. 20, 9235–9241 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Perrone, S., Negro, S., Tataranno, M. L. & Buonocore, G. Oxidative stress and antioxidant strategies in newborns. J. Matern. Fetal Neonatal Med. 23, 63–65 (2010).

    PubMed  Google Scholar 

  75. Ozsurekci, Y. & Aykac, K. Oxidative stress related diseases in newborns. Oxid. Med. Cell Longev. 2016, 2768365 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Perrone, S. et al. Early identification of the risk for free radical-related diseases in preterm newborns. Early Hum. Dev. 86, 241–244 (2010).

    CAS  PubMed  Google Scholar 

  77. Ma, M. W. et al. NADPH oxidase in brain injury and neurodegenerative disorders. Mol. Neurodegener. 12, 7 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Chen, H., Song, Y. S. & Chan, P. H. Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J. Cereb. Blood Flow. Metab. 29, 1262–1272 (2009).

    CAS  PubMed  Google Scholar 

  79. Doverhag, C. et al. Pharmacological and genetic inhibition of NADPH oxidase does not reduce brain damage in different models of perinatal brain injury in newborn mice. Neurobiol. Dis. 31, 133–144 (2008).

    CAS  PubMed  Google Scholar 

  80. Choi, B. Y. et al. Inhibition of NADPH oxidase activation reduces EAE-induced white matter damage in mice. J. Neuroinflammation 12, 104 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Dohare, P. et al. Glycogen synthase kinase-3β inhibition enhances myelination in preterm newborns with intraventricular hemorrhage, but not recombinant Wnt3A. Neurobiol. Dis. 118, 22–39 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bergles, D. E. & Richardson, W. D. Oligodendrocyte development and plasticity. Cold Spring Harb. Perspect. Biol. 8, a020453 (2015).

    PubMed  Google Scholar 

  83. Vinukonda, G. et al. Hyaluronidase and hyaluronan oligosaccharides promote neurological recovery after intraventricular hemorrhage. J. Neurosci. 36, 872–889 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Vose, L. R. et al. Treatment with thyroxine restores myelination and clinical recovery after intraventricular hemorrhage. J. Neurosci. 33, 17232–17246 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dyer, A. H., Vahdatpour, C., Sanfeliu, A. & Tropea, D. The role of insulin-like growth factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience 325, 89–99 (2016).

    CAS  PubMed  Google Scholar 

  86. Grinspan, J. B. et al. Stage-specific effects of bone morphogenetic proteins on the oligodendrocyte lineage. J. Neurobiol. 43, 1–17 (2000).

    CAS  PubMed  Google Scholar 

  87. Gomes, W. A., Mehler, M. F. & Kessler, J. A. Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev. Biol. 255, 164–177 (2003).

    CAS  PubMed  Google Scholar 

  88. Samanta, J. & Kessler, J. A. Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 131, 4131–4142 (2004).

    CAS  PubMed  Google Scholar 

  89. Chang, J., Dettman, R. W. & Dizon, M. L. V. Bone morphogenetic protein signaling: a promising target for white matter protection in perinatal brain injury. Neural Regen. Res. 13, 1183–1184 (2018).

    PubMed  PubMed Central  Google Scholar 

  90. Palazuelos, J., Klingener, M. & Aguirre, A. TGFβ signaling regulates the timing of CNS myelination by modulating oligodendrocyte progenitor cell cycle exit through SMAD3/4/FoxO1/Sp1. J. Neurosci. 34, 7917–7930 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Cherian, S., Thoresen, M., Silver, I. A., Whitelaw, A. & Love, S. Transforming growth factor-βs in a rat model of neonatal posthaemorrhagic hydrocephalus. Neuropathol. Appl. Neurobiol. 30, 585–600 (2004).

    CAS  PubMed  Google Scholar 

  92. Hoque, N., Thoresen, M., Aquilina, K., Hogan, S. & Whitelaw, A. Decorin and colchicine as potential treatments for post-haemorrhagic ventricular dilatation in a neonatal rat model. Neonatology 100, 271–276 (2011).

    PubMed  Google Scholar 

  93. Shimizu, T. et al. Wnt signaling controls the timing of oligodendrocyte development in the spinal cord. Dev. Biol. 282, 397–410 (2005).

    CAS  PubMed  Google Scholar 

  94. Langseth, A. J. et al. Wnts influence the timing and efficiency of oligodendrocyte precursor cell generation in the telencephalon. J. Neurosci. 30, 13367–13372 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ye, F. et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the β-catenin-TCF interaction. Nat. Neurosci. 12, 829–838 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Azim, K. & Butt, A. M. GSK3β negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia 59, 540–553 (2011).

    PubMed  Google Scholar 

  97. Ortega, F. et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat. Cell Biol. 15, 602–613 (2013).

    CAS  PubMed  Google Scholar 

  98. Genoud, S. et al. Notch1 control of oligodendrocyte differentiation in the spinal cord. J. Cell Biol. 158, 709–718 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, S. et al. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21, 63–75 (1998).

    PubMed  Google Scholar 

  100. Van Steenwinckel, J. et al. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain 142, 3806–3833 (2019).

    PubMed  PubMed Central  Google Scholar 

  101. Lu, Q. R. et al. Common developmental requirement for OLIG function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 (2002).

    CAS  PubMed  Google Scholar 

  102. Kessaris, N. et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. 9, 173–179 (2006).

    CAS  PubMed  Google Scholar 

  103. Carre, J. L. et al. Thyroid hormone receptor isoforms are sequentially expressed in oligodendrocyte lineage cells during rat cerebral development. J. Neurosci. Res. 54, 584–594 (1998).

    CAS  PubMed  Google Scholar 

  104. Rodriguez-Pena, A. Oligodendrocyte development and thyroid hormone. J. Neurobiol. 40, 497–512 (1999).

    CAS  PubMed  Google Scholar 

  105. Fernandez, M. et al. Thyroid hormone administration enhances remyelination in chronic demyelinating inflammatory disease. Proc. Natl Acad. Sci. USA 101, 16363–16368 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Harsan, L. A. et al. Recovery from chronic demyelination by thyroid hormone therapy: myelinogenesis induction and assessment by diffusion tensor magnetic resonance imaging. J. Neurosci. 28, 14189–14201 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Courtin, F. et al. Thyroid hormone deiodinases in the central and peripheral nervous system. Thyroid 15, 931–942 (2005).

    CAS  PubMed  Google Scholar 

  108. Gereben, B. et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 29, 898–938 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Gonzalez-Perez, O. & Alvarez-Buylla, A. Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res. Rev. 67, 147–156 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Vinukonda, G. et al. Epidermal growth factor preserves myelin and promotes astrogliosis after intraventricular hemorrhage. Glia 64, 1987–2004 (2016).

    PubMed  PubMed Central  Google Scholar 

  111. Hlavica, M. et al. Intrathecal insulin-like growth factor 1 but not insulin enhances myelin repair in young and aged rats. Neurosci. Lett. 648, 41–46 (2017).

    CAS  PubMed  Google Scholar 

  112. Ley, D. et al. rhIGF-1/rhIGFBP-3 in preterm infants: a phase 2 randomized controlled trial. J. Pediatr. 206, 56–65.e8 (2019).

    CAS  PubMed  Google Scholar 

  113. Wood, T. L. et al. Delayed IGF-1 administration rescues oligodendrocyte progenitors from glutamate-induced cell death and hypoxic-ischemic brain damage. Dev. Neurosci. 29, 302–310 (2007).

    CAS  PubMed  Google Scholar 

  114. Lin, S., Fan, L. W., Rhodes, P. G. & Cai, Z. Intranasal administration of IGF-1 attenuates hypoxic-ischemic brain injury in neonatal rats. Exp. Neurol. 217, 361–370 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kiechl-Kohlendorfer, U., Ralser, E., Pupp Peglow, U., Pehboeck-Walser, N. & Fussenegger, B. Early risk predictors for impaired numerical skills in 5-year-old children born before 32 weeks of gestation. Acta Paediatr. 102, 66–71 (2013).

    PubMed  Google Scholar 

  116. Klebermass-Schrehof, K. et al. Impact of low-grade intraventricular hemorrhage on long-term neurodevelopmental outcome in preterm infants. Childs Nerv. Syst. 28, 2085–2092 (2012).

    CAS  PubMed  Google Scholar 

  117. Sherlock, R. L., Anderson, P. J., Doyle, L. W. & Victorian Infant Collaborative Study Group. Neurodevelopmental sequelae of intraventricular haemorrhage at 8 years of age in a regional cohort of ELBW/very preterm infants. Early Hum. Dev. 81, 909–916 (2005).

    CAS  PubMed  Google Scholar 

  118. Movsas, T. Z. et al. Autism spectrum disorder is associated with ventricular enlargement in a low birth weight population. J. Pediatr. 163, 73–78 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. Ment, L. R. et al. Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 58, 1726–1738 (2002).

    CAS  PubMed  Google Scholar 

  120. Spittle, A. J. et al. Neonatal white matter abnormality predicts childhood motor impairment in very preterm children. Dev. Med. Child. Neurol. 53, 1000–1006 (2011).

    PubMed  PubMed Central  Google Scholar 

  121. Woodward, L. J., Anderson, P. J., Austin, N. C., Howard, K. & Inder, T. E. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N. Engl. J. Med. 355, 685–694 (2006).

    CAS  PubMed  Google Scholar 

  122. Leijser, L. M. et al. Posthemorrhagic ventricular dilatation in preterm infants: when best to intervene? Neurology 90, e698–e706 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Cayam-Rand, D. et al. Predicting developmental outcomes in preterm infants: a simple white matter injury imaging rule. Neurology 93, e1231–e1240 (2019).

    PubMed  PubMed Central  Google Scholar 

  124. Cizmeci, M. N. et al. Randomized controlled Early versus Late Ventricular Intervention Study (ELVIS) in posthemorrhagic ventricular dilatation: outcome at 2 years. J. Pediatr. https://doi.org/10.1016/j.jpeds.2020.08.014 (2020).

    Article  PubMed  Google Scholar 

  125. Lean, R. E. et al. Altered neonatal white and gray matter microstructure is associated with neurodevelopmental impairments in very preterm infants with high-grade brain injury. Pediatr. Res. 86, 365–374 (2019).

    PubMed  PubMed Central  Google Scholar 

  126. Morita, T. et al. Low-grade intraventricular hemorrhage disrupts cerebellar white matter in preterm infants: evidence from diffusion tensor imaging. Neuroradiology 57, 507–514 (2015).

    PubMed  Google Scholar 

  127. Tortora, D. et al. The effects of mild germinal matrix-intraventricular haemorrhage on the developmental white matter microstructure of preterm neonates: a DTI study. Eur. Radiol. 28, 1157–1166 (2018).

    PubMed  Google Scholar 

  128. Roze, E. et al. Neonatal DTI early after birth predicts motor outcome in preterm infants with periventricular hemorrhagic infarction. Pediatr. Res. 78, 298–303 (2015).

    PubMed  Google Scholar 

  129. Ancel, P. Y. et al. Cerebral palsy among very preterm children in relation to gestational age and neonatal ultrasound abnormalities: the EPIPAGE cohort study. Pediatrics 117, 828–835 (2006).

    PubMed  Google Scholar 

  130. Patra, K., Wilson-Costello, D., Taylor, H. G., Mercuri-Minich, N. & Hack, M. Grades I-II intraventricular hemorrhage in extremely low birth weight infants: effects on neurodevelopment. J. Pediatr. 149, 169–173 (2006).

    PubMed  Google Scholar 

  131. Vavasseur, C., Slevin, M., Donoghue, V. & Murphy, J. F. Effect of low grade intraventricular hemorrhage on developmental outcome of preterm infants. J. Pediatr. 151, e6 (2007).

    PubMed  Google Scholar 

  132. Mukerji, A., Shah, V. & Shah, P. S. Periventricular/intraventricular hemorrhage and neurodevelopmental outcomes: a meta-analysis. Pediatrics 136, 1132–1143 (2015).

    PubMed  Google Scholar 

  133. Reubsaet, P. et al. The impact of low-grade germinal matrix-intraventricular hemorrhage on neurodevelopmental outcome of very preterm infants. Neonatology 112, 203–210 (2017).

    PubMed  Google Scholar 

  134. Morgan, C. et al. The pooled diagnostic accuracy of neuroimaging, general movements, and neurological examination for diagnosing cerebral palsy early in high-risk infants: a case control study. J. Clin. Med. 8, 1879 (2019).

    PubMed Central  Google Scholar 

  135. Soleimani, F. et al. Do NICU developmental care improve cognitive and motor outcomes for preterm infants? A systematic review and meta-analysis. BMC Pediatr. 20, 67 (2020).

    PubMed  PubMed Central  Google Scholar 

  136. Spittle, A., Orton, J., Anderson, P. J., Boyd, R. & Doyle, L. W. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst. Rev. 11, CD005495 (2015).

    Google Scholar 

  137. Spittle, A. & Treyvaud, K. The role of early developmental intervention to influence neurobehavioral outcomes of children born preterm. Semin. Perinatol. 40, 542–548 (2016).

    PubMed  Google Scholar 

  138. Council on Children With Disabilities, Section on Developmental Behavioral Pediatrics, Bright Futures Steering Committee and Medical Home Initiatives for Children With Special Needs Project Advisory Committee. Identifying infants and young children with developmental disorders in the medical home: an algorithm for developmental surveillance and screening. Pediatrics 118, 405–420 (2006).

    Google Scholar 

  139. Bassan, H. et al. Timing of external ventricular drainage and neurodevelopmental outcome in preterm infants with posthemorrhagic hydrocephalus. Eur. J. Paediatr. Neurol. 16, 662–670 (2012).

    PubMed  Google Scholar 

  140. Levene, M. I. Measurement of the growth of the lateral ventricles in preterm infants with real-time ultrasound. Arch. Dis. Child. 56, 900–904 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. de Vries, L. S. et al. Treatment thresholds for intervention in posthaemorrhagic ventricular dilation: a randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 104, F70–F75 (2019).

    PubMed  Google Scholar 

  142. Agajany, N. et al. The impact of neonatal posthemorrhagic hydrocephalus of prematurity on family function at preschool age. Early Hum. Dev. 137, 104827 (2019).

    PubMed  Google Scholar 

  143. Burnett, A. C., Cheong, J. L. Y. & Doyle, L. W. Biological and social influences on the neurodevelopmental outcomes of preterm infants. Clin. Perinatol. 45, 485–500 (2018).

    PubMed  Google Scholar 

  144. Benavente-Fernandez, I. et al. Association of socioeconomic status and brain injury with neurodevelopmental outcomes of very preterm children. JAMA Netw. Open 2, e192914 (2019).

    PubMed  PubMed Central  Google Scholar 

  145. Taveggia, C., Feltri, M. L. & Wrabetz, L. Signals to promote myelin formation and repair. Nat. Rev. Neurol. 6, 276–287 (2010).

    PubMed  PubMed Central  Google Scholar 

  146. Wilkins, A., Chandran, S. & Compston, A. A role for oligodendrocyte-derived IGF-1 in trophic support of cortical neurons. Glia 36, 48–57 (2001).

    CAS  PubMed  Google Scholar 

  147. Whitelaw, A. et al. Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics 125, e852–858 (2010).

    PubMed  Google Scholar 

  148. Luyt, K. et al. Drainage, irrigation and fibrinolytic therapy (DRIFT) for posthaemorrhagic ventricular dilatation: 10-year follow-up of a randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 105, 466–473 (2020).

    PubMed  Google Scholar 

  149. Etus, V., Kahilogullari, G., Karabagli, H. & Unlu, A. Early endoscopic ventricular irrigation for the treatment of neonatal posthemorrhagic hydrocephalus: a feasible treatment option or not? a multicenter study. Turk. Neurosurg. 28, 137–141 (2018).

    PubMed  Google Scholar 

  150. Schulz, M., Buhrer, C., Pohl-Schickinger, A., Haberl, H. & Thomale, U. W. Neuroendoscopic lavage for the treatment of intraventricular hemorrhage and hydrocephalus in neonates. J. Neurosurg. Pediatr. 13, 626–35 (2014).

    PubMed  Google Scholar 

  151. d’Arcangues, C. et al. Extended experience with neuroendoscopic lavage for posthemorrhagic hydrocephalus in neonates. World Neurosurg. 116, e217–e224 (2018).

    PubMed  Google Scholar 

  152. Mahoney, L., Luyt, K., Harding, D. & Odd, D. Treatment for post-hemorrhagic ventricular dilatation: a multiple-treatment meta-analysis. Front. Pediatr. 8, 238 (2020).

    PubMed  PubMed Central  Google Scholar 

  153. El-Dib, M. et al. Management of post-hemorrhagic ventricular dilatation in the infant born preterm. J. Pediatr. https://doi.org/10.1016/j.jpeds.2020.07.079 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Klebe, D. et al. Dabigatran ameliorates post-haemorrhagic hydrocephalus development after germinal matrix haemorrhage in neonatal rat pups. J. Cereb. Blood Flow. Metab. 37, 3135–3149 (2017).

    CAS  PubMed  Google Scholar 

  155. Liu, D. Z. et al. Blood–brain barrier breakdown and repair by Src after thrombin-induced injury. Ann. Neurol. 67, 526–533 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Ramos-Mandujano, G., Vazquez-Juarez, E., Hernandez-Benitez, R. & Pasantes-Morales, H. Thrombin potently enhances swelling-sensitive glutamate efflux from cultured astrocytes. Glia 55, 917–925 (2007).

    PubMed  Google Scholar 

  157. Lekic, T. et al. Cyclooxygenase-2 inhibition provides lasting protection following germinal matrix hemorrhage in premature infant rats. Acta Neurochir. Suppl. 121, 203–207 (2016).

    PubMed  Google Scholar 

  158. Garrido-Mesa, N., Zarzuelo, A. & Galvez, J. Minocycline: far beyond an antibiotic. Br. J. Pharmacol. 169, 337–352 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Malhotra, K. et al. Minocycline for acute stroke treatment: a systematic review and meta-analysis of randomized clinical trials. J. Neurol. 265, 1871–1879 (2018).

    CAS  PubMed  Google Scholar 

  160. Hanada, T. et al. Perampanel: a novel, orally active, noncompetitive AMPA-receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia 52, 1331–1340 (2011).

    CAS  PubMed  Google Scholar 

  161. Rogawski, M. A. Revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Curr. 11, 56–63 (2011).

    PubMed  PubMed Central  Google Scholar 

  162. Gidal, B. E. et al. Perampanel efficacy and tolerability with enzyme-inducing AEDs in patients with epilepsy. Neurology 84, 1972–1980 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Vazquez, B., Yang, H., Williams, B., Zhou, S. & Laurenza, A. Perampanel efficacy and safety by gender: subanalysis of phase III randomized clinical studies in subjects with partial seizures. Epilepsia 56, e90–4 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. La Gamma, E. F. et al. Phase 1 trial of 4 thyroid hormone regimens for transient hypothyroxinemia in neonates of <28 weeks’ gestation. Pediatrics 124, e258–e268 (2009).

    PubMed  Google Scholar 

  165. van Wassenaer, A. G. et al. Effects of thyroxine supplementation on neurologic development in infants born at less than 30 weeks’ gestation. N. Engl. J. Med. 336, 21–26 (1997).

    PubMed  Google Scholar 

  166. van Wassenaer, A. G., Westera, J., Houtzager, B. A. & Kok, J. H. Ten-year follow-up of children born at <30 weeks’ gestational age supplemented with thyroxine in the neonatal period in a randomized, controlled trial. Pediatrics 116, e613–e618 (2005).

    PubMed  Google Scholar 

  167. Aguirre, A., Rizvi, T. A., Ratner, N. & Gallo, V. Overexpression of the epidermal growth factor receptor confers migratory properties to nonmigratory postnatal neural progenitors. J. Neurosci. 25, 11092–11106 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Scafidi, J. et al. Intranasal epidermal growth factor treatment rescues neonatal brain injury. Nature 506, 230–234 (2014).

    CAS  PubMed  Google Scholar 

  169. Hognason, T. et al. Epidermal growth factor receptor induced apoptosis: potentiation by inhibition of Ras signaling. FEBS Lett. 491, 9–15 (2001).

    CAS  PubMed  Google Scholar 

  170. van Velthoven, C. T., Gonzalez, F., Vexler, Z. S. & Ferriero, D. M. Stem cells for neonatal stroke — the future is here. Front. Cell Neurosci. 8, 207 (2014).

    PubMed  PubMed Central  Google Scholar 

  171. Chang, Y. S., Ahn, S. Y., Sung, S. & Park, W. S. Stem cell therapy for neonatal disorders: prospects and challenges. Yonsei Med. J. 58, 266–271 (2017).

    PubMed  PubMed Central  Google Scholar 

  172. Ahn, S. Y., Chang, Y. S. & Park, W. S. Mesenchymal stem cells transplantation for neuroprotection in preterm infants with severe intraventricular hemorrhage. Korean J. Pediatr. 57, 251–256 (2014).

    PubMed  PubMed Central  Google Scholar 

  173. Ahn, S. Y. et al. Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke 44, 497–504 (2013).

    CAS  PubMed  Google Scholar 

  174. Kim, E. S. et al. Human umbilical cord blood-derived mesenchymal stem cell transplantation attenuates severe brain injury by permanent middle cerebral artery occlusion in newborn rats. Pediatr. Res. 72, 277–284 (2012).

    CAS  PubMed  Google Scholar 

  175. Ahn, S. Y., Chang, Y. S., Sung, S. I. & Park, W. S. Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: phase I dose-escalation clinical trial. Stem Cell Transl. Med. 7, 847–856 (2018).

    CAS  Google Scholar 

  176. Keller, T. et al. Intranasal breast milk for premature infants with severe intraventricular hemorrhage-an observation. Eur. J. Pediatr. 178, 199–206 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Robert Hevner, University of California San Diego, CA, USA, for the images of brain slices from a human premature infant with IVH in Figs 1a and 1b. The authors also sincerely thank George Kleinman, New York Medical College, Valhalla, NY, USA, and Peter Nikkels, University Medical Center, Utrecht, the Netherlands, for the images of brain slices from a human premature infant with IVH in Figs 1c and 1d, respectively. The authors are grateful to Joseph Volpe, Harvard University, Boston, MA, USA, for a critical review of the manuscript. The authors’ research work is supported by NIH grants RO1 NS110760 and R21NS102897 (both to P.B.).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Praveen Ballabh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks H. Hagberg, A. Whitelaw and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballabh, P., de Vries, L.S. White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies. Nat Rev Neurol 17, 199–214 (2021). https://doi.org/10.1038/s41582-020-00447-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-020-00447-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing