Degenerative cervical myelopathy — update and future directions

Abstract

Degenerative cervical myelopathy (DCM) is the leading cause of spinal cord dysfunction in adults worldwide. DCM encompasses various acquired (age-related) and congenital pathologies related to degeneration of the cervical spinal column, including hypertrophy and/or calcification of the ligaments, intervertebral discs and osseous tissues. These pathologies narrow the spinal canal, leading to chronic spinal cord compression and disability. Owing to the ageing population, rates of DCM are increasing. Expeditious diagnosis and treatment of DCM are needed to avoid permanent disability. Over the past 10 years, advances in basic science and in translational and clinical research have improved our understanding of the pathophysiology of DCM and helped delineate evidence-based practices for diagnosis and treatment. Surgical decompression is recommended for moderate and severe DCM; the best strategy for mild myelopathy remains unclear. Next-generation quantitative microstructural MRI and neurophysiological recordings promise to enable quantification of spinal cord tissue damage and help predict clinical outcomes. Here, we provide a comprehensive, evidence-based review of DCM, including its definition, epidemiology, pathophysiology, clinical presentation, diagnosis and differential diagnosis, and non-operative and operative management. With this Review, we aim to equip physicians across broad disciplines with the knowledge necessary to make a timely diagnosis of DCM, recognize the clinical features that influence management and identify when urgent surgical intervention is warranted.

Key points

  • Degenerative cervical myelopathy (DCM) develops when age-related osteoarthritic or genetically based changes to the spinal column cause progressive compression of the cervical spinal cord, resulting in functional impairment.

  • DCM is the most common cause of spinal cord impairment, and the resultant burden of disability on our society is expected to grow owing to the ageing global population.

  • The pathophysiology of DCM involves static and dynamic factors that lead to chronic spinal cord compression and resultant ischaemia, inflammation and apoptosis of neurons and oligodendrocytes.

  • Diagnosis of DCM requires a careful history and physical examination to identify signs and symptoms of myelopathy and to rule out alternative diagnoses; clinical findings should be correlated with MRI findings.

  • The natural history of DCM can include a period of stable neurological status in some patients; however, a substantial number of individuals experience progressive, stepwise decline in function.

  • Current clinical practice guidelines recommend surgical decompression for patients with severe or moderate DCM and either surgery or a supervised trial of structured rehabilitation in patients with mild DCM.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Pathological changes that occur in the cervical spinal column and spinal cord in degenerative cervical myelopathy.
Fig. 2: Aetiology of traumatic central cord syndrome.
Fig. 3: The pathophysiological process of degenerative cervical myelopathy.
Fig. 4: The diagnostic work-up and treatment of degenerative cervical myelopathy.
Fig. 5: Cervical spine MRI.

References

  1. 1.

    Nurick, S. The pathogenesis of the spinal cord disorder associated with cervical spondylosis. Brain 95, 87–100 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Karadimas, S. K., Erwin, W. M., Ely, C. G., Dettori, J. R. & Fehlings, M. G. Pathophysiology and natural history of cervical spondylotic myelopathy. Spine 38, S21–S36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Nouri, A., Tetreault, L., Singh, A., Karadimas, S. K. & Fehlings, M. G. Degenerative cervical myelopathy: epidemiology, genetics, and pathogenesis. Spine 40, E675–E693 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    The World Bank. DataBank: Population estimates and Projections. http://databank.worldbank.org/data/reports.aspx?source=health-nutrition-and-population-statistics:-population-estimates-and-projections# (2019).

  5. 5.

    World Health Organization. World Report on Ageing and Health (WHO, 2015).

  6. 6.

    Hughes, J. T. & Brownell, B. Necropsy observations on the spinal cord in cervical spondylosis. Riv. Patol. Nerv. Ment. 86, 196–204 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Gore, D. R., Sepic, S. B. & Gardner, G. M. Roentgenographic findings of the cervical spine in asymptomatic people. Spine 11, 521–524 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Irvine, D. H., Foster, J. B., Newell, D. J. & Klukvin, B. N. Prevalence of cervical spondylosis in a general practice. Lancet 1, 1089–1092 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Institute of Medicine. Initial National Priorities for Comparative Effectiveness Research https://www.nationalacademies.org/hmd/Reports/2009/ComparativeEffectivenessResearchPriorities.aspx (2009).

  10. 10.

    Fehlings, M. G. et al. Efficacy and safety of surgical decompression in patients with cervical spondylotic myelopathy: results of the AOSpine North America prospective multi-center study. J. Bone Joint Surg. Am. 95, 1651–1658 (2013).

    Article  Google Scholar 

  11. 11.

    Fehlings, M. G. et al. A global perspective on the outcomes of surgical decompression in patients with cervical spondylotic myelopathy: results from the prospective multicenter AOSpine international study on 479 patients. Spine 40, 1322–1328 (2015).

    Article  Google Scholar 

  12. 12.

    Tetreault, L. A. et al. Change in function, pain, and quality of life following structured nonoperative treatment in patients with degenerative cervical myelopathy: a systematic review. Glob. Spine J. 7, 42S–52S (2017).

    Article  Google Scholar 

  13. 13.

    Rhee, J. et al. Nonoperative versus operative management for the treatment degenerative cervical myelopathy: an updated systematic review. Glob. Spine J. 7, 35S–41S (2017).

    Article  Google Scholar 

  14. 14.

    Fehlings, M. G., Wilson, J. R., Karadimas, S. K., Arnold, P. M. & Kopjar, B. Clinical evaluation of a neuroprotective drug in patients with cervical spondylotic myelopathy undergoing surgical treatment: design and rationale for the CSM-Protect trial. Spine 38, S68–S75 (2013).

    Article  Google Scholar 

  15. 15.

    Ghogawala, Z. et al. Cervical spondylotic myelopathy surgical trial: randomized, controlled trial design and rationale. Neurosurgery 75, 334–346 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Martin, A. R. et al. Imaging evaluation of degenerative cervical myelopathy: current state of the art and future directions. Neurosurg. Clin. N. Am. 29, 33–45 (2018).

    Article  Google Scholar 

  17. 17.

    Nouri, A. et al. The relationship between MRI signal intensity changes, clinical presentation, and surgical outcome in degenerative cervical myelopathy: analysis of a global cohort. Spine 42, 1851–1858 (2017).

    Article  Google Scholar 

  18. 18.

    Martin, A. R. et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. Neuroimage Clin. 10, 192–238 (2016).

    Article  Google Scholar 

  19. 19.

    Martin, A. R. et al. Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study. BMJ Open. 8, e019809 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Martin, A. R. et al. Clinically feasible microstructural MRI to quantify cervical spinal cord tissue injury using DTI, MT, and T2*-weighted imaging: assessment of normative data and reliability. AJNR Am. J. Neuroradiol. 38, 1257–1265 (2017).

    Article  CAS  Google Scholar 

  21. 21.

    Martin, A. R. et al. Monitoring for myelopathic progression with multiparametric quantitative MRI. PLoS One 13, e0195733 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Yoo, W. K. et al. Correlation of magnetic resonance diffusion tensor imaging and clinical findings of cervical myelopathy. Spine J. 13, 867–876 (2013).

    Article  Google Scholar 

  23. 23.

    Martin, A. R. et al. A novel MRI biomarker of spinal cord white matter injury: T2*-weighted white matter to gray matter signal intensity ratio. AJNR Am. J. Neuroradiol. 38, 1266–1273 (2017).

    Article  CAS  Google Scholar 

  24. 24.

    Fehlings, M. G., Kwon, B. K. & Tetreault, L. A. Guidelines for the management of degenerative cervical myelopathy and spinal cord injury: an introduction to a focus issue. Glob. Spine J. 7, 6S–7S (2017).

    Article  Google Scholar 

  25. 25.

    Tetreault, L. A. et al. Guidelines for the management of degenerative cervical myelopathy and acute spinal cord injury: development process and methodology. Glob. Spine J. 7, 8S–20S (2017).

    Article  Google Scholar 

  26. 26.

    Tetreault, L. et al. The modified Japanese Orthopaedic Association scale: establishing criteria for mild, moderate and severe impairment in patients with degenerative cervical myelopathy. Eur. Spine J. 26, 78–84 (2017).

    Article  Google Scholar 

  27. 27.

    Boogaarts, H. D. & Bartels, R. H. Prevalence of cervical spondylotic myelopathy. Eur. Spine J. 24, 139–141 (2015).

    Article  Google Scholar 

  28. 28.

    Goel, A. Ossification of posterior longitudinal ligament and cervical spondylosis: same cause - same treatment. J. Craniovertebr. Junction Spine 9, 1–2 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    New, P. W., Cripps, R. A. & Bonne Lee, B. Global maps of non-traumatic spinal cord injury epidemiology: towards a living data repository. Spinal Cord 52, 97–109 (2014).

    Article  CAS  Google Scholar 

  30. 30.

    McKinley, W. O., Seel, R. T. & Hardman, J. T. Nontraumatic spinal cord injury: incidence, epidemiology, and functional outcome. Arch. Phys. Med. Rehabil. 80, 619–623 (1999).

    Article  CAS  Google Scholar 

  31. 31.

    New, P. W., Rawicki, H. B. & Bailey, M. J. Nontraumatic spinal cord injury: demographic characteristics and complications. Arch. Phys. Med. Rehabil. 83, 996–1001 (2002).

    Article  Google Scholar 

  32. 32.

    New, P. W. Functional outcomes and disability after nontraumatic spinal cord injury rehabilitation: results from a retrospective study. Arch. Phys. Med. Rehabil. 86, 250–261 (2005).

    Article  Google Scholar 

  33. 33.

    Ide, M., Ogata, H., Tokuhiro, A. & Takechi, H. Spinal cord injuries in Okayama Prefecture: an epidemiological study ‘88-’89. J. UOEH 15, 209–215 (1993).

    Article  CAS  Google Scholar 

  34. 34.

    Biering-Sorensen, E., Pedersen, V. & Clausen, S. Epidemiology of spinal cord lesions in Denmark. Paraplegia 28, 105–118 (1990).

    CAS  PubMed  Google Scholar 

  35. 35.

    Ronen, J. et al. Survival after nontraumatic spinal cord lesions in Israel. Arch. Phys. Med. Rehabil. 85, 1499–1502 (2004).

    Article  Google Scholar 

  36. 36.

    Catz, A. et al. Recovery of neurologic function following nontraumatic spinal cord lesions in Israel. Spine 29, 2278–2282; discussion 2283 (2004).

    Article  Google Scholar 

  37. 37.

    Citterio, A. et al. Nontraumatic spinal cord injury: an Italian survey. Arch. Phys. Med. Rehabil. 85, 1483–1487 (2004).

    Article  Google Scholar 

  38. 38.

    Scivoletto, G., Farchi, S., Laurenza, L. & Molinari, M. Traumatic and non-traumatic spinal cord lesions: an Italian comparison of neurological and functional outcomes. Spinal Cord 49, 391–396 (2011).

    Article  CAS  Google Scholar 

  39. 39.

    Schonherr, M. C., Groothoff, J. W., Mulder, G. A. & Eisma, W. H. Rehabilitation of patients with spinal cord lesions in the Netherlands: an epidemiological study. Spinal Cord 34, 679–683 (1996).

    Article  CAS  Google Scholar 

  40. 40.

    Buchan, A. C. et al. A preliminary survey of the incidence and aetiology of spinal paralysis. Paraplegia 10, 23–28 (1972).

    CAS  PubMed  Google Scholar 

  41. 41.

    Noonan, V. K. et al. Incidence and prevalence of spinal cord injury in Canada: a national perspective. Neuroepidemiology 38, 219–226 (2012).

    Article  Google Scholar 

  42. 42.

    Wu, J. C. et al. Epidemiology of cervical spondylotic myelopathy and its risk of causing spinal cord injury: a national cohort study. Neurosurg. Focus. 35, E10 (2013).

    Article  Google Scholar 

  43. 43.

    Lad, S. P. et al. National trends in spinal fusion for cervical spondylotic myelopathy. Surg. Neurol. 71, 66–69 (2009).

    Article  Google Scholar 

  44. 44.

    White, A. A. 3rd & Panjabi, M. M. Biomechanical considerations in the surgical management of cervical spondylotic myelopathy. Spine 13, 856–860 (1988).

    Article  Google Scholar 

  45. 45.

    Baptiste, D. C. & Fehlings, M. G. Pathophysiology of cervical myelopathy. Spine J. 6, 190S–197S (2006).

    Article  Google Scholar 

  46. 46.

    Humzah, M. D. & Soames, R. W. Human intervertebral disc: structure and function. Anat. Rec. 220, 337–356 (1988).

    Article  CAS  Google Scholar 

  47. 47.

    Schultz, D. S., Rodriguez, A. G., Hansma, P. K. & Lotz, J. C. Mechanical profiling of intervertebral discs. J. Biomech. 42, 1154–1157 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Roberts, S., Evans, H., Trivedi, J. & Menage, J. Histology and pathology of the human intervertebral disc. J. Bone Joint Surg. Am. 88, 10–14 (2006).

    PubMed  Google Scholar 

  49. 49.

    Nixon, J. Intervertebral disc mechanics: a review. J. R. Soc. Med. 79, 100–104 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Palepu, V., Kodigudla, M. & Goel, V. K. Biomechanics of disc degeneration. Adv. Orthop. 2012, 726210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Ferguson, S. J. & Steffen, T. Biomechanics of the aging spine. Eur. Spine J. 12, S97–S103 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Stapleton, C. J., Pham, M. H., Attenello, F. J. & Hsieh, P. C. Ossification of the posterior longitudinal ligament: genetics and pathophysiology. Neurosurg. Focus. 30, E6 (2011).

    Article  Google Scholar 

  53. 53.

    Shedid, D. & Benzel, E. C. Cervical spondylosis anatomy: pathophysiology and biomechanics. Neurosurgery 60, S7–S13 (2007).

    PubMed  Google Scholar 

  54. 54.

    Aarabi, B. et al. Predictors of outcome in acute traumatic central cord syndrome due to spinal stenosis. J. Neurosurg. Spine 14, 122–130 (2011).

    Article  Google Scholar 

  55. 55.

    Lenehan, B. et al. The urgency of surgical decompression in acute central cord injuries with spondylosis and without instability. Spine 35, S180–S186 (2010).

    Article  Google Scholar 

  56. 56.

    Aarabi, B. et al. Management of acute traumatic central cord syndrome (ATCCS). Neurosurgery 72, 195–204 (2013).

    Article  Google Scholar 

  57. 57.

    Schneider, R. C., Cherry, G. & Pantek, H. The syndrome of acute central cervical spinal cord injury; with special reference to the mechanisms involved in hyperextension injuries of cervical spine. J. Neurosurg. 11, 546–577 (1954).

    Article  CAS  Google Scholar 

  58. 58.

    Pouw, M. H. et al. Diagnostic criteria of traumatic central cord syndrome. Part 1: a systematic review of clinical descriptors and scores. Spinal Cord 48, 652–656 (2010).

    Article  CAS  Google Scholar 

  59. 59.

    van Middendorp, J. J. et al. Diagnostic criteria of traumatic central cord syndrome. Part 2: a questionnaire survey among spine specialists. Spinal Cord 48, 657–663 (2010).

    Article  Google Scholar 

  60. 60.

    Pouw, M. H. et al. Diagnostic criteria of traumatic central cord syndrome. Part 3: descriptive analyses of neurological and functional outcomes in a prospective cohort of traumatic motor incomplete tetraplegics. Spinal Cord 49, 614–622 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Karadimas, S. K., Gatzounis, G. & Fehlings, M. G. Pathobiology of cervical spondylotic myelopathy. Eur. Spine J. 24, 132–138 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Kalsi-Ryan, S., Karadimas, S. K. & Fehlings, M. G. Cervical spondylotic myelopathy: the clinical phenomenon and the current pathobiology of an increasingly prevalent and devastating disorder. Neuroscientist 19, 409–421 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Klironomos, G. et al. New experimental rabbit animal model for cervical spondylotic myelopathy. Spinal Cord 49, 1097–1102 (2011).

    Article  CAS  Google Scholar 

  64. 64.

    Akter, F. & Kotter, M. Pathobiology of degenerative cervical myelopathy. Neurosurg. Clin. N. Am. 29, 13–19 (2018).

    Article  Google Scholar 

  65. 65.

    Brain, W. R., Knight, G. C. & Bull, J. W. Discussion of rupture of the intervertebral disc in the cervical region. Proc. R. Soc. Med. 41, 509–516 (1948).

    CAS  PubMed  Google Scholar 

  66. 66.

    Gooding, M. R., Wilson, C. B. & Hoff, J. T. Experimental cervical myelopathy. Effects of ischemia and compression of the canine cervical spinal cord. J. Neurosurg. 43, 9–17 (1975).

    Article  CAS  Google Scholar 

  67. 67.

    Gooding, M. R., Wilson, C. B. & Hoff, J. T. Experimental cervical myelopathy: autoradiographic studies of spinal cord blood flow patterns. Surg. Neurol. 5, 233–239 (1976).

    CAS  PubMed  Google Scholar 

  68. 68.

    Breig, A., Turnbull, I. & Hassler, O. Effects of mechanical stresses on the spinal cord in cervical spondylosis. A study on fresh cadaver material. J. Neurosurg. 25, 45–56 (1966).

    Article  CAS  Google Scholar 

  69. 69.

    Taylor, A. R. Mechanism and treatment of spinal-cord disorders associated with cervical spondylosis. Lancet 1, 717–720 (1953).

    Article  CAS  Google Scholar 

  70. 70.

    Mair, W. G. & Druckman, R. The pathology of spinal cord lesions and their relation to the clinical features in protrusion of cervical intervertebral discs; a report of four cases. Brain 76, 70–91 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Strek, P., Reron, E., Maga, P., Modrzejewski, M. & Szybist, N. A possible correlation between vertebral artery insufficiency and degenerative changes in the cervical spine. Eur. Arch. Otorhinolaryngol. 255, 437–440 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Murakami, N., Muroga, T. & Sobue, I. Cervical myelopathy due to ossification of the posterior longitudinal ligament: a clinicopathologic study. Arch. Neurol. 35, 33–36 (1978).

    Article  CAS  Google Scholar 

  73. 73.

    Shingu, H. et al. Microangiographic study of spinal cord injury and myelopathy. Paraplegia 27, 182–189 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Shimizu, K. et al. Spinal kyphosis causes demyelination and neuronal loss in the spinal cord: a new model of kyphotic deformity using juvenile Japanese small game fowls. Spine 30, 2388–2392 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Whetstone, W. D., Hsu, J. Y., Eisenberg, M., Werb, Z. & Noble-Haeusslein, L. J. Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J. Neurosci. Res. 74, 227–239 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Figley, S. A., Khosravi, R., Legasto, J. M., Tseng, Y. F. & Fehlings, M. G. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. J. Neurotrauma 31, 541–552 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Beattie, M. S. & Manley, G. T. Tight squeeze, slow burn: inflammation and the aetiology of cervical myelopathy. Brain 134, 1259–1261 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Bohlman, H. H. & Emery, S. E. The pathophysiology of cervical spondylosis and myelopathy. Spine 13, 843–846 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Noble, L. J. & Wrathall, J. R. Distribution and time course of protein extravasation in the rat spinal cord after contusive injury. Brain Res. 482, 57–66 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Loy, D. N. et al. Temporal progression of angiogenesis and basal lamina deposition after contusive spinal cord injury in the adult rat. J. Comp. Neurol. 445, 308–324 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Karadimas, S. K. et al. Immunohistochemical profile of NF-κB/p50, NF-κB/p65, MMP-9, MMP-2, and u-PA in experimental cervical spondylotic myelopathy. Spine 38, 4–10 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Karadimas, S. K. et al. A novel experimental model of cervical spondylotic myelopathy (CSM) to facilitate translational research. Neurobiol. Dis. 54, 43–58 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Flanagan, E. P. et al. Specific pattern of gadolinium enhancement in spondylotic myelopathy. Ann. Neurol. 76, 54–65 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Ozawa, H. et al. Clinical significance of intramedullary Gd-DTPA enhancement in cervical myelopathy. Spinal Cord 48, 415–422 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Lee, J. et al. Spinal cord edema: unusual magnetic resonance imaging findings in cervical spondylosis. J. Neurosurg. 99, 8–13 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Yu, W. R., Liu, T., Kiehl, T. R. & Fehlings, M. G. Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain 134, 1277–1292 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Hirai, T. et al. The prevalence and phenotype of activated microglia/macrophages within the spinal cord of the hyperostotic mouse (twy/twy) changes in response to chronic progressive spinal cord compression: implications for human cervical compressive myelopathy. PLoS One 8, e64528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Hausmann, O. N. Post-traumatic inflammation following spinal cord injury. Spinal Cord 41, 369–378 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Popovich, P. G., Wei, P. & Stokes, B. T. Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J. Comp. Neurol. 377, 443–464 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Popovich, P. G. et al. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J. Neuropathol. Exp. Neurol. 61, 623–633 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Harrison, J. K. et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl Acad. Sci. USA 95, 10896–10901 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Chapman, G. A. et al. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J. Neurosci. 20, RC87 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Yu, W. R., Karadimas, S. & Fehlings, M. G. The role of CX3CR1 in promoting inflammation and neural degeneration in cervical spondylotic myelopathy [Abstract 722.01]. Presented at the Annual SfN Meeting https://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=07bddef1-57b5-4f49-998b-216024824dc6&cKey=a1fbe26d-6aa6-47e9-bc9c-143c28c3e6ca&mKey=%7b70007181-01C9-4DE9-A0A2-EEBFA14CD9F1%7d (2012).

  94. 94.

    Fumagalli, S., Perego, C., Ortolano, F. & De Simoni, M. G. CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice. Glia 61, 827–842 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    David, S. & Kroner, A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci. 12, 388–399 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Laskin, D. L. Macrophages and inflammatory mediators in chemical toxicity: a battle of forces. Chem. Res. Toxicol. 22, 1376–1385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Schwartz, M. “Tissue-repairing” blood-derived macrophages are essential for healing of the injured spinal cord: from skin-activated macrophages to infiltrating blood-derived cells? Brain Behav. Immun. 24, 1054–1057 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Busch, S. A. et al. Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. J. Neurosci. 31, 944–953 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Yu, W. R. et al. Molecular mechanisms of spinal cord dysfunction and cell death in the spinal hyperostotic mouse: implications for the pathophysiology of human cervical spondylotic myelopathy. Neurobiol. Dis. 33, 149–163 (2009).

    Article  CAS  Google Scholar 

  101. 101.

    Karadimas, S. K. et al. The role of oligodendrocytes in the molecular pathobiology and potential molecular treatment of cervical spondylotic myelopathy. Curr. Med. Chem. 17, 1048–1058 (2010).

    Article  CAS  Google Scholar 

  102. 102.

    Inukai, T. et al. Tumor necrosis factor-alpha and its receptors contribute to apoptosis of oligodendrocytes in the spinal cord of spinal hyperostotic mouse (twy/twy) sustaining chronic mechanical compression. Spine 34, 2848–2857 (2009).

    Article  Google Scholar 

  103. 103.

    Takenouchi, T., Setoguchi, T., Yone, K. & Komiya, S. Expression of apoptosis signal-regulating kinase 1 in mouse spinal cord under chronic mechanical compression: possible involvement of the stress-activated mitogen-activated protein kinase pathways in spinal cord cell apoptosis. Spine 33, 1943–1950 (2008).

    Article  Google Scholar 

  104. 104.

    Letellier, E. et al. CD95-ligand on peripheral myeloid cells activates Syk kinase to trigger their recruitment to the inflammatory site. Immunity 32, 240–252 (2010).

    Article  CAS  Google Scholar 

  105. 105.

    Demjen, D. et al. Neutralization of CD95 ligand promotes regeneration and functional recovery after spinal cord injury. Nat. Med. 10, 389–395 (2004).

    Article  CAS  Google Scholar 

  106. 106.

    Casha, S., Yu, W. R. & Fehlings, M. G. FAS deficiency reduces apoptosis, spares axons and improves function after spinal cord injury. Exp. Neurol. 196, 390–400 (2005).

    Article  CAS  Google Scholar 

  107. 107.

    Ackery, A., Robins, S. & Fehlings, M. G. Inhibition of Fas-mediated apoptosis through administration of soluble Fas receptor improves functional outcome and reduces posttraumatic axonal degeneration after acute spinal cord injury. J. Neurotrauma 23, 604–616 (2006).

    Article  Google Scholar 

  108. 108.

    Agrawal, S. K. & Fehlings, M. G. Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na(+)-K(+)-ATPase, the Na(+)-H+ exchanger, and the Na(+)-Ca2+ exchanger. J. Neurosci. 16, 545–552 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Haigney, M. C., Miyata, H., Lakatta, E. G., Stern, M. D. & Silverman, H. S. Dependence of hypoxic cellular calcium loading on Na(+)-Ca2+ exchange. Circ. Res. 71, 547–557 (1992).

    Article  CAS  Google Scholar 

  110. 110.

    Haigney, M. C., Lakatta, E. G., Stern, M. D. & Silverman, H. S. Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading. Circulation 90, 391–399 (1994).

    Article  CAS  Google Scholar 

  111. 111.

    Regan, R. F. & Choi, D. W. Glutamate neurotoxicity in spinal cord cell culture. Neuroscience 43, 585–591 (1991).

    Article  CAS  Google Scholar 

  112. 112.

    Schwartz, G. & Fehlings, M. G. Secondary injury mechanisms of spinal cord trauma: a novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog. Brain Res. 137, 177–190 (2002).

    Article  CAS  Google Scholar 

  113. 113.

    Choi, D. W. Excitotoxic cell death. J. Neurobiol. 23, 1261–1276 (1992).

    Article  CAS  Google Scholar 

  114. 114.

    Wadman, R. I. et al. Drug treatment for spinal muscular atrophy type I. Cochrane Database Syst. Rev 4, CD006281 (2011).

    Google Scholar 

  115. 115.

    Mestre, T., Ferreira, J., Coelho, M. M., Rosa, M. & Sampaio, C. Therapeutic interventions for symptomatic treatment in Huntington’s disease. Cochrane Database Syst. Rev 3, CD006456 (2009).

    Google Scholar 

  116. 116.

    Lacomblez, L., Bensimon, G., Leigh, P. N., Guillet, P. & Meininger, V. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 347, 1425–1431 (1996).

    Article  CAS  Google Scholar 

  117. 117.

    Beal, M. F. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 31, 119–130 (1992).

    Article  CAS  Google Scholar 

  118. 118.

    Swagerty, D. L. Jr. Cervical spondylotic myelopathy: a cause of gait disturbance and falls in the elderly. Kans. Med. 95, 226–227, 229 (1994).

    PubMed  Google Scholar 

  119. 119.

    Fehlings, M. G. & Skaf, G. A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury. Spine 23, 2730–2737 (1998).

    Article  CAS  Google Scholar 

  120. 120.

    Ito, T., Oyanagi, K., Takahashi, H., Takahashi, H. E. & Ikuta, F. Cervical spondylotic myelopathy. Clinicopathologic study on the progression pattern and thin myelinated fibers of the lesions of seven patients examined during complete autopsy. Spine 21, 827–833 (1996).

    Article  CAS  Google Scholar 

  121. 121.

    Payne, E. E. & Spillane, J. D. The cervical spine; an anatomico-pathological study of 70 specimens (using a special technique) with particular reference to the problem of cervical spondylosis. Brain 80, 571–596 (1957).

    Article  CAS  Google Scholar 

  122. 122.

    Wilson, J. R. et al. Genetics and heritability of cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament: results of a systematic review. Spine 38, S123–S146 (2013).

    Article  Google Scholar 

  123. 123.

    Patel, A. A., Spiker, W. R., Daubs, M., Brodke, D. S. & Cannon-Albright, L. A. Evidence of an inherited predisposition for cervical spondylotic myelopathy. Spine 37, 26–29 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Tanikawa, E., Furuya, K. & Nakajima, H. Genetic study on ossification of posterior longitudinal ligament. Bull. Tokyo Med. Dent. Univ. 33, 117–128 (1986).

    CAS  PubMed  Google Scholar 

  125. 125.

    Terayama, K. Genetic studies on ossification of the posterior longitudinal ligament of the spine. Spine 14, 1184–1191 (1989).

    Article  CAS  Google Scholar 

  126. 126.

    Kamiya, M., Harada, A., Mizuno, M., Iwata, H. & Yamada, Y. Association between a polymorphism of the transforming growth factor-β1 gene and genetic susceptibility to ossification of the posterior longitudinal ligament in Japanese patients. Spine 26, 1264–1266 (2001).

    Article  CAS  Google Scholar 

  127. 127.

    Koshizuka, Y. et al. Nucleotide pyrophosphatase gene polymorphism associated with ossification of the posterior longitudinal ligament of the spine. J. Bone Miner. Res. 17, 138–144 (2002).

    Article  CAS  Google Scholar 

  128. 128.

    Nakamura, I. et al. Association of the human NPPS gene with ossification of the posterior longitudinal ligament of the spine (OPLL). Hum. Genet. 104, 492–497 (1999).

    Article  CAS  Google Scholar 

  129. 129.

    Wang, H. et al. Association of bone morphogenetic protein-2 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the spine and its severity in Chinese patients. Eur. Spine J. 17, 956–964 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Ren, Y. et al. A new haplotype in BMP4 implicated in ossification of the posterior longitudinal ligament (OPLL) in a Chinese population. J. Orthop. Res. 30, 748–756 (2012).

    Article  CAS  Google Scholar 

  131. 131.

    Wang, D. et al. BMP-4 polymorphisms in the susceptibility of cervical spondylotic myelopathy and its outcome after anterior cervical corpectomy and fusion. Cell Physiol. Biochem. 32, 210–217 (2013).

    Article  CAS  Google Scholar 

  132. 132.

    Ren, Y. et al. Association of a BMP9 haplotype with ossification of the posterior longitudinal ligament (OPLL) in a Chinese population. PLoS One 7, e40587 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Wang, H., Jin, W. & Li, H. Genetic polymorphisms in bone morphogenetic protein receptor type IA gene predisposes individuals to ossification of the posterior longitudinal ligament of the cervical spine via the smad signaling pathway. BMC Musculoskelet. Disord. 19, 61 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Numasawa, T. et al. Human retinoic X receptor beta: complete genomic sequence and mutation search for ossification of posterior longitudinal ligament of the spine. J. Bone Miner. Res. 14, 500–508 (1999).

    Article  CAS  Google Scholar 

  135. 135.

    Kim, D. H. et al. Association between interleukin 15 receptor, alpha (IL15RA) polymorphism and Korean patients with ossification of the posterior longitudinal ligament. Cytokine 55, 343–346 (2011).

    Article  CAS  Google Scholar 

  136. 136.

    Guo, Q., Lv, S. Z., Wu, S. W., Tian, X. & Li, Z. Y. Association between single nucleotide polymorphism of IL15RA gene with susceptibility to ossification of the posterior longitudinal ligament of the spine. J. Orthop. Surg. Res. 9, 103 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Chang, F. et al. Role of Runx2 polymorphisms in risk and prognosis of ossification of posterior longitudinal ligament. J. Clin. Lab. Anal. 31, e22068 (2017).

    Article  CAS  Google Scholar 

  138. 138.

    Nakajima, M., Kou, I. & Ohashi, H., Genetic Study Group of the Investigation Committee on the Ossification of Spinal Ligaments & Ikegawa, S. Identification and functional characterization of RSPO2 as a susceptibility gene for ossification of the posterior longitudinal ligament of the spine. Am. J. Hum. Genet. 99, 202–207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Kong, Q. et al. COL6A1 polymorphisms associated with ossification of the ligamentum flavum and ossification of the posterior longitudinal ligament. Spine 32, 2834–2838 (2007).

    Article  Google Scholar 

  140. 140.

    Tanaka, T. et al. Genomewide linkage and linkage disequilibrium analyses identify COL6A1, on chromosome 21, as the locus for ossification of the posterior longitudinal ligament of the spine. Am. J. Hum. Genet. 73, 812–822 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Koga, H. et al. Genetic mapping of ossification of the posterior longitudinal ligament of the spine. Am. J. Hum. Genet. 62, 1460–1467 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Maeda, S. et al. Functional impact of human collagen α2(XI) gene polymorphism in pathogenesis of ossification of the posterior longitudinal ligament of the spine. J. Bone Miner. Res. 16, 948–957 (2001).

    Article  CAS  Google Scholar 

  143. 143.

    Wang, Z. C. et al. The genetic association of vitamin D receptor polymorphisms and cervical spondylotic myelopathy in Chinese subjects. Clin. Chim. Acta 411, 794–797 (2010).

    Article  CAS  Google Scholar 

  144. 144.

    Wang, Z. C. et al. The role of smoking status and collagen IX polymorphisms in the susceptibility to cervical spondylotic myelopathy. Genet. Mol. Res. 11, 1238–1244 (2012).

    Article  CAS  Google Scholar 

  145. 145.

    Setzer, M., Hermann, E., Seifert, V. & Marquardt, G. Apolipoprotein E gene polymorphism and the risk of cervical myelopathy in patients with chronic spinal cord compression. Spine 33, 497–502 (2008).

    Article  Google Scholar 

  146. 146.

    Setzer, M., Vrionis, F. D., Hermann, E. J., Seifert, V. & Marquardt, G. Effect of apolipoprotein E genotype on the outcome after anterior cervical decompression and fusion in patients with cervical spondylotic myelopathy. J. Neurosurg. Spine 11, 659–666 (2009).

    Article  Google Scholar 

  147. 147.

    Wu, J., Wu, D., Guo, K., Yuan, F. & Ran, B. OPN polymorphism is associated with the susceptibility to cervical spondylotic myelopathy and its outcome after anterior cervical corpectomy and fusion. Cell Physiol. Biochem. 34, 565–574 (2014).

    Article  CAS  Google Scholar 

  148. 148.

    Maysinger, D. et al. Ceramide is responsible for the failure of compensatory nerve sprouting in apolipoprotein E knock-out mice. J. Neurosci. 28, 7891–7899 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Shea, T. B., Rogers, E., Ashline, D., Ortiz, D. & Sheu, M. S. Apolipoprotein E deficiency promotes increased oxidative stress and compensatory increases in antioxidants in brain tissue. Free. Radic. Biol. Med. 33, 1115–1120 (2002).

    Article  CAS  Google Scholar 

  150. 150.

    Verghese, P. B., Castellano, J. M. & Holtzman, D. M. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 10, 241–252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Alexander, S. et al. Apolipoprotein E4 allele presence and functional outcome after severe traumatic brain injury. J. Neurotrauma 24, 790–797 (2007).

    Article  Google Scholar 

  152. 152.

    Houlden, H. & Greenwood, R. Apolipoprotein E4 and traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 77, 1106–1107 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Harrop, J. S. et al. Cervical myelopathy: a clinical and radiographic evaluation and correlation to cervical spondylotic myelopathy. Spine 35, 620–624 (2010).

    Article  Google Scholar 

  154. 154.

    Tracy, J. A. & Bartleson, J. D. Cervical spondylotic myelopathy. Neurologist 16, 176–187 (2010).

    Article  Google Scholar 

  155. 155.

    Tetreault, L. et al. Degenerative cervical myelopathy: a spectrum of related disorders affecting the aging spine. Neurosurgery 77, S51–S67 (2015).

    Article  Google Scholar 

  156. 156.

    Davies, B. M., Mowforth, O. D., Smith, E. K. & Kotter, M. R. Degenerative cervical myelopathy. Br. Med. J. 360, k186 (2018).

    Article  Google Scholar 

  157. 157.

    Benzel, E. C., Lancon, J., Kesterson, L. & Hadden, T. Cervical laminectomy and dentate ligament section for cervical spondylotic myelopathy. J. Spinal Disord. 4, 286–295 (1991).

    Article  CAS  Google Scholar 

  158. 158.

    Nurick, S. The natural history and the results of surgical treatment of the spinal cord disorder associated with cervical spondylosis. Brain 95, 101–108 (1972).

    Article  CAS  Google Scholar 

  159. 159.

    Furlan, J. C. & Catharine Craven, B. Psychometric analysis and critical appraisal of the original, revised, and modified versions of the Japanese Orthopaedic Association score in the assessment of patients with cervical spondylotic myelopathy. Neurosurg. Focus. 40, E6 (2016).

    Article  Google Scholar 

  160. 160.

    Yonenobu, K., Abumi, K., Nagata, K., Taketomi, E. & Ueyama, K. Interobserver and intraobserver reliability of the Japanese Orthopaedic Association scoring system for evaluation of cervical compression myelopathy. Spine 26, 1890–1894 (2001).

    Article  CAS  Google Scholar 

  161. 161.

    Revanappa, K. K., Moorthy, R. K., Jeyaseelan, V. & Rajshekhar, V. Modification of Nurick scale and Japanese Orthopedic Association score for Indian population with cervical spondylotic myelopathy. Neurol. India 63, 24–29 (2015).

    Article  Google Scholar 

  162. 162.

    Kalsi-Ryan, S. et al. Ancillary outcome measures for assessment of individuals with cervical spondylotic myelopathy. Spine 38, S111–S122 (2013).

    Article  Google Scholar 

  163. 163.

    Davies, B. M. et al. Reported outcome measures in degenerative cervical myelopathy: a systematic review. PLoS One 11, e0157263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Davies, B. M. et al. RE-CODE DCM (REsearch Objectives and Common Data Elements for Degenerative Cervical Myelopathy): a consensus process to improve research efficiency in DCM, through establishment of a standardized dataset for clinical research and the definition of the research priorities. Glob. Spine J. 9, 65S–76S (2019).

    Article  Google Scholar 

  165. 165.

    Kopjar, B., Tetreault, L., Kalsi-Ryan, S. & Fehlings, M. Psychometric properties of the modified Japanese Orthopaedic Association scale in patients with cervical spondylotic myelopathy. Spine 40, E23–E28 (2015).

    Article  Google Scholar 

  166. 166.

    Zhou, F. et al. Assessment of the minimum clinically important difference in neurological function and quality of life after surgery in cervical spondylotic myelopathy patients: a prospective cohort study. Eur. Spine J. 24, 2918–2923 (2015).

    Article  Google Scholar 

  167. 167.

    Singh, A. & Crockard, H. A. Comparison of seven different scales used to quantify severity of cervical spondylotic myelopathy and post-operative improvement. J. Outcome Meas. 5, 798–818 (2001).

    PubMed  Google Scholar 

  168. 168.

    Badhiwala, J. H. et al. Efficacy and safety of surgery for mild degenerative cervical myelopathy: results of the AOSpine North America and international prospective multicenter studies. Neurosurgery 84, 890–897 (2019).

    Article  Google Scholar 

  169. 169.

    Bilney, B., Morris, M. & Webster, K. Concurrent related validity of the GAITRite walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture 17, 68–74 (2003).

    Article  Google Scholar 

  170. 170.

    Kalsi-Ryan, S. et al. The Graded Redefined Assessment of Strength Sensibility and Prehension: reliability and validity. J. Neurotrauma 29, 905–914 (2012).

    Article  Google Scholar 

  171. 171.

    Mowforth, O. D., Davies, B. M. & Kotter, M. R. The use of smart technology in an online community of patients with degenerative cervical myelopathy. JMIR Form. Res. 3, e11364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Zhan, A. et al. Using smartphones and machine learning to quantify Parkinson disease severity: the mobile Parkinson disease score. JAMA Neurol. 75, 876–880 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Nouri, A., Martin, A. R., Mikulis, D. & Fehlings, M. G. Magnetic resonance imaging assessment of degenerative cervical myelopathy: a review of structural changes and measurement techniques. Neurosurg. Focus. 40, E5 (2016).

    Article  Google Scholar 

  174. 174.

    Nagata, K. et al. Clinical value of magnetic resonance imaging for cervical myelopathy. Spine 15, 1088–1096 (1990).

    Article  CAS  Google Scholar 

  175. 175.

    Sun, Q. et al. Do intramedullary spinal cord changes in signal intensity on MRI affect surgical opportunity and approach for cervical myelopathy due to ossification of the posterior longitudinal ligament? Eur. Spine J. 20, 1466–1473 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Yukawa, Y., Kato, F., Yoshihara, H., Yanase, M. & Ito, K. MR T2 image classification in cervical compression myelopathy: predictor of surgical outcomes. Spine 32, 1675–1678 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  177. 177.

    Yagi, M., Ninomiya, K., Kihara, M. & Horiuchi, Y. Long-term surgical outcome and risk factors in patients with cervical myelopathy and a change in signal intensity of intramedullary spinal cord on magnetic resonance imaging. J. Neurosurg. Spine 12, 59–65 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Mastronardi, L. et al. Prognostic relevance of the postoperative evolution of intramedullary spinal cord changes in signal intensity on magnetic resonance imaging after anterior decompression for cervical spondylotic myelopathy. J. Neurosurg. Spine 7, 615–622 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Fernandez de Rota, J. J., Meschian, S., Fernandez de Rota, A., Urbano, V. & Baron, M. Cervical spondylotic myelopathy due to chronic compression: the role of signal intensity changes in magnetic resonance images. J. Neurosurg. Spine 6, 17–22 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Papadopoulos, C. A., Katonis, P., Papagelopoulos, P. J., Karampekios, S. & Hadjipavlou, A. G. Surgical decompression for cervical spondylotic myelopathy: correlation between operative outcomes and MRI of the spinal cord. Orthopedics 27, 1087–1091 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Uchida, K. et al. Prognostic value of changes in spinal cord signal intensity on magnetic resonance imaging in patients with cervical compressive myelopathy. Spine J. 14, 1601–1610 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Houser, O. W., Onofrio, B. M., Miller, G. M., Folger, W. N. & Smith, P. L. Cervical spondylotic stenosis and myelopathy: evaluation with computed tomographic myelography. Mayo Clin. Proc. 69, 557–563 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Grabher, P., Mohammadi, S., David, G. & Freund, P. Neurodegeneration in the spinal ventral horn prior to motor impairment in cervical spondylotic myelopathy. J. Neurotrauma 34, 2329–2334 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Grabher, P. et al. Voxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy. Sci. Rep. 6, 24636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Wolf, K. et al. In cervical spondylotic myelopathy spinal cord motion is focally increased at the level of stenosis: a controlled cross-sectional study. Spinal Cord 56, 769–776 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Vavasour, I. M. et al. Increased spinal cord movements in cervical spondylotic myelopathy. Spine J. 14, 2344–2354 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Chang, H. S., Nejo, T., Yoshida, S., Oya, S. & Matsui, T. Increased flow signal in compressed segments of the spinal cord in patients with cervical spondylotic myelopathy. Spine 39, 2136–2142 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  188. 188.

    Tsiptsios, I., Fotiou, F., Sitzoglou, K. & Fountoulakis, K. N. Neurophysiological investigation of cervical spondylosis. Electromyogr. Clin. Neurophysiol. 41, 305–313 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Liu, H. et al. Assessing structure and function of myelin in cervical spondylotic myelopathy: evidence of demyelination. Neurology 89, 602–610 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Dvorak, J., Sutter, M. & Herdmann, J. Cervical myelopathy: clinical and neurophysiological evaluation. Eur. Spine J. 12, S181–S187 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Kimura, J. Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice (Oxford Univ. Press, 2001).

  192. 192.

    Kim, H. J. et al. Differential diagnosis for cervical spondylotic myelopathy: literature review. Spine 38, S78–S88 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Curt, A. & Dietz, V. Neurographic assessment of intramedullary motoneurone lesions in cervical spinal cord injury: consequences for hand function. Spinal Cord 34, 326–332 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. 194.

    Petersen, J. A. et al. Upper limb recovery in spinal cord injury: involvement of central and peripheral motor pathways. Neurorehabil. Neural Repair 31, 432–441 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  195. 195.

    Bischoff, C., Meyer, B. U., Machetanz, J. & Conrad, B. The value of magnetic stimulation in the diagnosis of radiculopathies. Muscle Nerve 16, 154–161 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. 196.

    Bednarik, J. et al. The value of somatosensory and motor evoked evoked potentials in pre-clinical spondylotic cervical cord compression. Eur. Spine J. 7, 493–500 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. 197.

    Bednarik, J. et al. Presymptomatic spondylotic cervical myelopathy: an updated predictive model. Eur. Spine J. 17, 421–431 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  198. 198.

    Bednarik, J. et al. Are subjects with spondylotic cervical cord encroachment at increased risk of cervical spinal cord injury after minor trauma? J. Neurol. Neurosurg. Psychiatry 82, 779–781 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  199. 199.

    Wilson, J. R. et al. Frequency, timing, and predictors of neurological dysfunction in the nonmyelopathic patient with cervical spinal cord compression, canal stenosis, and/or ossification of the posterior longitudinal ligament. Spine 38, S37–S54 (2013).

    Article  Google Scholar 

  200. 200.

    Hadley, M. N., Shank, C. D., Rozzelle, C. J. & Walters, B. C. Guidelines for the use of electrophysiological monitoring for surgery of the human spinal column and spinal cord. Neurosurgery 81, 713–732 (2017).

    Article  Google Scholar 

  201. 201.

    Clark, A. J. et al. Intraoperative neuromonitoring with MEPs and prediction of postoperative neurological deficits in patients undergoing surgery for cervical and cervicothoracic myelopathy. Neurosurg. Focus. 35, E7 (2013).

    Article  Google Scholar 

  202. 202.

    Takeda, M., Yamaguchi, S., Mitsuhara, T., Abiko, M. & Kurisu, K. Intraoperative neurophysiologic monitoring for degenerative cervical myelopathy. Neurosurg. Clin. N. Am. 29, 159–167 (2018).

    Article  Google Scholar 

  203. 203.

    Devlin, V. J., Anderson, P. A., Schwartz, D. M. & Vaughan, R. Intraoperative neurophysiologic monitoring: focus on cervical myelopathy and related issues. Spine J. 6, 212S–224S (2006).

    Article  Google Scholar 

  204. 204.

    Kramer, J. L. et al. Test-retest reliability of contact heat-evoked potentials from cervical dermatomes. J. Clin. Neurophysiol. 29, 70–75 (2012).

    Article  Google Scholar 

  205. 205.

    Haefeli, J. S., Blum, J., Steeves, J. D., Kramer, J. L. & Curt, A. E. Differences in spinothalamic function of cervical and thoracic dermatomes: insights using contact heat evoked potentials. J. Clin. Neurophysiol. 30, 291–298 (2013).

    Article  Google Scholar 

  206. 206.

    Kramer, J. L., Haefeli, J., Jutzeler, C. R., Steeves, J. D. & Curt, A. Improving the acquisition of nociceptive evoked potentials without causing more pain. Pain 154, 235–241 (2013).

    Article  Google Scholar 

  207. 207.

    Jutzeler, C. R. et al. Improved diagnosis of cervical spondylotic myelopathy with contact heat evoked potentials. J. Neurotrauma 34, 2045–2053 (2017).

    Article  Google Scholar 

  208. 208.

    Jutzeler, C. R., Rosner, J., Rinert, J., Kramer, J. L. & Curt, A. Normative data for the segmental acquisition of contact heat evoked potentials in cervical dermatomes. Sci. Rep. 6, 34660 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. 209.

    Rowland, L. P. Diagnosis of amyotrophic lateral sclerosis. J. Neurol. Sci. 160, S6–S24 (1998).

    Article  Google Scholar 

  210. 210.

    Kiernan, M. C. et al. Amyotrophic lateral sclerosis. Lancet 377, 942–955 (2011).

    Article  CAS  Google Scholar 

  211. 211.

    Chow, C. S. et al. Is symptomatology useful in distinguishing between carpal tunnel syndrome and cervical spondylosis? Hand Surg. 10, 1–5 (2005).

    Article  CAS  Google Scholar 

  212. 212.

    Baron, E. M. & Young, W. F. Cervical spondylotic myelopathy: a brief review of its pathophysiology, clinical course, and diagnosis. Neurosurgery 60, S35–S41 (2007).

    Article  Google Scholar 

  213. 213.

    Young, W. F. Cervical spondylotic myelopathy: a common cause of spinal cord dysfunction in older persons. Am. Fam. Physician 62, 1064–1070, 1073 (2000).

    CAS  PubMed  Google Scholar 

  214. 214.

    Clarke, E. & Robinson, P. K. Cervical myelopathy: a complication of cervical spondylosis. Brain 79, 483–510 (1956).

    Article  CAS  Google Scholar 

  215. 215.

    Oshima, Y. et al. Natural course and prognostic factors in patients with mild cervical spondylotic myelopathy with increased signal intensity on T2-weighted magnetic resonance imaging. Spine 37, 1909–1913 (2012).

    Article  Google Scholar 

  216. 216.

    Shimomura, T. et al. Prognostic factors for deterioration of patients with cervical spondylotic myelopathy after nonsurgical treatment. Spine 32, 2474–2479 (2007).

    Article  Google Scholar 

  217. 217.

    Sumi, M. et al. Prospective cohort study of mild cervical spondylotic myelopathy without surgical treatment. J. Neurosurg. Spine 16, 8–14 (2012).

    Article  Google Scholar 

  218. 218.

    Yoshimatsu, H. et al. Conservative treatment for cervical spondylotic myelopathy. prediction of treatment effects by multivariate analysis. Spine J. 1, 269–273 (2001).

    Article  CAS  Google Scholar 

  219. 219.

    Matsumoto, M. et al. Relationships between outcomes of conservative treatment and magnetic resonance imaging findings in patients with mild cervical myelopathy caused by soft disc herniations. Spine 26, 1592–1598 (2001).

    Article  CAS  Google Scholar 

  220. 220.

    Sampath, P., Bendebba, M., Davis, J. D. & Ducker, T. B. Outcome of patients treated for cervical myelopathy. A prospective, multicenter study with independent clinical review. Spine 25, 670–676 (2000).

    Article  CAS  Google Scholar 

  221. 221.

    Matsumoto, M. et al. Increased signal intensity of the spinal cord on magnetic resonance images in cervical compressive myelopathy. Does it predict the outcome of conservative treatment? Spine 25, 677–682 (2000).

    Article  CAS  Google Scholar 

  222. 222.

    Kadanka, Z. et al. Conservative treatment versus surgery in spondylotic cervical myelopathy: a prospective randomised study. Eur. Spine J. 9, 538–544 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. 223.

    Kadanka, Z. et al. Approaches to spondylotic cervical myelopathy: conservative versus surgical results in a 3-year follow-up study. Spine 27, 2205–2210 (2002).

    Article  Google Scholar 

  224. 224.

    Kadanka, Z. et al. Predictive factors for mild forms of spondylotic cervical myelopathy treated conservatively or surgically. Eur. J. Neurol. 12, 16–24 (2005).

    Article  CAS  Google Scholar 

  225. 225.

    Kadanka, Z., Bednarik, J., Novotny, O., Urbanek, I. & Dusek, L. Cervical spondylotic myelopathy: conservative versus surgical treatment after 10 years. Eur. Spine J. 20, 1533–1538 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  226. 226.

    Bednarik, J. et al. The value of somatosensory- and motor-evoked potentials in predicting and monitoring the effect of therapy in spondylotic cervical myelopathy. Prospective randomized study. Spine 24, 1593–1598 (1999).

    Article  CAS  Google Scholar 

  227. 227.

    Nakamura, K. et al. Conservative treatment for cervical spondylotic myelopathy: achievement and sustainability of a level of “no disability”. J. Spinal Disord. 11, 175–179 (1998).

    Article  CAS  Google Scholar 

  228. 228.

    Badhiwala, J. H. & Wilson, J. R. The natural history of degenerative cervical myelopathy. Neurosurg. Clin. N. Am. 29, 21–32 (2018).

    Article  Google Scholar 

  229. 229.

    Chen, L. F. et al. Risk of spinal cord injury in patients with cervical spondylotic myelopathy and ossification of posterior longitudinal ligament: a national cohort study. Neurosurg. Focus 40, E4 (2016).

    Article  Google Scholar 

  230. 230.

    Wu, J. C. et al. Conservatively treated ossification of the posterior longitudinal ligament increases the risk of spinal cord injury: a nationwide cohort study. J. Neurotrauma 29, 462–468 (2012).

    Article  Google Scholar 

  231. 231.

    Singh, A., Tetreault, L., Kalsi-Ryan, S., Nouri, A. & Fehlings, M. G. Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 6, 309–331 (2014).

    PubMed  PubMed Central  Google Scholar 

  232. 232.

    Ghogawala, Z., Benzel, E. C., Riew, K. D., Bisson, E. F. & Heary, R. F. Surgery vs conservative care for cervical spondylotic myelopathy: surgery is appropriate for progressive myelopathy. Neurosurgery 62, 56–61 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  233. 233.

    Guyatt, G. H. et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. Br. Med. J. 336, 924–926 (2008).

    Article  Google Scholar 

  234. 234.

    Guyatt, G. H. et al. What is “quality of evidence” and why is it important to clinicians? Br. Med. J. 336, 995–998 (2008).

    Article  Google Scholar 

  235. 235.

    Guyatt, G. H. et al. Going from evidence to recommendations. Br. Med. J. 336, 1049–1051 (2008).

    Article  Google Scholar 

  236. 236.

    Borden, J. N. Good Samaritan cervical traction. Clin. Orthop. Relat. Res. 113, 162–163 (1975).

    Article  Google Scholar 

  237. 237.

    Campbell, A. M. & Phillips, D. G. Cervical disk lesions with neurological disorder. Differential diagnosis, treatment, and prognosis. Br. Med. J. 2, 481–485 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. 238.

    Lees, F. & Turner, J. W. Natural history and prognosis of cervical spondylosis. Br. Med. J. 2, 1607–1610 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. 239.

    LaRocca, H. Cervical spondylotic myelopathy: natural history. Spine 13, 854–855 (1988).

    Article  CAS  Google Scholar 

  240. 240.

    Almeida, G. P., Carneiro, K. K. & Marques, A. P. Manual therapy and therapeutic exercise in patient with symptomatic cervical spondylotic myelopathy: a case report. J. Bodyw. Mov. Ther. 17, 504–509 (2013).

    Article  Google Scholar 

  241. 241.

    Rhee, J. M. et al. Nonoperative management of cervical myelopathy: a systematic review. Spine 38, S55–S67 (2013).

    Article  Google Scholar 

  242. 242.

    Tetreault, L. A. et al. The natural history of degenerative cervical myelopathy and the rate of hospitalization following spinal cord injury: an updated systematic review. Glob. Spine J. 7, 28S–34S (2017).

    Article  Google Scholar 

  243. 243.

    Tetreault, L., Nouri, A., Kopjar, B., Cote, P. & Fehlings, M. G. The minimum clinically important difference of the modified Japanese Orthopaedic Association scale in patients with degenerative cervical myelopathy. Spine (Phila. Pa. 1976) 40, 1653–1659 (2015).

    Article  Google Scholar 

  244. 244.

    Maigne, J. Y. & Deligne, L. Computed tomographic follow-up study of 21 cases of nonoperatively treated cervical intervertebral soft disc herniation. Spine 19, 189–191 (1994).

    Article  CAS  Google Scholar 

  245. 245.

    Mochida, K. et al. Regression of cervical disc herniation observed on magnetic resonance images. Spine 23, 990–997 (1998).

    Article  CAS  Google Scholar 

  246. 246.

    Fukui, K., Kataoka, O., Sho, T. & Sumi, M. Pathomechanism, pathogenesis, and results of treatment in cervical spondylotic myelopathy caused by dynamic canal stenosis. Spine 15, 1148–1152 (1990).

    Article  CAS  Google Scholar 

  247. 247.

    Kong, L. D. et al. Evaluation of conservative treatment and timing of surgical intervention for mild forms of cervical spondylotic myelopathy. Exp. Ther. Med. 6, 852–856 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  248. 248.

    Badhiwala, J. H. et al. Predicting outcomes after surgical decompression for mild degenerative cervical myelopathy: moving beyond the mJOA to identify surgical candidates. Neurosurgery https://doi.org/10.1093/neuros/nyz160 (2019).

    Article  PubMed  Google Scholar 

  249. 249.

    Shamji, M. F. et al. Comparison of anterior surgical options for the treatment of multilevel cervical spondylotic myelopathy: a systematic review. Spine 38, S195–S209 (2013).

    Article  Google Scholar 

  250. 250.

    Ghogawala, Z. Anterior cervical option to manage degenerative cervical myelopathy. Neurosurg. Clin. N. Am. 29, 83–89 (2018).

    Article  Google Scholar 

  251. 251.

    Yoon, S. T. et al. Outcomes after laminoplasty compared with laminectomy and fusion in patients with cervical myelopathy: a systematic review. Spine 38, S183–S194 (2013).

    Article  Google Scholar 

  252. 252.

    Manzano, G. R., Casella, G., Wang, M. Y., Vanni, S. & Levi, A. D. A prospective, randomized trial comparing expansile cervical laminoplasty and cervical laminectomy and fusion for multilevel cervical myelopathy. Neurosurgery 70, 264–277 (2012).

    Article  Google Scholar 

  253. 253.

    Lee, C. H. et al. Laminoplasty versus laminectomy and fusion for multilevel cervical myelopathy: a meta-analysis of clinical and radiological outcomes. J. Neurosurg. Spine 22, 589–595 (2015).

    Article  Google Scholar 

  254. 254.

    Fehlings, M. G. et al. Laminectomy and fusion versus laminoplasty for the treatment of degenerative cervical myelopathy: results from the AOSpine North America and international prospective multicenter studies. Spine J. 17, 102–108 (2017).

    Article  Google Scholar 

  255. 255.

    Wilson, J. R. et al. State of the art in degenerative cervical myelopathy: an update on current clinical evidence. Neurosurgery 80, S33–S45 (2017).

    Article  Google Scholar 

  256. 256.

    US National Library of Medicine. ClinicalTrials.Gov https://clinicaltrials.gov/ct2/show/NCT02076113 (2019).

  257. 257.

    Witiw, C. D. et al. Surgery for degenerative cervical myelopathy: a patient-centered quality of life and health economic evaluation. Spine J. 17, 15–25 (2017).

    Article  Google Scholar 

  258. 258.

    Chen, G. D. et al. Effect and prognostic factors of laminoplasty for cervical myelopathy with an occupying ratio greater than 50%. Spine 41, 378–383 (2016).

    Article  Google Scholar 

  259. 259.

    Furlan, J. C., Kalsi-Ryan, S., Kailaya-Vasan, A., Massicotte, E. M. & Fehlings, M. G. Functional and clinical outcomes following surgical treatment in patients with cervical spondylotic myelopathy: a prospective study of 81 cases. J. Neurosurg. Spine 14, 348–355 (2011).

    Article  Google Scholar 

  260. 260.

    Hoffman, H. et al. Use of multivariate linear regression and support vector regression to predict functional outcome after surgery for cervical spondylotic myelopathy. J. Clin. Neurosci. 22, 1444–1449 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  261. 261.

    Karpova, A. et al. Predictors of surgical outcome in cervical spondylotic myelopathy. Spine 38, 392–400 (2013).

    Article  Google Scholar 

  262. 262.

    Machino, M. et al. Risk factors for poor outcome of cervical laminoplasty for cervical spondylotic myelopathy in patients with diabetes. J. Bone Joint Surg. Am. 96, 2049–2055 (2014).

    Article  Google Scholar 

  263. 263.

    Nakashima, H. et al. Prediction of lower limb functional recovery after laminoplasty for cervical myelopathy: focusing on the 10-s step test. Eur. Spine J. 21, 1389–1395 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  264. 264.

    Tetreault, L., Kopjar, B., Cote, P., Arnold, P. & Fehlings, M. G. A clinical prediction rule for functional outcomes in patients undergoing surgery for degenerative cervical myelopathy: analysis of an international prospective multicenter data set of 757 subjects. J. Bone Joint Surg. Am. 97, 2038–2046 (2015).

    Article  Google Scholar 

  265. 265.

    Tetreault, L. A. et al. A clinical prediction model to assess surgical outcome in patients with cervical spondylotic myelopathy: internal and external validations using the prospective multicenter AOSpine North American and international datasets of 743 patients. Spine J. 15, 388–397 (2015).

    Article  Google Scholar 

  266. 266.

    Tetreault, L. A., Karpova, A. & Fehlings, M. G. Predictors of outcome in patients with degenerative cervical spondylotic myelopathy undergoing surgical treatment: results of a systematic review. Eur. Spine J. 24, 236–251 (2015).

    Article  Google Scholar 

  267. 267.

    Tetreault, L. et al. Significant predictors of outcome following surgery for the treatment of degenerative cervical myelopathy: a systematic review of the literature. Neurosurg. Clin. N. Am. 29, 115–127 (2018).

    Article  Google Scholar 

  268. 268.

    Karadimas, S. K. et al. Riluzole blocks perioperative ischemia-reperfusion injury and enhances postdecompression outcomes in cervical spondylotic myelopathy. Sci. Transl Med. 7, 316ra194 (2015).

    Article  CAS  Google Scholar 

  269. 269.

    Hilton, B., Tempest-Mitchell, J., Davies, B. & Kotter, M. Route to diagnosis of degenerative cervical myelopathy in a UK healthcare system: a retrospective cohort study. BMJ Open. 9, e027000 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  270. 270.

    Hilton, B., Tempest-Mitchell, J., Davies, B. & Kotter, M. Assessment of degenerative cervical myelopathy differs between specialists and may influence time to diagnosis and clinical outcomes. PLoS One 13, e0207709 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  271. 271.

    Vidal, P. M. et al. Delayed decompression exacerbates ischemia-reperfusion injury in cervical compressive myelopathy. JCI Insight 2, e92512 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  272. 272.

    Kusin, D. J., Li, S. Q., Ahn, U. M. & Ahn, N. U. Does tobacco use attenuate benefits of early decompression in patients with cervical myelopathy? Spine 41, 1565–1569 (2016).

    Article  Google Scholar 

  273. 273.

    Tetreault, L. et al. Predicting the minimum clinically important difference in patients undergoing surgery for the treatment of degenerative cervical myelopathy. Neurosurg. Focus 40, E14 (2016).

    Article  Google Scholar 

  274. 274.

    Tetreault, L. A. et al. A clinical prediction model to determine outcomes in patients with cervical spondylotic myelopathy undergoing surgical treatment: data from the prospective, multi-center AOSpine North America study. J. Bone Joint Surg. Am. 95, 1659–1666 (2013).

    Article  Google Scholar 

  275. 275.

    Oichi, T., Oshima, Y., Takeshita, K., Chikuda, H. & Tanaka, S. Evaluation of comorbidity indices for a study of patient outcomes following cervical decompression surgery: a retrospective cohort study. Spine 40, 1941–1947 (2015).

    Article  Google Scholar 

  276. 276.

    Badhiwala, J. H. et al. Patient phenotypes associated with outcome following surgery for mild degenerative cervical myelopathy: a principal component regression analysis. Spine J. 18, 2220–2231 (2018).

    Article  Google Scholar 

  277. 277.

    Kusin, D. J., Ahn, U. M. & Ahn, N. U. The influence of diabetes on surgical outcomes in cervical myelopathy. Spine 41, 1436–1440 (2016).

    Article  Google Scholar 

  278. 278.

    Kim, H. J. et al. Diabetes and smoking as prognostic factors after cervical laminoplasty. J. Bone Joint Surg. Br. 90, 1468–1472 (2008).

    Article  Google Scholar 

  279. 279.

    Zong, Y. et al. Depression contributed an unsatisfactory surgery outcome among the posterior decompression of the cervical spondylotic myelopathy patients: a prospective clinical study. Neurol. Sci. 35, 1373–1379 (2014).

    Article  Google Scholar 

  280. 280.

    Tetreault, L. et al. Impact of depression and bipolar disorders on functional and quality of life outcomes in patients undergoing surgery for degenerative cervical myelopathy: analysis of a combined prospective dataset. Spine 42, 372–378 (2017).

    Article  Google Scholar 

  281. 281.

    Zhang, Y. Z. et al. Magnetic resonance T2 image signal intensity ratio and clinical manifestation predict prognosis after surgical intervention for cervical spondylotic myelopathy. Spine 35, E396–E399 (2010).

    Article  Google Scholar 

  282. 282.

    Chiles, B. W. 3rd, Leonard, M. A., Choudhri, H. F. & Cooper, P. R. Cervical spondylotic myelopathy: patterns of neurological deficit and recovery after anterior cervical decompression. Neurosurgery 44, 762–770 (1999).

    Article  Google Scholar 

  283. 283.

    Wilson, J. R. et al. Impact of elevated body mass index and obesity on long-term surgical outcomes for patients with degenerative cervical myelopathy: analysis of a combined prospective dataset. Spine 42, 195–201 (2017).

    Article  Google Scholar 

  284. 284.

    Tetreault, L. A. et al. Systematic review of magnetic resonance imaging characteristics that affect treatment decision making and predict clinical outcome in patients with cervical spondylotic myelopathy. Spine 38, S89–S110 (2013).

    Article  Google Scholar 

  285. 285.

    Park, Y. S. et al. Predictors of outcome of surgery for cervical compressive myelopathy: retrospective analysis and prospective study. Neurol. Med. Chir. 46, 231–239 (2006).

    Article  Google Scholar 

  286. 286.

    Wada, E., Yonenobu, K., Suzuki, S., Kanazawa, A. & Ochi, T. Can intramedullary signal change on magnetic resonance imaging predict surgical outcome in cervical spondylotic myelopathy? Spine 24, 455–462 (1999).

    Article  CAS  Google Scholar 

  287. 287.

    Chibbaro, S. et al. Anterior cervical corpectomy for cervical spondylotic myelopathy: experience and surgical results in a series of 70 consecutive patients. J. Clin. Neurosci. 13, 233–238 (2006).

    Article  CAS  Google Scholar 

  288. 288.

    Vedantam, A., Jonathan, A. & Rajshekhar, V. Association of magnetic resonance imaging signal changes and outcome prediction after surgery for cervical spondylotic myelopathy. J. Neurosurg. Spine 15, 660–666 (2011).

    Article  Google Scholar 

  289. 289.

    Suda, K. et al. Local kyphosis reduces surgical outcomes of expansive open-door laminoplasty for cervical spondylotic myelopathy. Spine 28, 1258–1262 (2003).

    PubMed  Google Scholar 

  290. 290.

    Suri, A., Chabbra, R. P., Mehta, V. S., Gaikwad, S. & Pandey, R. M. Effect of intramedullary signal changes on the surgical outcome of patients with cervical spondylotic myelopathy. Spine J. 3, 33–45 (2003).

    Article  Google Scholar 

  291. 291.

    Okada, Y., Ikata, T., Yamada, H., Sakamoto, R. & Katoh, S. Magnetic resonance imaging study on the results of surgery for cervical compression myelopathy. Spine 18, 2024–2029 (1993).

    Article  CAS  Google Scholar 

  292. 292.

    Wang, L. F. et al. Using the T2-weighted magnetic resonance imaging signal intensity ratio and clinical manifestations to assess the prognosis of patients with cervical ossification of the posterior longitudinal ligament. J. Neurosurg. Spine 13, 319–323 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  293. 293.

    Zhang, L. et al. Preoperative evaluation of the cervical spondylotic myelopathy with flexion-extension magnetic resonance imaging: about a prospective study of fifty patients. Spine 36, E1134–E1139 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  294. 294.

    Jones, J. G., Cen, S. Y., Lebel, R. M., Hsieh, P. C. & Law, M. Diffusion tensor imaging correlates with the clinical assessment of disease severity in cervical spondylotic myelopathy and predicts outcome following surgery. AJNR Am. J. Neuroradiol. 34, 471–478 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. 295.

    Nakamura, M. et al. Clinical significance of diffusion tensor tractography as a predictor of functional recovery after laminoplasty in patients with cervical compressive myelopathy. J. Neurosurg. Spine 17, 147–152 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  296. 296.

    Wen, C. Y. et al. Is diffusion anisotropy a biomarker for disease severity and surgical prognosis of cervical spondylotic myelopathy? Radiology 270, 197–204 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  297. 297.

    Halvorsen, C. M. et al. Surgical mortality and complications leading to reoperation in 318 consecutive posterior decompressions for cervical spondylotic myelopathy. Acta Neurol. Scand. 123, 358–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. 298.

    Pumberger, M. et al. Clinical predictors of surgical outcome in cervical spondylotic myelopathy: an analysis of 248 patients. Bone Joint J. 95-B, 966–971 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. 299.

    Dhillon, R. S. et al. Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathol. Commun. 4, 89 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. 300.

    Miller, R. G., Mitchell, J. D. & Moore, D. H. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst. Rev. 3, CD001447 (2012).

    Google Scholar 

  301. 301.

    Ates, O. et al. Comparative neuroprotective effect of sodium channel blockers after experimental spinal cord injury. J. Clin. Neurosci. 14, 658–665 (2007).

    Article  CAS  Google Scholar 

  302. 302.

    Lang-Lazdunski, L., Heurteaux, C., Vaillant, N., Widmann, C. & Lazdunski, M. Riluzole prevents ischemic spinal cord injury caused by aortic crossclamping. J. Thorac. Cardiovasc. Surg. 117, 881–889 (1999).

    Article  CAS  Google Scholar 

  303. 303.

    Schwartz, G. & Fehlings, M. G. Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J. Neurosurg. 94, 245–256 (2001).

    CAS  PubMed  Google Scholar 

  304. 304.

    Wu, Y., Satkunendrarajah, K. & Fehlings, M. G. Riluzole improves outcome following ischemia-reperfusion injury to the spinal cord by preventing delayed paraplegia. Neuroscience 265, 302–312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. 305.

    Wu, Y. et al. Delayed post-injury administration of riluzole is neuroprotective in a preclinical rodent model of cervical spinal cord injury. J. Neurotrauma 30, 441–452 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  306. 306.

    Wu, Y., Satkundrarajah, K., Teng, Y., Chow, D. S. & Fehlings, M. G. Evaluation of the sodium-glutamate blocker riluzole in a preclinical model of ervical spinal cord injury. Evid. Based Spine Care J. 1, 71–72 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  307. 307.

    Moon, E. S., Karadimas, S. K., Yu, W. R., Austin, J. W. & Fehlings, M. G. Riluzole attenuates neuropathic pain and enhances functional recovery in a rodent model of cervical spondylotic myelopathy. Neurobiol. Dis. 62, 394–406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. 308.

    US National Library of Medicine. ClinicalTrials.Gov https://clinicaltrials.gov/ct2/show/NCT01257828 (2018).

Download references

Acknowledgements

M.G.F. acknowledges support from the Gerry and Tootsie Halbert Chair in Neural Repair and Regeneration and the DeZwirek Family Foundation.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Michael G. Fehlings.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks M. Koda, M. Kotter and V. Traynelis for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Spinal Cord Toolbox: https://sourceforge.net/projects/spinalcordtoolbox/

Supplementary information

Glossary

Spondylosis

Arthritic changes related to degeneration of the discs, ligaments and/or joints of the spinal column.

Facet joints

Synovial plane joints between the articular processes of two adjacent vertebrae; also known as zygapophyseal joints.

Uncovertebral joints

Joints formed between the uncinate processes of two adjacent vertebrae.

Osteophyte

A bony outgrowth associated with arthritic degeneration.

Degenerative subluxation

The displacement of one vertebra relative to the adjacent vertebra.

Hyalinization

Arterial wall thickening characterized by a pink, glassy appearance with haematoxylin and eosin staining.

Kyphosis

An outward curvature of the spinal column, causing hunching of the back.

Lhermitte phenomenon

The passing of an electric-like shock sensation radiating from the neck down into the back, trunk and limbs.

Hoffman sign

Flexion and adduction of the thumb on flicking the fingernail of the second digit downwards.

Trömner sign

Flexion of the thumb and index finger on tapping the volar surface of the distal phalanx of the middle finger.

Fractional anisotropy

A value between 0 and 1, describing the degree to which diffusion of water is limited to one axis.

Scoliosis

An abnormal coronal curvature of the spinal column.

Cervical lordosis

An inward curvature of the spinal column.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Badhiwala, J.H., Ahuja, C.S., Akbar, M.A. et al. Degenerative cervical myelopathy — update and future directions. Nat Rev Neurol 16, 108–124 (2020). https://doi.org/10.1038/s41582-019-0303-0

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing