Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypomyelinating leukodystrophies — unravelling myelin biology

Abstract

Hypomyelinating leukodystrophies constitute a subset of genetic white matter disorders characterized by a primary lack of myelin deposition. Most patients with severe hypomyelination present in infancy or early childhood and develop severe neurological deficits, but the clinical presentation can also be mild with onset of symptoms in adolescence or adulthood. MRI can be used to visualize the process of myelination in detail, and MRI pattern recognition can provide a clinical diagnosis in many patients. Next-generation sequencing provides a definitive diagnosis in 80–90% of patients. Genes associated with hypomyelination include those that encode structural myelin proteins but also many that encode proteins involved in RNA translation and some lysosomal proteins. The precise pathomechanisms remain to be elucidated. Improved understanding of the process of myelination, the metabolic axonal support functions of myelin and the proposed contribution of myelin to CNS plasticity provide possible explanations as to why almost all patients with hypomyelination experience slow clinical decline after a long phase of stability. In this Review, we provide an overview of the hypomyelinating leukodystrophies, the advances in our understanding of myelin biology and of the genes involved in these disorders, and the insights these advances have provided into their clinical presentations and evolution.

Key points

  • Myelination is a finely regulated process that involves interactions between oligodendrocytes, axons, astrocytes and microglia.

  • Hypomyelinating leukodystrophies are a group of disorders characterized by primary lack of myelin deposition.

  • Characteristic patterns on brain MRI can guide the diagnosis of hypomyelinating disorders; quantitative MRI techniques can provide measures of white matter myelin content with potential as biomarkers.

  • The spectrum of clinical severity of hypomyelinating disorders is broad, ranging from mild to severe neurological impairment.

  • The genetic causes of hypomyelinating leukodystrophies are diverse; the most important groups of affected proteins are structural myelin proteins and proteins involved in cellular processes such as transcription and translation.

  • Improved understanding of hypomyelinating disorders will guide future treatment strategies, which should not only address myelin deficits but also preserve axonal health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oligodendrocyte maturation and myelination.
Fig. 2: Visualization of normal myelination.
Fig. 3: MRI of hypomyelination, delayed myelination and secondary hypomyelination.
Fig. 4: Quantitative MRI methods for assessment of myelination.
Fig. 5: Proteins involved in hypomyelination.

Similar content being viewed by others

References

  1. Pouwels, P. J. W. et al. Hypomyelinating leukodystrophies: translational research progress and prospects: leukodystrophies. Ann. Neurol. 76, 5–19 (2014).

    Article  PubMed  Google Scholar 

  2. Barkovich, A. J. & Deon, S. Reprint of “Hypomyelinating disorders: an MRI approach”. Neurobiol. Dis. 92, 46–54 (2016).

    Article  PubMed  Google Scholar 

  3. van der Knaap, M. S., Schiffmann, R., Mochel, F. & Wolf, N. I. Diagnosis, prognosis, and treatment of leukodystrophies. Lancet Neurol. 18, 962–972 (2019).

    Article  PubMed  Google Scholar 

  4. Merzbacher, L. Eine eigenartige familiär-hereditäre Erkrankungsform (Aplasia axialis extracorticalis congenita). Zeitschr. Ges. Neurol. Psych. 3, 1 (1910).

  5. Pelizaeus, F. Ueber eine eigenthümliche form spastischer Lähmung mit Cerebralerscheinungen auf hereditärer Grundlage. Arch. Psychiatr. Nervenkr. 16, 698–710 (1885).

    Article  Google Scholar 

  6. Willard, H. F. & Riordan, J. R. Assignment of the gene for myelin proteolipid protein to the X chromosome: implications for X-linked myelin disorders. Science 230, 940–942 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Hudson, L. D., Puckett, C., Berndt, J., Chan, J. & Gencic, S. Mutation of the proteolipid protein gene PLP in a human X chromosome-linked myelin disorder. Proc. Natl Acad. Sci. USA 86, 8128–8131 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kevelam, S. et al. Update on leukodystrophies: a historical perspective and adapted definition. Neuropediatrics 47, 349–354 (2016).

    Article  PubMed  Google Scholar 

  9. Chelban, V. et al. Mutations in NKX6-2 cause progressive spastic ataxia and hypomyelination. Am. J. Hum. Genet. 100, 969–977 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dorboz, I. et al. Biallelic mutations in the homeodomain of NKX6-2 underlie a severe hypomyelinating leukodystrophy. Brain 140, 2550–2556 (2017).

    Article  PubMed  Google Scholar 

  11. Simons, C. et al. A recurrent de novo mutation in TMEM106B causes hypomyelinating leukodystrophy. Brain 140, 3105–3111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wolf, N. I. et al. Clinical spectrum of 4H leukodystrophy caused by POLR3A and POLR3B mutations. Neurology 83, 1898–1905 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Czopka, T., Ffrench-Constant, C. & Lyons, D. A. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev. Cell 25, 599–609 (2013). In this study, live imaging in zebrafish was used to show how fast myelin sheaths are generated by oligodendrocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stadelmann, C., Timmler, S., Barrantes-Freer, A. & Simons, M. Myelin in the central nervous system: structure, function, and pathology. Physiol. Rev. 99, 1381–1431 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Chang, K.-J., Redmond, S. A. & Chan, J. R. Remodeling myelination: implications for mechanisms of neural plasticity. Nat. Neurosci. 19, 190–197 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bakhti, M. et al. Loss of electrostatic cell-surface repulsion mediates myelin membrane adhesion and compaction in the central nervous system. Proc. Natl Acad. Sci. USA 110, 3143–3148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Snaidero, N. et al. Antagonistic functions of MBP and CNP establish cytosolic channels in CNS myelin. Cell Rep. 18, 314–320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Snaidero, N. & Simons, M. Myelination at a glance. J. Cell Sci. 127, 2999–3004 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Rasband, M. N. & Peles, E. The nodes of Ranvier: molecular assembly and maintenance. Cold Spring Harb. Perspect. Biol. 8, a020495 (2016).

    Article  PubMed Central  Google Scholar 

  20. Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487, 443–448 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fünfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517–521 (2012). Together with Lee et al. (2012), this study emphasizes the supportive function of myelin and long-term axonal integrity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Nualart-Marti, A., Solsona, C. & Fields, D. R. Gap junction communication in myelinating glia. Biochim. Biophys. Acta 1828, 69–78 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Saab, A. S., Tzvetanova, I. D. & Nave, K.-A. The role of myelin and oligodendrocytes in axonal energy metabolism. Curr. Opin. Neurobiol. 23, 1065–1072 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Lappe-Siefke, C. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat. Genet. 33, 366–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Timmler, S. & Simons, M. Grey matter myelination. Glia 67, 2063–2070 (2019).

    Article  PubMed  Google Scholar 

  26. Bechler, M. E., Byrne, L. & ffrench-Constant, C. CNS myelin sheath lengths are an intrinsic property of oligodendrocytes. Curr. Biol. 25, 2411–2416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crawford, A. H., Tripathi, R. B., Richardson, W. D. & Franklin, R. J. M. Developmental origin of oligodendrocyte lineage cells determines response to demyelination and susceptibility to age-associated functional decline. Cell Rep. 15, 761–773 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dimou, L. & Simons, M. Diversity of oligodendrocytes and their progenitors. Curr. Opin. Neurobiol. 47, 73–79 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Espinosa-Hoyos, D. et al. Engineered 3D-printed artificial axons. Sci. Rep. 8, 478 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ong, W. et al. Biomimicking fiber platform with tunable stiffness to study mechanotransduction reveals stiffness enhances oligodendrocyte differentiation but impedes myelination through YAP-dependent regulation. Small 16, 2003656 (2020).

    Article  CAS  Google Scholar 

  32. Barres, B. A. & Raff, M. C. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361, 258–260 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Almeida, R. G., Czopka, T., Ffrench-Constant, C. & Lyons, D. A. Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development 138, 4443–4450 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wake, H. et al. Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons. Nat. Commun. 6, 7844 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Fernandez-Castaneda, A. & Gaultier, A. Adult oligodendrocyte progenitor cells – multifaceted regulators of the CNS in health and disease. Brain Behav. Immun. 57, 1–7 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Demerens, C. et al. Induction of myelination in the central nervous system by electrical activity. Proc. Natl Acad. Sci. USA 93, 9887–9892 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bengtsson, S. L. et al. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8, 1148–1150 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Scholz, J., Klein, M. C., Behrens, T. E. J. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–1371 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kato, D. et al. Motor learning requires myelination to reduce asynchrony and spontaneity in neural activity. Glia 68, 193–210 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bechler, M. E., Swire, M. & ffrench-Constant, C. Intrinsic and adaptive myelination-A sequential mechanism for smart wiring in the brain. Dev. Neurobiol. 78, 68–79 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. McKinnon, R. D., Waldron, S. & Kiel, M. E. PDGFα-receptor signal strength controls an RTK rheostat that integrates phosphoinositol 3′-kinase and phospholipase C pathways during oligodendrocyte maturation. J. Neurosci. 25, 3499–3508 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abrams, C. K. Diseases of connexins expressed in myelinating glia. Neurosci. Lett. 695, 91–99 (2017).

    Article  PubMed  CAS  Google Scholar 

  44. Camargo, N. et al. Oligodendroglial myelination requires astrocyte-derived lipids. PLoS Biol. 15, e1002605 (2017). This study stresses the role of astrocytes in myelination in providing the necessary lipids for membrane synthesis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Flechsig, P. Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet 158, 1027–1030 (1901).

    Article  Google Scholar 

  47. Flechsig, P. Anatomie des menschlichen Gehirns und des Rückenmarks auf myelogenetischer Grundlage (Thieme, 1920).

  48. Bercury, K. K. & Macklin, W. B. Dynamics and mechanisms of CNS myelination. Dev. Cell 32, 447–458 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Patro, N., Naik, A. A. & Patro, I. K. Developmental changes in oligodendrocyte genesis, myelination, and associated behavioral dysfunction in a rat model of intra-generational protein malnutrition. Mol. Neurobiol. 56, 595–610 (2018).

    Article  PubMed  CAS  Google Scholar 

  50. Prado, E. L. & Dewey, K. G. Nutrition and brain development in early life. Nutr. Rev. 72, 267–284 (2014).

    Article  PubMed  Google Scholar 

  51. Horstmann, M. et al. Infantile cobalamin deficiency with cerebral lactate accumulation and sustained choline depletion. Neuropediatrics 34, 261–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Taskesen, M., Yaramis, A., Pirinccioglu, A. G. & Ekici, F. Cranial magnetic resonance imaging findings of nutritional vitamin B12 deficiency in 15 hypotonic infants. Eur. J. Paediatr. Neurol. 16, 266–270 (2012).

    Article  PubMed  Google Scholar 

  53. Steinfeld, R. et al. Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am. J. Hum. Genet. 85, 354–363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kobayashi, Y. et al. Severe leukoencephalopathy with cortical involvement and peripheral neuropathy due to FOLR1 deficiency. Brain Dev. 39, 266–270 (2016).

    Article  PubMed  Google Scholar 

  55. Barres, B. A., Lazar, M. A. & Raff, M. C. A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development 120, 1097–1108 (1994).

    CAS  PubMed  Google Scholar 

  56. Lee, J. Y. & Petratos, S. Thyroid hormone signaling in oligodendrocytes: from extracellular transport to intracellular signal. Mol. Neurobiol. 53, 6568–6583 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Tonduti, D. et al. MCT8 deficiency: extrapyramidal symptoms and delayed myelination as prominent features. J. Child Neurol. 28, 795–800 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Holland, B. A., Haas, D. K., Norman, D., Brant-Zawadzki, M. & Newton, T. H. MRI of normal brain maturation. Am. J. Neuroradiol. 7, 201–208 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. van der Knaap, M. S. & Valk, J. MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology 31, 459–470 (1990).

    Article  PubMed  Google Scholar 

  60. Barkovich, A. J. Concepts of myelin and myelination in neuroradiology. Am. J. Neuroradiol. 21, 1099–1109 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Barkovich, A. J. & Maroldo, T. V. Magnetic resonance imaging of normal and abnormal brain development. Top. Magnetic Reson. Imaging 5, 96–122 (1993).

    CAS  Google Scholar 

  62. Paus, T. et al. Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res. Bull. 54, 255–266 (2011).

    Article  Google Scholar 

  63. Branson, H. M. Normal myelination: a practical pictorial review. Neuroimaging Clin. N. Am. 23, 183–195 (2013).

    Article  PubMed  Google Scholar 

  64. Steenweg, M. E. et al. Magnetic resonance imaging pattern recognition in hypomyelinating disorders. Brain 133, 2971–2982 (2010). In this study, MRI pattern recognition, the use of which was established for non-hypomyelinating leukodystrophies, is systematically used for hypomyelinating leukodystrophies.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Steenweg, M. E. et al. Novel hypomyelinating leukoencephalopathy affecting early myelinating structures. Arch. Neurol. 69, 125–128 (2012).

    Article  PubMed  Google Scholar 

  66. van der Knaap, M. S. et al. New syndrome characterized by hypomyelination with atrophy of the basal ganglia and cerebellum. Am. J. Neuroradiol. 23, 1466–1474 (2002).

    PubMed  PubMed Central  Google Scholar 

  67. Kevelam, S. H. et al. Altered PLP1 splicing causes hypomyelination of early myelinating structures. Ann. Clin. Transl Neurol. 2, 648–661 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Simons, C. et al. A de novo mutation in the β-tubulin gene TUBB4A results in the leukoencephalopathy hypomyelination with atrophy of the basal ganglia and cerebellum. Am. J. Hum. Genet. 92, 767–773 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cayami, F. K. et al. 4H leukodystrophy: lessons from 3 T imaging. Neuropediatrics 49, 112–117 (2017).

    Article  PubMed  Google Scholar 

  70. Mendes, M. I. et al. Bi-allelic mutations in EPRS, encoding the glutamyl-prolyl-aminoacyl-tRNA synthetase, cause a hypomyelinating leukodystrophy. Am. J. Hum. Genet. 102, 676–684 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mendes, M. I. et al. RARS1-related hypomyelinating leukodystrophy: expanding the spectrum. Ann. Clin. Transl Neurol. 7, 83–93 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wolf, N. I. et al. Leukoencephalopathy with ataxia, hypodontia, and hypomyelination. Neurology 64, 1461–1464 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Taft, R. J. et al. Mutations in DARS cause hypomyelination with brain stem and spinal cord involvement and leg spasticity. Am. J. Hum. Genet. 92, 774–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Harting, I. et al. Oculodentodigital dysplasia: a hypomyelinating leukodystrophy with a characteristic MRI pattern of brain stem involvement. Am. J. Neuroradiol. 40, 903–907 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Morell, P. & Quarles, R. in Basic Neurochemistry: Molecular, Cellular, and Medical Aspects (ed. Siegel, G.) 69–94 (Raven, 1999).

  76. Norton, W. & Cammer, W. in Myelin (ed. Morell, P.) 147–195 (Springer, 1984).

  77. Dobbing, J. & Sands, J. Quantitative growth and development of human brain. Arch. Dis. Child. 48, 757–767 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Koenig, S. H., Brown, R. D., Spiller, M. & Lundbom, N. Relaxometry of brain: why white matter appears bright in MRI. Magn. Reson. Med. 14, 482–495 (1990).

    Article  CAS  PubMed  Google Scholar 

  79. Koenig, S. H. Cholesterol of myelin is the determinant of gray-white contrast in MRI of brain. Magn. Reson. Med. 20, 285–291 (1991).

    Article  CAS  PubMed  Google Scholar 

  80. Harkins, K. D. et al. The microstructural correlates of T1 in white matter. Magn. Reson. Med. 75, 1341–1345 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. van der Voorn, J. P. et al. Childhood white matter disorders: quantitative MR imaging and spectroscopy. Radiology 241, 510–517 (2006).

    Article  PubMed  Google Scholar 

  82. Depienne, C. et al. Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study. Lancet Neurol. 12, 659–668 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. van der, Knaap, M. S., Barth, P. G., Vrensen, G. F. J. M. & Valk, J. Histopathology of an infantile-onset spongiform leukoencephalopathy with a discrepantly mild clinical course. Acta Neuropathol. 92, 206–212 (1996).

    Article  PubMed  Google Scholar 

  84. Kolind, S. H., Mädler, B., Fischer, S., Li, D. K. B. & MacKay, A. L. Myelin water imaging: implementation and development at 3.0 T and comparison to 1.5 T measurements. Magn. Reson. Med. 62, 106–115 (2009).

    Article  PubMed  Google Scholar 

  85. Dvorak, A. V. et al. Multi-spin echo T 2 relaxation imaging with compressed sensing (METRICS) for rapid myelin water imaging. Magn. Reson. Med. 84, 1264–1279 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Björk, M., Zachariah, D., Kullberg, J. & Stoica, P. A multicomponent T 2 relaxometry algorithm for myelin water imaging of the brain: multicomponent T 2 relaxometry. Magn. Reson. Med. 75, 390–402 (2015).

    Article  PubMed  CAS  Google Scholar 

  87. Billiet, T. et al. Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI. Neurobiol. Aging 36, 2107–2121 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Morris, S. R. et al. Brain myelin water fraction and diffusion tensor imaging atlases for 9–10 year-old children. J. Neuroimaging 30, 150–160 (2020).

    Article  PubMed  Google Scholar 

  89. Liu, H. et al. Myelin water atlas: a template for myelin distribution in the brain. J. Neuroimaging 29, 699–706 (2019).

    Article  PubMed  Google Scholar 

  90. Chen, H. S.-M., Holmes, N., Liu, J., Tetzlaff, W. & Kozlowski, P. Validating myelin water imaging with transmission electron microscopy in a rat spinal cord injury model. Neuroimage 153, 122–130 (2017).

    Article  PubMed  Google Scholar 

  91. Deoni, S. C. L., Dean, D. C., O’Muircheartaigh, J., Dirks, H. & Jerskey, B. A. Investigating white matter development in infancy and early childhood using myelin water fraction and relaxation time mapping. Neuroimage 63, 1038–1053 (2012). In this study, myelination was monitored with myelin water imaging, providing an excellent method to follow normal brain development.

    Article  PubMed  Google Scholar 

  92. Geeraert, B. L., Lebel, R. M. & Lebel, C. A multiparametric analysis of white matter maturation during late childhood and adolescence. Hum. Brain Mapp. 40, 4345–4356 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhang, J., Kolind, S. H., Laule, C. & MacKay, A. L. How does magnetization transfer influence mcDESPOT results? Magn. Reson. Med. 74, 1327–1335 (2015).

    Article  PubMed  Google Scholar 

  94. Wolff, S. D. & Balaban, R. S. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn. Reson. Med. 10, 135–144 (1989).

    Article  CAS  PubMed  Google Scholar 

  95. Stanisz, G. J., Kecojevic, A., Bronskill, M. J. & Henkelman, R. M. Characterizing white matter with magnetization transfer and T2. Magn. Reson. Med. 42, 1128–1136 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Dreha-Kulaczewski, S. F. et al. Assessment of myelination in hypomyelinating disorders by quantitative MRI. J. Magn. Reson. Imaging 36, 1329–1338 (2012).

    Article  PubMed  Google Scholar 

  97. Steenweg, M. E. et al. Quantitative MRI in hypomyelinating disorders: correlation with motor handicap. Neurology 87, 752–758 (2016).

    Article  PubMed  Google Scholar 

  98. van Waesberghe, J. H. et al. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann. Neurol. 46, 747–754 (1999).

    Article  PubMed  Google Scholar 

  99. Blezer, E. L. A., Bauer, J., Brok, H. P. M., Nicolay, K. & ’t Hart, B. A. Quantitative MRI-pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis. NMR Biomed. 20, 90–103 (2007).

    Article  PubMed  Google Scholar 

  100. Basser, P. J. & Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. 213, 560–570 (1996).

    Article  CAS  Google Scholar 

  101. Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61, 1000–1016 (2012).

    Article  PubMed  Google Scholar 

  102. Campbell, J. S. W. et al. Promise and pitfalls of g-ratio estimation with MRI. Neuroimage 182, 80–96 (2017).

    Article  PubMed  Google Scholar 

  103. Jung, W. et al. Whole brain g-ratio mapping using myelin water imaging (MWI) and neurite orientation dispersion and density imaging (NODDI). Neuroimage 182, 379–388 (2018).

    Article  PubMed  Google Scholar 

  104. Dean, D. C. et al. Mapping an index of the myelin g-ratio in infants using magnetic resonance imaging. Neuroimage 132, 225–237 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Klasen, T. & Faber, C. Assessment of the myelin water fraction in rodent spinal cord using T2-prepared ultrashort echo time MRI. MAGMA 29, 875–884 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Cercignani, M. & Bouyagoub, S. Brain microstructure by multi-modal MRI: is the whole greater than the sum of its parts? Neuroimage 182, 117–127 (2018).

    Article  PubMed  Google Scholar 

  107. Spader, H. S. et al. Advances in myelin imaging with potential clinical application to pediatric imaging. Neurosurg. Focus 34, E9 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Groeschel, S. et al. Assessing white matter microstructure in brain regions with different myelin architecture using MRI. PLoS ONE 11, e0167274 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Geeraert, B. L. et al. A comparison of inhomogeneous magnetization transfer, myelin volume fraction, and diffusion tensor imaging measures in healthy children. Neuroimage 182, 343–350 (2018).

    Article  PubMed  Google Scholar 

  110. Hobson, G. M. & Garbern, J. Y. Pelizaeus-Merzbacher disease, Pelizaeus-Merzbacher-like disease 1, and related hypomyelinating disorders. Semin. Neurol. 32, 62–67 (2012).

    Article  PubMed  Google Scholar 

  111. Syrbe, S. et al. Delineating SPTAN1 associated phenotypes: from isolated epilepsy to encephalopathy with progressive brain atrophy. Brain 140, 2322–2336 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wolf, N. I. et al. Mutations in RARS cause hypomyelination. Ann. Neurol. 76, 134–139 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Curiel, J. et al. TUBB4A mutations result in specific neuronal and oligodendrocytic defects that closely match clinically distinct phenotypes. Hum. Mol. Genet. 26, 4506–4518 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chelban, V. et al. Genetic and phenotypic characterization of NKX6-2-related spastic ataxia and hypomyelination. Eur. J. Neurol. 27, 334–342 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Baldi, C. et al. Expanding the clinical and genetic spectra of NKX6-2-related disorder. Clin. Genet. 93, 1087–1092 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Orthmann-Murphy, J. L. et al. Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain 132, 426–438 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Svenstrup, K. et al. Hereditary spastic paraplegia caused by the PLP1 “rumpshaker mutation”. J. Neurol. Neurosurg. Psychiatry 81, 666–672 (2009).

    Article  PubMed  Google Scholar 

  118. Wolf, N. I. et al. DARS-associated leukoencephalopathy can mimic a steroid-responsive neuroinflammatory disorder. Neurology 84, 226–230 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sarret, C. et al. Novel neuronal proteolipid protein isoforms encoded by the human myelin proteolipid protein 1 gene. Neuroscience 166, 522–538 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Lüders, K. A., Patzig, J., Simons, M., Nave, K.-A. & Werner, H. B. Genetic dissection of oligodendroglial and neuronal Plp1 function in a novel mouse model of spastic paraplegia type 2. Glia 65, 1762–1776 (2017).

    Article  PubMed  Google Scholar 

  121. Sarret, C. et al. Time-course of myelination and atrophy on cerebral imaging in 35 patients with PLP1-related disorders. Dev. Med. Child Neurol. 58, 706–713 (2016).

    Article  PubMed  Google Scholar 

  122. Bos, S. V. den et al. 4H leukodystrophy: a brain magnetic resonance imaging scoring system. Neuropediatrics 48, 152–160 (2017).

    Article  Google Scholar 

  123. Garbern, J. Y. et al. Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain 125, 551–561 (2002). This study demonstrated axonal degeneration in a primary myelin disorder.

    Article  PubMed  Google Scholar 

  124. Sima, A. A. F. et al. Neuronal loss in Pelizaeus-Merzbacher disease differs in various mutations of the proteolipid protein 1. Acta Neuropathol. 118, 531–539 (2009).

    Article  PubMed  Google Scholar 

  125. Uhlenberg, B. et al. Mutations in the gene encoding gap junction protein α12 (connexin 46.6) cause Pelizaeus-Merzbacher-like disease. Am. J. Hum. Genet. 75, 251–260 (2004). In this study, the first new gene involved in a disease resembling PMD was identified.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pingault, V. et al. Peripheral neuropathy with hypomyelination, chronic intestinal pseudo-obstruction and deafness: a developmental “neural crest syndrome” related to a SOX10 mutation. Ann. Neurol. 48, 671–676 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Biancheri, R. et al. Hypomyelination and congenital cataract: broadening the clinical phenotype. Arch. Neurol. 68, 1191–1194 (2011).

    Article  PubMed  Google Scholar 

  128. Garbern, J. Y. et al. Peripheral neuropathy caused by proteolipid protein gene mutations. Ann. NY Acad. Sci. 883, 351–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Wolff, A. et al. Rare dental peculiarities associated with the hypomyelinating leukoencephalopathy 4H syndrome/ADDH. Pediatr. Dent. 32, 386–392 (2010).

    PubMed  Google Scholar 

  130. Saint-Val, L. et al. GJA1 variants cause spastic paraplegia associated with cerebral hypomyelination. Am. J. Neuroradiol. 40, 788–791 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ghoumid, J. et al. Cerebellar hypoplasia with endosteal sclerosis is a POLR3-related disorder. Eur. J. Hum. Genet. 25, 1011–1014 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Miyake, N. et al. X-linked hypomyelination with spondylometaphyseal dysplasia (H-SMD) associated with mutations in AIFM1. Neurogenetics 18, 185–194 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pelletier, F. et al. Endocrine and growth abnormalities in 4H leukodystrophy caused by variants in POLR3A, POLR3B, and POLR1C. J. Clin. Endocrinol. Metabolism https://doi.org/10.1210/clinem/dgaa700 (2020).

    Article  Google Scholar 

  134. Laukka, J. J. et al. Neuroradiologic correlates of clinical disability and progression in the X-linked leukodystrophy Pelizaeus-Merzbacher disease. J. Neurol. Sci. 335, 75–81 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sumida, K. et al. The magnetic resonance imaging spectrum of Pelizaeus-Merzbacher disease: a multicenter study of 19 patients. Brain Dev. 38, 571–580 (2016).

    Article  PubMed  Google Scholar 

  136. Trofatter, J. A., Dlouhy, S. R., DeMyer, W., Conneally, P. M. & Hodes, M. E. Pelizaeus-Merzbacher disease: tight linkage to proteolipid protein gene exon variant. Proc. Natl Acad. Sci. USA 86, 9427–9430 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Paznekas, W. A. et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am. J. Hum. Genet. 72, 408–418 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Taube, J. et al. PMD patient mutations reveal a long-distance intronic interaction that regulates PLP1/DM20 alternative splicing. Hum. Mol. Genet. 23, 5464–5478 (2014). This study identified deep intronic PLP1 mutations in patients with a subform of PMD, leading to an imbalance of PLP1DM20 splicing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sistermans, E. A., Coo, R. F., de, Wijs, I. J. D. & Oost, B. A. V. Duplication of the proteolipid protein gene is the major cause of Pelizaeus-Merzbacher disease. Neurology 50, 1749–1754 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Wolf, N. I. et al. Three or more copies of the proteolipid protein gene PLP1 cause severe Pelizaeus-Merzbacher disease. Brain 128, 743–751 (2005).

    Article  PubMed  Google Scholar 

  141. Grossi, S. et al. Molecular genetic analysis of the PLP1 gene in 38 families with PLP1-related disorders: identification and functional characterization of 11 novel PLP1 mutations. Orphanet J. Rare Dis. 6, 40 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Elitt, M. S. et al. Chemical screening identifies enhancers of mutant oligodendrocyte survival and unmasks a distinct pathological phase in Pelizaeus-Merzbacher disease. Stem Cell Rep. 11, 711–726 (2018).

    Article  CAS  Google Scholar 

  143. Numasawa-Kuroiwa, Y. et al. Involvement of ER stress in dysmyelination of Pelizaeus-Merzbacher disease with PLP1 missense mutations shown by iPSC-derived oligodendrocytes. Stem Cell Rep. 2, 648–661 (2014).

    Article  CAS  Google Scholar 

  144. Al-Abdi, L. et al. CNP deficiency causes severe hypomyelinating leukodystrophy in humans. Hum. Genet. 139, 615–622 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Fernandez-Valle, C., Gorman, D., Gomez, A. M. & Bunge, M. B. Actin plays a role in both changes in cell shape and gene-expression associated with Schwann cell myelination. J. Neurosci. 17, 241–250 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Basu, R. & Sarma, J. D. Connexin 43/47 channels are important for astrocyte/oligodendrocyte cross-talk in myelination and demyelination. J. Biosci. 43, 1055–1068 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kamasawa, N. et al. Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning. Neuroscience 136, 65–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Vejar, S., Oyarzún, J. E., Retamal, M. A., Ortiz, F. C. & Orellana, J. A. Connexin and Pannexin-based channels in oligodendrocytes: implications in brain health and disease. Front. Cell Neurosci. 13, 3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Meyer, N. et al. Oligodendrocytes in the mouse corpus callosum maintain axonal function by delivery of glucose. Cell Rep. 22, 2383–2394 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Duncan, I. D. et al. A mutation in the Tubb4a gene leads to microtubule accumulation with hypomyelination and demyelination: Tubb4a mutation. Ann. Neurol. 81, 690–702 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Segel, M. et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 573, 130–134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yan, H. et al. Heterozygous variants in the mechanosensitive ion channel TMEM63A result in transient hypomyelination during infancy. Am. J. Hum. Genet. 105, 996–1004 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lee, S., Chong, S. Y. C., Tuck, S. J., Corey, J. M. & Chan, J. R. A rapid and reproducible assay for modeling myelination by oligodendrocytes using engineered nanofibers. Nat. Protoc. 8, 771–782 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Tétreault, M. et al. Recessive mutations in POLR3B, encoding the second largest subunit of Pol III, cause a rare hypomyelinating leukodystrophy. Am. J. Hum. Genet. 89, 652–655 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Bernard, G. et al. Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hypomyelinating leukodystrophy. Am. J. Hum. Genet. 89, 415–423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Saitsu, H. et al. Mutations in POLR3A and POLR3B encoding RNA polymerase III subunits cause an autosomal-recessive hypomyelinating leukoencephalopathy. Am. J. Hum. Genet. 89, 644–651 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Thiffault, I. et al. Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III. Nat. Commun. 6, 7623 (2015).

    Article  PubMed  Google Scholar 

  158. Dorboz, I. et al. Mutation in POLR3K causes hypomyelinating leukodystrophy and abnormal ribosomal RNA regulation. Neurol. Genet. 4, e289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Feinstein, M. et al. Pelizaeus-Merzbacher-like disease caused by AIMP1/p43 homozygous mutation. Am. J. Hum. Genet. 87, 820–828 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Inoue, K., Tanabe, Y. & Lupski, J. R. Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann. Neurol. 46, 313–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  161. Elmaleh-Bergès, M. et al. Spectrum of temporal bone abnormalities in patients with Waardenburg syndrome and SOX10 mutations. Am. J. Neuroradiol. 34, 1257–1263 (2012).

    Article  PubMed  Google Scholar 

  162. Ito, Y. et al. Lysosomal dysfunction in TMEM106B hypomyelinating leukodystrophy. Neurol. Genet. 4, e288 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhou, X. et al. Loss of TMEM106B leads to myelination deficits: implications for frontotemporal dementia treatment strategies. Brain 143, 1905–1919 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Feng, T. et al. A role of the frontotemporal lobar degeneration risk factor TMEM106B in myelination. Brain 143, 2255–2271 (2020). Together with Zhou et al. (2020), this study demonstrated the role of TMEM106B in trafficking and myelination.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Edvardson, S. et al. Hypomyelination and developmental delay associated with VPS11 mutation in Ashkenazi-Jewish patients. J. Med. Genet. 52, 749–753 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Hörtnagel, K. et al. The second report of a new hypomyelinating disease due to a defect in the VPS11 gene discloses a massive lysosomal involvement. J. Inherit. Metab. Dis. 39, 849–857 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Barmherzig, R. et al. A new patient with intermediate severe Salla disease with hypomyelination: a literature review for Salla disease. Pediatr. Neurol. 74, 87–91.e2 (2017).

    Article  PubMed  Google Scholar 

  168. Koch, T. K., Schmidt, K. A., Wagstaff, J. E., Ng, W. G. & Packman, S. Neurologic complications in galactosemia. Pediatr. Neurol. 8, 217–220 (1992).

    Article  CAS  PubMed  Google Scholar 

  169. Zara, F. et al. Deficiency of hyccin, a newly identified membrane protein, causes hypomyelination and congenital cataract. Nat. Genet. 38, 1111–1113 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Baskin, J. M. et al. The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane. Nat. Cell Biol. 18, 132–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Magen, D. et al. Mitochondrial Hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am. J. Hum. Genet. 83, 30–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hamilton, E. M. C. et al. UFM1 founder mutation in the Roma population causes recessive variant of H-ABC. Neurology 89, 1821–1828 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Jaeken, J. et al. 3-Phosphoglycerate dehydrogenase deficiency and 3-phosphoserine phosphatase deficiency: inborn errors of serine biosynthesis. J. Inherit. Metab. Dis. 19, 223–226 (1996).

    Article  CAS  PubMed  Google Scholar 

  174. Damseh, N. et al. Mutations in SLC1A4, encoding the brain serine transporter, are associated with developmental delay, microcephaly and hypomyelination. J. Med. Genet. 52, 541–547 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Escobar, J. D. O. & Dueñas, B. P. Treatable inborn errors of metabolism due to membrane vitamin transporters deficiency. Sem. Pediatr. Neurol. 23, 341–350 (2016).

    Article  Google Scholar 

  176. Sase, S. et al. TUBB4A mutations result in both glial and neuronal degeneration in an H-ABC leukodystrophy mouse model. eLife 9, e52986 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Meyer, E. et al. Promoter mutation is a common variant in GJC2-associated Pelizaeus–Merzbacher-like disease. Mol. Genet. Metab. 104, 637–643 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Combes, P. et al. Relevance of GJC2 promoter mutation in Pelizaeus-Merzbacher-like disease. Ann. Neurol. 71, 146–148 (2011).

    Article  PubMed  CAS  Google Scholar 

  179. Helman, G. et al. Genome sequencing in persistently unsolved white matter disorders. Ann. Clin. Transl Neurol. 7, 144–152 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Nave, K.-A. Neurological mouse mutants and the genes of myelin. J. Neurosci. Res. 38, 607–612 (1994).

    Article  CAS  PubMed  Google Scholar 

  181. Al-Saktawi, K. et al. Genetic background determines phenotypic severity of the Plp rumpshaker mutation. J. Neurosci. Res. 72, 12–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  182. Fanarraga, M. L. et al. Rumpshaker: an X-linked mutation affecting CNS myelination. A study of the female heterozygote. Neuropathol. Appl. Neurobiol. 17, 323–334 (1991).

    Article  CAS  PubMed  Google Scholar 

  183. Molineaux, S. M., Engh, H., de Ferra, F., Hudson, L. & Lazzarini, R. A. Recombination within the myelin basic protein gene created the dysmyelinating shiverer mouse mutation. Proc. Natl Acad. Sci. USA 83, 7542–7546 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Vaurs-Barriere, C. et al. Golli-MBP copy number analysis by FISH, QMPSF and MAPH in 195 patients with hypomyelinating leukodystrophies. Ann. Hum. Genet. 70, 66–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Arai-Ichinoi, N. et al. Genetic heterogeneity in 26 infants with a hypomyelinating leukodystrophy. Hum. Genet. 135, 89–98 (2015).

    Article  PubMed  CAS  Google Scholar 

  186. Garbern, J. et al. Evidence for neuroaxonal injury in patients with proteolipid gene mutations. Neurology 57, 1938–1939 (2001).

    Article  CAS  PubMed  Google Scholar 

  187. Marques, S. et al. Transcriptional convergence of oligodendrocyte lineage progenitors during development. Dev. Cell 46, 504–517.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tantzer, S., Sperle, K., Kenaley, K., Taube, J. & Hobson, G. M. Morpholino antisense oligomers as a potential therapeutic option for the correction of alternative splicing in PMD, SPG2, and HEMS. Mol. Ther. Nucleic Acids 12, 420–432 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Li, H. et al. Gene suppressing therapy for Pelizaeus-Merzbacher disease using artificial microRNA. JCI Insight 4, e125052 (2019).

    Article  PubMed Central  Google Scholar 

  190. Elitt, M. S. et al. Suppression of proteolipid protein rescues Pelizaeus–Merzbacher disease. Nature 585, 397–403 (2020). Together with Li et al. (2019), this study produced promising results with respect to suppression of elevated PLP1 expression in models of PMD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Windrem, M. S. et al. Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2, 553–565 (2008). In this study, transplantation of glial progenitor cells was used for the first time to rescue a leukodystrophy mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Osorio, M. J. et al. Concise review: stem cell-based treatment of Pelizaeus-Merzbacher disease. Stem Cell 35, 311–315 (2016).

    Article  Google Scholar 

  193. Gupta, N. et al. Long-term safety, immunologic response, and imaging outcomes following neural stem cell transplantation for Pelizaeus-Merzbacher disease. Stem Cell Rep. 13, 254–261 (2019).

    Article  CAS  Google Scholar 

  194. Gupta, N. et al. Neural stem cell engraftment and myelination in the human brain. Sci. Transl Med. 4, 155ra137 (2012). This study was the first trial of transplantation of neural stem cells into brain tissue of four children with PMD.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Goldman, S. A., Schanz, S. & Windrem, M. S. Stem cell-based strategies for treating pediatric disorders of myelin. Hum. Mol. Genet. 17, R76–R83 (2008).

    Article  CAS  PubMed  Google Scholar 

  196. Wolf, N. I. et al. Metachromatic leukodystrophy and transplantation: remyelination, no cross-correction. Ann. Clin. Transl Neur. 7, 169–180 (2020).

    Article  CAS  Google Scholar 

  197. Stumpf, S. K. et al. Ketogenic diet ameliorates axonal defects and promotes myelination in Pelizaeus–Merzbacher disease. Acta Neuropathol. 138, 147–161 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Saher, G. & Stumpf, S. K. Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim. Biophys. Acta 1851, 1083–1094 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Saher, G. et al. Therapy of Pelizaeus-Merzbacher disease in mice by feeding a cholesterol-enriched diet. Nat. Med. 18, 1130–1135 (2012).

    Article  CAS  PubMed  Google Scholar 

  200. Nobuta, H. et al. Oligodendrocyte death in Pelizaeus-Merzbacher disease is rescued by iron chelation. Cell Stem Cell 25, 531–541.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.S.v.d.K. and N.I.W. are members of the European Reference Network for Rare Neurological Disorders (ERN-RND), project ID 739510. C.ff.-C. is a recipient of a Wellcome Trust Investigator award.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, discussed the content of the article, wrote the text and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Nicole I. Wolf.

Ethics declarations

Competing interests

N.I.W. is a member of advisory boards for Ionis, Passage Bio and Takeda Shire.

Additional information

Peer review information

Nature Reviews Neurology thanks K. Inoue, D. Rodriguez and R. Schiffmann for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, N.I., ffrench-Constant, C. & van der Knaap, M.S. Hypomyelinating leukodystrophies — unravelling myelin biology. Nat Rev Neurol 17, 88–103 (2021). https://doi.org/10.1038/s41582-020-00432-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-020-00432-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing