Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sex differences in movement disorders

Abstract

In a range of neurological conditions, including movement disorders, sex-related differences are emerging not only in brain anatomy and function, but also in pathogenesis, clinical features and response to treatment. In Parkinson disease (PD), for example, oestrogens can influence the severity of motor symptoms, whereas elevation of androgens can exacerbate tic disorders. Nevertheless, the real impact of sex differences in movement disorders remains under-recognized. In this article, we provide an up-to-date review of sex-related differences in PD and the most common hyperkinetic movement disorders, namely, essential tremor, dystonia, Huntington disease and other chorea syndromes, and Tourette syndrome and other chronic tic disorders. We highlight the most relevant clinical aspects of movement disorders that differ between men and women. Increased recognition of these differences and their impact on patient care could aid the development of tailored approaches to the management of movement disorders and enable the optimization of preclinical research and clinical studies.

Key points

  • Sex differences in epidemiology, clinical features and/or response to treatment have been reported in several movement disorders, including Parkinson disease (PD), essential tremor, dystonia, Huntington disease, Sydenham chorea and tic disorders.

  • In the case of PD, male sex is associated with higher incidence and prevalence, earlier disease onset, more severe motor symptoms and progression, and more frequent cognitive decline compared with female sex.

  • Few data are available on sex differences in hyperkinetic movement disorders, although craniocervical dystonia is more prevalent in women, whereas most focal task-specific dystonias and tics are more frequent in men.

  • Prospective studies specifically addressing sex differences in risk factors, symptomatology, disease progression, biomarkers and response to treatment are needed to develop tailored management strategies for patients with movement disorders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Factors implicated in the genesis of sex differences in movement disorders.
Fig. 2: Sex differences in Parkinson disease.

References

  1. 1.

    Ferretti, M. T. et al. Sex differences in Alzheimer disease — the gateway to precision medicine. Nat. Rev. Neurol. 14, 457–469 (2018).

    PubMed  Google Scholar 

  2. 2.

    Cordonnier, C. et al. Stroke in women — from evidence to inequalities. Nat. Rev. Neurol. 13, 521–532 (2017).

    PubMed  Google Scholar 

  3. 3.

    Vetvik, K. G. & MacGregor, E. A. Sex differences in the epidemiology, clinical features, and pathophysiology of migraine. Lancet Neurol. 16, 76–87 (2017).

    CAS  PubMed  Google Scholar 

  4. 4.

    Rabin, M. L., Stevens-Haas, C., Havrilla, E., Devi, T. & Kurlan, R. Movement disorders in women: a review. Mov. Disord. 29, 177–183 (2014).

    PubMed  Google Scholar 

  5. 5.

    Smith, K. M. & Dahodwala, N. Sex differences in Parkinson’s disease and other movement disorders. Exp. Neurol. 259, 44–56 (2014).

    CAS  PubMed  Google Scholar 

  6. 6.

    Picillo, M. et al. The relevance of gender in Parkinson’s disease: a review. J. Neurol. 264, 1583–1607 (2017).

    PubMed  Google Scholar 

  7. 7.

    Fahn, S. & Jankovic, J. Principles and Practice of Movement Disorders (Churchill Livingstone, 2007).

  8. 8.

    Cantuti-Castelvetri, I. et al. Effects of gender on nigral gene expression and parkinson disease. Neurobiol. Dis. 26, 606–614 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Simunovic, F., Yi, M., Wang, Y., Stephens, R. & Sonntag, K. C. Evidence for gender-specific transcriptional profiles of nigral dopamine neurons in Parkinson disease. PLOS ONE 5, e8856 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Rijpkema, M. et al. Normal sexual dimorphism in the human basal ganglia. Hum. Brain Mapp. 33, 1246–1252 (2012).

    PubMed  Google Scholar 

  11. 11.

    Xu, J. et al. Gender effects on age-related changes in brain structure. Am. J. Neuroradiol. 21, 112–118 (2000).

    CAS  PubMed  Google Scholar 

  12. 12.

    Gillies, G. E., Pienaar, I. S., Vohra, S. & Qamhawi, Z. Sex differences in Parkinson’s disease. Front. Neuroendocrinol. 35, 370–384 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Litim, N., Morissette, M. & Di Paolo, T. Neuroactive gonadal drugs for neuroprotection in male and female models of Parkinson’s disease. Neurosci. Biobehav. Rev. 67, 79–88 (2016).

    CAS  PubMed  Google Scholar 

  14. 14.

    Greene, N., Lassen, C. F., Rugbjerg, K. & Ritz, B. Reproductive factors and Parkinson’s disease risk in Danish women. Eur. J. Neurol. 21, 1168–1177 (2014).

    CAS  PubMed  Google Scholar 

  15. 15.

    Liu, R. et al. Female reproductive factors, menopausal hormone use, and Parkinson’s disease. Mov. Disord. 29, 889–896 (2014).

    PubMed  Google Scholar 

  16. 16.

    Gatto, N. M. et al. Lifetime exposure to estrogens and Parkinson’s disease in California teachers. Parkinsonism Relat. Disord. 20, 1149–1156 (2014).

    CAS  PubMed  Google Scholar 

  17. 17.

    Strafella, C. et al. Application of precision medicine in neurodegenerative diseases. Front. Neurol. 9, 701 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Institute of Medicine (eds Wizemann, T. M. & Pardue. M.-L.). Exploring the Biological Contributions to Human Health: Does Sex Matter? (National Academies Press, 2001).

  19. 19.

    Goedert, M., Spillantini, M. G., Del Tredici, K. & Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24 (2013).

    CAS  PubMed  Google Scholar 

  20. 20.

    Dickson, D. W. et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol. 8, 1150–1157 (2009).

    CAS  PubMed  Google Scholar 

  21. 21.

    Postuma, R. B. et al. Identifying prodromal Parkinson’s disease: pre-motor disorders in Parkinson’s disease. Mov. Disord. 27, 617–626 (2012).

    PubMed  Google Scholar 

  22. 22.

    Moore, K. L., Boscardin, W. J., Steinman, M. A. & Schwartz, J. B. Age and sex variation in prevalence of chronic medical conditions in older residents of US nursing homes. J. Am. Geriatr. Soc. 60, 756–764 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Pringsheim, T., Jette, N., Frolkis, A. & Steeves, T. D. L. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov. Disord. 29, 1583–1590 (2014).

    PubMed  Google Scholar 

  24. 24.

    Abbas, M. M., Xu, Z. & Tan, L. C. S. Epidemiology of Parkinson’s disease — East versus West. Mov. Disord. Clin. Pract. 5, 14–28 (2018).

    PubMed  Google Scholar 

  25. 25.

    Xu, J., Gong, D. D., Man, C. F. & Fan, Y. Parkinson’s disease and risk of mortality: meta-analysis and systematic review. Acta Neurol. Scand. 129, 71–79 (2014).

    CAS  PubMed  Google Scholar 

  26. 26.

    Maeda, T. et al. Clinical manifestations of nonmotor symptoms in 1021 Japanese Parkinson’s disease patients from 35 medical centers. Parkinsonism Relat. Disord. 38, 54–60 (2017).

    PubMed  Google Scholar 

  27. 27.

    Moisan, F. et al. Parkinson disease male-to-female ratios increase with age: French nationwide study and meta-analysis. J. Neurol. Neurosurg. Psychiatry 87, 952–957 (2016).

    PubMed  Google Scholar 

  28. 28.

    de Lau, L. M. L., Verbaan, D., Marinus, J. & van Hilten, J. J. Survival in Parkinson’s disease. Relation with motor and non-motor features. Parkinsonism Relat. Disord. 20, 613–616 (2014).

    PubMed  Google Scholar 

  29. 29.

    Pinter, B. et al. Mortality in Parkinson’s disease: a 38-year follow-up study. Mov. Disord. 30, 266–269 (2015).

    PubMed  Google Scholar 

  30. 30.

    Taylor, K. S. M., Cook, J. A. & Counsell, C. E. Heterogeneity in male to female risk for Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 78, 905–906 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wooten, G. F., Currie, L. J., Bovbjerg, V. E., Lee, J. K. & Patrie, J. Are men at greater risk for Parkinson’s disease than women? J. Neurol. Neurosurg. Psychiatry 75, 637–639 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hirsch, L., Jette, N., Frolkis, A., Steeves, T. & Pringsheim, T. The incidence of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology 46, 292–300 (2016).

    PubMed  Google Scholar 

  33. 33.

    Ascherio, A. & Schwarzschild, M. A. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. 15, 1257–1272 (2016).

    PubMed  Google Scholar 

  34. 34.

    GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden Of Disease Study 2016. Lancet Neurol. 18, 459–480 (2019).

    Google Scholar 

  35. 35.

    Diem-Zangerl, A. et al. Mortality in Parkinson’s disease: a 20-year follow-up study. Mov. Disord. 24, 819–825 (2009).

    PubMed  Google Scholar 

  36. 36.

    Haaxma, C. A. et al. Gender differences in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 78, 819–824 (2007).

    PubMed  Google Scholar 

  37. 37.

    Alves, G. et al. Incidence of Parkinson’s disease in Norway: the Norwegian ParkWest study. J. Neurol. Neurosurg. Psychiatry 80, 851–857 (2009).

    CAS  PubMed  Google Scholar 

  38. 38.

    Twelves, D., Perkins, K. S. M. & Counsell, C. Systematic review of incidence studies of Parkinson’s disease. Mov. Disord. 18, 19–31 (2003).

    PubMed  Google Scholar 

  39. 39.

    Simunovic, F. et al. Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain J. Neurol. 132, 1795–1809 (2009).

    Google Scholar 

  40. 40.

    Bae, Y. H., Hwang, J. Y., Kim, Y. H. & Koh, J. Y. Anti-oxidative neuroprotection by estrogens in mouse cortical cultures. J. Korean Med. Sci. 15, 327–336 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Sawada, H. & Shimohama, S. Estrogens and Parkinson disease: novel approach for neuroprotection. Endocrine 21, 77–79 (2003).

    CAS  PubMed  Google Scholar 

  42. 42.

    Benedetti, M. D. et al. Hysterectomy, menopause, and estrogen use preceding Parkinson’s disease: an exploratory case–control study. Mov. Disord. 16, 830–837 (2001).

    CAS  PubMed  Google Scholar 

  43. 43.

    Popat, R. A. et al. Effect of reproductive factors and postmenopausal hormone use on the risk of Parkinson disease. Neurology 65, 383–390 (2005).

    CAS  PubMed  Google Scholar 

  44. 44.

    Ascherio, A. et al. Caffeine, postmenopausal estrogen, and risk of Parkinson’s disease. Neurology 60, 790–795 (2003).

    CAS  PubMed  Google Scholar 

  45. 45.

    Nicoletti, A. et al. Reproductive factors and Parkinson’s disease: a multicenter case-control study. Mov. Disord. 26, 2563–2566 (2011).

    PubMed  Google Scholar 

  46. 46.

    Martignoni, E. et al. Parkinson’s disease and reproductive life events. Neurol. Sci. 23 (Suppl. 2), S85–S86 (2002).

    PubMed  Google Scholar 

  47. 47.

    Currie, L. J., Harrison, M. B., Trugman, J. M., Bennett, J. P. & Wooten, G. F. Postmenopausal estrogen use affects risk for Parkinson disease. Arch. Neurol. 61, 886–888 (2004).

    PubMed  Google Scholar 

  48. 48.

    Ragonese, P. et al. Risk of Parkinson disease in women: effect of reproductive characteristics. Neurology 62, 2010–2014 (2004).

    CAS  PubMed  Google Scholar 

  49. 49.

    Rocca, W. A. et al. Increased risk of parkinsonism in women who underwent oophorectomy before menopause. Neurology 70, 200–209 (2008).

    CAS  PubMed  Google Scholar 

  50. 50.

    Simon, K. C., Chen, H., Gao, X., Schwarzschild, M. A. & Ascherio, A. Reproductive factors, exogenous estrogen use, and risk of Parkinson’s disease. Mov. Disord. 24, 1359–1365 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Frigerio, R. et al. Number of children and risk of Parkinson’s disease. Mov. Disord. 22, 632–639 (2007).

    PubMed  Google Scholar 

  52. 52.

    Rugbjerg, K., Christensen, J., Tjonneland, A. & Olsen, J. H. Exposure to estrogen and women’s risk for Parkinson’s disease: a prospective cohort study in Denmark. Parkinsonism Relat. Disord. 19, 457–460 (2013).

    PubMed  Google Scholar 

  53. 53.

    Cereda, E., Barichella, M., Cassani, E., Caccialanza, R. & Pezzoli, G. Reproductive factors and clinical features of Parkinson’s disease. Parkinsonism Relat. Disord. 19, 1094–1099 (2013).

    PubMed  Google Scholar 

  54. 54.

    Wang, P., Li, J., Qiu, S., Wen, H. & Du, J. Hormone replacement therapy and Parkinson’s disease risk in women: a meta-analysis of 14 observational studies. Neuropsychiatr. Dis. Treat. 11, 59–66 (2015).

    CAS  PubMed  Google Scholar 

  55. 55.

    Palacios, N. et al. Caffeine and risk of Parkinson’s disease in a large cohort of men and women. Mov. Disord. 27, 1276–1282 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Lv, M. et al. Reproductive factors and risk of Parkinson’s disease in women: a meta-analysis of observational studies. Behav. Brain Res. 335, 103–110 (2017).

    PubMed  Google Scholar 

  57. 57.

    Savica, R., Grossardt, B. R., Bower, J. H., Ahlskog, J. E. & Rocca, W. A. Risk factors for Parkinson’s disease may differ in men and women: an exploratory study. Horm. Behav. 63, 308–314 (2013).

    PubMed  Google Scholar 

  58. 58.

    Chahine, L. M. & Stern, M. B. Parkinson’s disease biomarkers: where are we and where do we go next? Mov. Disord. Clin. Pract. 4, 796–805 (2017).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Ikeda, K. et al. Serological profiles of urate, paraoxonase-1, ferritin and lipid in Parkinson’s disease: changes linked to disease progression. Neurodegener. Dis. 8, 252–258 (2011).

    CAS  PubMed  Google Scholar 

  60. 60.

    Caranci, G. et al. Gender differences in Parkinson’s disease: focus on plasma α-synuclein. J. Neural Transm. 120, 1209–1215 (2013).

    CAS  PubMed  Google Scholar 

  61. 61.

    Ho, D. H., Yi, S., Seo, H., Son, I. & Seol, W. Increased DJ-1 in urine exosome of Korean males with Parkinson’s disease. Biomed. Res. Int. 2014, 704678 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Chen, H., Mosley, T. H., Alonso, A. & Huang, X. Plasma urate and Parkinson’s disease in the Atherosclerosis Risk in Communities (ARIC) study. Am. J. Epidemiol. 169, 1064–1069 (2009).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Gao, X., O’Reilly, E. J., Schwarzschild, M. A. & Ascherio, A. Prospective study of plasma urate and risk of Parkinson disease in men and women. Neurology 86, 520–526 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Schwarzschild, M. A. et al. Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch. Neurol. 65, 716–723 (2008).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Ascherio, A. et al. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch. Neurol. 66, 1460–1468 (2009).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Schwarzschild, M. A. et al. Serum urate and probability of dopaminergic deficit in early ‘Parkinson’s disease’. Mov. Disord. 26, 1864–1868 (2011).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Jesus, S. et al. Low serum uric acid concentration in Parkinson’s disease in southern Spain. Eur. J. Neurol. 20, 208–210 (2013).

    CAS  PubMed  Google Scholar 

  68. 68.

    McFarland, N. R., Burdett, T., Desjardins, C. A., Frosch, M. P. & Schwarzschild, M. A. Postmortem brain levels of urate and precursors in Parkinson’s disease and related disorders. Neurodegener. Dis. 12, 189–198 (2013).

    CAS  PubMed  Google Scholar 

  69. 69.

    Yadav, S. K. et al. Gender-based analysis of cortical thickness and structural connectivity in Parkinson’s disease. J. Neurol. 263, 2308–2318 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    De Micco, R. et al. Sex-related pattern of intrinsic brain connectivity in drug-naive Parkinson’s disease patients. Mov. Disord. 34, 997–1005 (2019).

    PubMed  Google Scholar 

  71. 71.

    Kaasinen, V., Joutsa, J., Noponen, T., Johansson, J. & Seppanen, M. Effects of aging and gender on striatal and extrastriatal [123I]FP-CIT binding in Parkinson’s disease. Neurobiol. Aging 36, 1757–1763 (2015).

    CAS  PubMed  Google Scholar 

  72. 72.

    Kaasinen, V. et al. Increased frontal [18F]fluorodopa uptake in early Parkinson’s disease: sex differences in the prefrontal cortex. Brain J. Neurol. 124, 1125–1130 (2001).

    CAS  Google Scholar 

  73. 73.

    Mariani, S. et al. Association between sex, systemic iron variation and probability of Parkinson’s disease. Int. J. Neurosci. 126, 354–360 (2016).

    CAS  PubMed  Google Scholar 

  74. 74.

    Palacios, N. et al. Polymorphisms of caffeine metabolism and estrogen receptor genes and risk of Parkinson’s disease in men and women. Parkinsonism Relat. Disord. 16, 370–375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    San Luciano, M. et al. Gender differences in the IL6 -174G>C and ESR2 1730G>A polymorphisms and the risk of Parkinson’s disease. Neurosci. Lett. 506, 312–316 (2012).

    CAS  PubMed  Google Scholar 

  76. 76.

    Clark, L. N. et al. Frequency of LRRK2 mutations in early- and late-onset Parkinson disease. Neurology 67, 1786–1791 (2006).

    CAS  PubMed  Google Scholar 

  77. 77.

    Agalliu, I. et al. Higher frequency of certain cancers in LRRK2 G2019S mutation carriers with Parkinson disease: a pooled analysis. JAMA Neurol. 72, 58–65 (2015).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Cilia, R. et al. LRRK2 mutations in Parkinson’s disease: confirmation of a gender effect in the Italian population. Parkinsonism Relat. Disord. 20, 911–914 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Orr-Urtreger, A. et al. The LRRK2 G2019S mutation in Ashkenazi Jews with Parkinson disease: is there a gender effect? Neurology 69, 1595–1602 (2007).

    CAS  PubMed  Google Scholar 

  80. 80.

    Saunders-Pullman, R. et al. Gender differences in the risk of familial parkinsonism: beyond LRRK2? Neurosci. Lett. 496, 125–128 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    San Luciano, M. et al. Sex differences in LRRK2 G2019S and idiopathic Parkinson’s disease. Ann. Clin. Transl. Neurol. 4, 801–810 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Gan-Or, Z. et al. LRRK2 mutations in Parkinson disease; a sex effect or lack thereof? A meta-analysis. Parkinsonism Relat. Disord. 21, 778–782 (2015).

    PubMed  Google Scholar 

  83. 83.

    Shu, L. et al. Clinical heterogeneity among LRRK2 variants in Parkinson’s disease: a meta-analysis. Front. Aging Neurosci. 10, 283 (2018).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Gan-Or, Z. et al. LRRK2 and GBA mutations differentially affect the initial presentation of Parkinson disease. Neurogenetics 11, 121–125 (2010).

    CAS  PubMed  Google Scholar 

  85. 85.

    Swan, M. et al. Neuropsychiatric characteristics of GBA-associated Parkinson disease. J. Neurol. Sci. 370, 63–69 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Nalls, M. A. et al. Diagnosis of Parkinson’s disease on the basis of clinical and genetic classification: a population-based modelling study. Lancet Neurol. 14, 1002–1009 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Lavalaye, J., Booij, J., Reneman, L., Habraken, J. B. & van Royen, E. A. Effect of age and gender on dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers. Eur. J. Nucl. Med. 27, 867–869 (2000).

    CAS  PubMed  Google Scholar 

  88. 88.

    Saunders-Pullman, R., Wang, C., Stanley, K. & Bressman, S. B. Diagnosis and referral delay in women with Parkinson’s disease. Gend. Med. 8, 209–217 (2011).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Adamson, J., Ben-Shlomo, Y., Chaturvedi, N. & Donovan, J. Ethnicity, socio-economic position and gender — do they affect reported health-care seeking behaviour? Soc. Sci. Med. 57, 895–904 (2003).

    PubMed  Google Scholar 

  90. 90.

    Latourelle, J. C. et al. Large-scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed Parkinson’s disease: a longitudinal cohort study and validation. Lancet Neurol. 16, 908–916 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Scott, N. W., Macleod, A. D. & Counsell, C. E. Motor complications in an incident Parkinson’s disease cohort. Eur. J. Neurol. 23, 304–312 (2016).

    CAS  PubMed  Google Scholar 

  92. 92.

    Sato, K. et al. Prognosis of Parkinson’s disease: time to stage III, IV, V, and to motor fluctuations. Mov. Disord. 21, 1384–1395 (2006).

    PubMed  Google Scholar 

  93. 93.

    Bjornestad, A. et al. Risk and course of motor complications in a population-based incident Parkinson’s disease cohort. Parkinsonism Relat. Disord. 22, 48–53 (2016).

    PubMed  Google Scholar 

  94. 94.

    Colombo, D. et al. The “gender factor” in wearing-off among patients with Parkinson’s disease: a post hoc analysis of DEEP study. Sci. World J. 2015, 787451 (2015).

    Google Scholar 

  95. 95.

    Zappia, M. et al. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Arch. Neurol. 62, 601–605 (2005).

    PubMed  Google Scholar 

  96. 96.

    Sharma, J. C., Bachmann, C. G. & Linazasoro, G. Classifying risk factors for dyskinesia in Parkinson’s disease. Parkinsonism Relat. Disord. 16, 490–497 (2010).

    CAS  PubMed  Google Scholar 

  97. 97.

    Hassin-Baer, S. et al. Gender effect on time to levodopa-induced dyskinesias. J. Neurol. 258, 2048–2053 (2011).

    CAS  PubMed  Google Scholar 

  98. 98.

    Lubomski, M., Louise Rushworth, R., Lee, W., Bertram, K. L. & Williams, D. R. Sex differences in Parkinson’s disease. J. Clin. Neurosci. 21, 1503–1506 (2014).

    PubMed  Google Scholar 

  99. 99.

    De Pablo-Fernandez, E., Lees, A. J., Holton, J. L. & Warner, T. T. Prognosis and neuropathologic correlation of clinical subtypes of Parkinson disease. JAMA Neurol. 76, 470–479 (2019).

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Horstink, M. W. I. M., Strijks, E. & Dluzen, D. E. Estrogen and Parkinson’s disease. Adv. Neurol. 91, 107–114 (2003).

    CAS  PubMed  Google Scholar 

  101. 101.

    Quinn, N. P. & Marsden, C. D. Menstrual-related fluctuations in Parkinson’s disease. Mov. Disord. 1, 85–87 (1986).

    CAS  PubMed  Google Scholar 

  102. 102.

    Sandyk, R. Estrogens and the pathophysiology of Parkinson’s disease. Int. J. Neurosci. 45, 119–122 (1989).

    CAS  PubMed  Google Scholar 

  103. 103.

    Castrioto, A., Hulliger, S., Poon, Y.-Y., Lang, A. E. & Moro, E. A survey on the impact of the menstrual cycle on movement disorders severity. Can. J. Neurol. Sci. 37, 478–481 (2010).

    PubMed  Google Scholar 

  104. 104.

    Saunders-Pullman, R. et al. The effect of estrogen replacement on early Parkinson’s disease. Neurology 52, 1417–1421 (1999).

    CAS  PubMed  Google Scholar 

  105. 105.

    Tsang, K. L., Ho, S. L. & Lo, S. K. Estrogen improves motor disability in parkinsonian postmenopausal women with motor fluctuations. Neurology 54, 2292–2298 (2000).

    CAS  PubMed  Google Scholar 

  106. 106.

    Shulman, L. M., Minagar, A. & Weiner, W. J. The effect of pregnancy in Parkinson’s disease. Mov. Disord. 15, 132–135 (2000).

    CAS  PubMed  Google Scholar 

  107. 107.

    Golbe, L. I. Pregnancy and movement disorders. Neurol. Clin. 12, 497–508 (1994).

    CAS  PubMed  Google Scholar 

  108. 108.

    Hagell, P., Odin, P. & Vinge, E. Pregnancy in Parkinson’s disease: a review of the literature and a case report. Mov. Disord. 13, 34–38 (1998).

    CAS  PubMed  Google Scholar 

  109. 109.

    Seier, M. & Hiller, A. Parkinson’s disease and pregnancy: an updated review. Parkinsonism Relat. Disord. 40, 11–17 (2017).

    PubMed  Google Scholar 

  110. 110.

    Shulman, L. M. Gender differences in Parkinson’s disease. Gend. Med. 4, 8–18 (2007).

    PubMed  Google Scholar 

  111. 111.

    Sauerbier, A., Lenka, A., Aris, A. & Pal, P. K. Nonmotor symptoms in Parkinson’s disease: gender and ethnic differences. Int. Rev. Neurobiol. 133, 417–446 (2017).

    PubMed  Google Scholar 

  112. 112.

    Guo, X. et al. Gender and onset age-related features of non-motor symptoms of patients with Parkinson’s disease — a study from Southwest China. Parkinsonism Relat. Disord. 19, 961–965 (2013).

    PubMed  Google Scholar 

  113. 113.

    Martinez-Martin, P. et al. Gender-related differences in the burden of non-motor symptoms in Parkinson’s disease. J. Neurol. 259, 1639–1647 (2012).

    PubMed  Google Scholar 

  114. 114.

    Nicoletti, A. et al. Gender effect on non-motor symptoms in Parkinson’s disease: are men more at risk? Parkinsonism Relat. Disord. 35, 69–74 (2017).

    CAS  PubMed  Google Scholar 

  115. 115.

    Solla, P. et al. Gender differences in motor and non-motor symptoms among Sardinian patients with Parkinson’s disease. J. Neurol. Sci. 323, 33–39 (2012).

    PubMed  Google Scholar 

  116. 116.

    Song, Y., Gu, Z., An, J. & Chan, P. Gender differences on motor and non-motor symptoms of de novo patients with early Parkinson’s disease. Neurol. Sci. 35, 1991–1996 (2014).

    PubMed  Google Scholar 

  117. 117.

    Leentjens, A. F. G. et al. Symptomatology and markers of anxiety disorders in Parkinson’s disease: a cross-sectional study. Mov. Disord. 26, 484–492 (2011).

    PubMed  Google Scholar 

  118. 118.

    Leentjens, A. F. G. et al. Modeling depression in Parkinson disease: disease-specific and nonspecific risk factors. Neurology 81, 1036–1043 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Szewczyk-Krolikowski, K. et al. The influence of age and gender on motor and non-motor features of early Parkinson’s disease: initial findings from the Oxford Parkinson Disease Center (OPDC) discovery cohort. Parkinsonism Relat. Disord. 20, 99–105 (2014).

    PubMed  Google Scholar 

  120. 120.

    Kovacs, M. et al. Impact of sex on the nonmotor symptoms and the health-related quality of life in Parkinson’s disease. Parkinsons Dis. 2016, 7951840 (2016).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Picillo, M. et al. Gender differences in non-motor symptoms in early, drug naive Parkinson’s disease. J. Neurol. 260, 2849–2855 (2013).

    PubMed  Google Scholar 

  122. 122.

    Picillo, M. et al. The PRIAMO study: urinary dysfunction as a marker of disease progression in early Parkinson’s disease. Eur. J. Neurol. 24, 788–795 (2017).

    CAS  PubMed  Google Scholar 

  123. 123.

    Erro, R. et al. Non-motor symptoms in early Parkinson’s disease: a 2-year follow-up study on previously untreated patients. J. Neurol. Neurosurg. Psychiatry 84, 14–17 (2013).

    PubMed  Google Scholar 

  124. 124.

    Liu, R. et al. Potential sex differences in nonmotor symptoms in early drug-naive Parkinson disease. Neurology 84, 2107–2115 (2015).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Picillo, M. et al. Gender differences in non-motor symptoms in early Parkinson’s disease: a 2-years follow-up study on previously untreated patients. Parkinsonism Relat. Disord. 20, 850–854 (2014).

    PubMed  Google Scholar 

  126. 126.

    Warren Olanow, C. et al. Factors predictive of the development of levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov. Disord. 28, 1064–1071 (2013).

    CAS  PubMed  Google Scholar 

  127. 127.

    Picillo, M. et al. Gender and non motor fluctuations in Parkinson’s disease: a prospective study. Parkinsonism Relat. Disord. 27, 89–92 (2016).

    PubMed  Google Scholar 

  128. 128.

    Heller, J., Dogan, I., Schulz, J. B. & Reetz, K. Evidence for gender differences in cognition, emotion and quality of life in Parkinson’s disease? Aging Dis. 5, 63–75 (2014).

    PubMed  Google Scholar 

  129. 129.

    Yoon, J.-E. et al. Gender differences of nonmotor symptoms affecting quality of life in Parkinson disease. Neurodegener. Dis. 17, 276–280 (2017).

    PubMed  Google Scholar 

  130. 130.

    Liu, G. et al. Prediction of cognition in Parkinson’s disease with a clinical-genetic score: a longitudinal analysis of nine cohorts. Lancet Neurol. 16, 620–629 (2017).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Curtis, A. F., Masellis, M., Camicioli, R., Davidson, H. & Tierney, M. C. Cognitive profile of non-demented Parkinson’s disease: meta-analysis of domain and sex-specific deficits. Parkinsonism Relat. Disord. 60, 32–42 (2019).

    PubMed  Google Scholar 

  132. 132.

    Miller, I. N. & Cronin-Golomb, A. Gender differences in Parkinson’s disease: clinical characteristics and cognition. Mov. Disord. 25, 2695–2703 (2010).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Uc, E. Y. et al. Incidence of and risk factors for cognitive impairment in an early Parkinson disease clinical trial cohort. Neurology 73, 1469–1477 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Anang, J. B. M. et al. Predictors of dementia in Parkinson disease: a prospective cohort study. Neurology 83, 1253–1260 (2014).

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Pigott, K. et al. Longitudinal study of normal cognition in Parkinson disease. Neurology 85, 1276–1282 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Anang, J. B. M. et al. Dementia predictors in Parkinson disease: a validation study. J. Parkinsons Dis. 7, 159–162 (2017).

    PubMed  Google Scholar 

  137. 137.

    Augustine, E. F. et al. Sex differences in clinical features of early, treated Parkinson’s disease. PLOS ONE 10, e0133002 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Cholerton, B. et al. Sex differences in progression to mild cognitive impairment and dementia in Parkinson’s disease. Parkinsonism Relat. Disord. 50, 29–36 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Cereda, E. et al. Dementia in Parkinson’s disease: is male gender a risk factor? Parkinsonism Relat. Disord. 26, 67–72 (2016).

    PubMed  Google Scholar 

  140. 140.

    Baba, Y., Putzke, J. D., Whaley, N. R., Wszolek, Z. K. & Uitti, R. J. Gender and the Parkinson’s disease phenotype. J. Neurol. 252, 1201–1205 (2005).

    PubMed  Google Scholar 

  141. 141.

    Nyholm, D., Karlsson, E., Lundberg, M. & Askmark, H. Large differences in levodopa dose requirement in Parkinson’s disease: men use higher doses than women. Eur. J. Neurol. 17, 260–266 (2010).

    CAS  PubMed  Google Scholar 

  142. 142.

    Sharma, J. C., Macnamara, L., Hasoon, M., Vassallo, M. & Ross, I. Cascade of levodopa dose and weight-related dyskinesia in Parkinson’s disease (LD-WD-PD cascade). Parkinsonism Relat. Disord. 12, 499–505 (2006).

    PubMed  Google Scholar 

  143. 143.

    Sharma, J. C., Ross, I. N., Rascol, O. & Brooks, D. Relationship between weight, levodopa and dyskinesia: the significance of levodopa dose per kilogram body weight. Eur. J. Neurol. 15, 493–496 (2008).

    CAS  PubMed  Google Scholar 

  144. 144.

    Kompoliti, K. et al. Gender and pramipexole effects on levodopa pharmacokinetics and pharmacodynamics. Neurology 58, 1418–1422 (2002).

    CAS  PubMed  Google Scholar 

  145. 145.

    Arabia, G. et al. Body weight, levodopa pharmacokinetics and dyskinesia in Parkinson’s disease. Neurol. Sci. 23 (Suppl. 2), 53–54 (2002).

    Google Scholar 

  146. 146.

    Kumagai, T. et al. Sex differences in the pharmacokinetics of levodopa in elderly patients with Parkinson disease. Clin. Neuropharmacol. 37, 173–176 (2014).

    CAS  PubMed  Google Scholar 

  147. 147.

    Martinelli, P. et al. Levodopa pharmacokinetics and dyskinesias: are there sex-related differences? Neurol. Sci. 24, 192–193 (2003).

    CAS  PubMed  Google Scholar 

  148. 148.

    Montaurier, C. et al. Mechanisms of body weight gain in patients with Parkinson’s disease after subthalamic stimulation. Brain J. Neurol. 130, 1808–1818 (2007).

    CAS  Google Scholar 

  149. 149.

    Sampaio, T. F. et al. MAO-B and COMT genetic variations associated with levodopa treatment response in patients with Parkinson’s disease. J. Clin. Pharmacol. 58, 920–926 (2018).

    CAS  PubMed  Google Scholar 

  150. 150.

    Fox, S. H. et al. International Parkinson and Movement Disorder Society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov. Disord. 33, 1248–1266 (2018).

    CAS  PubMed  Google Scholar 

  151. 151.

    Seppi, K. et al. Update on treatments for nonmotor symptoms of Parkinson’s disease-an evidence-based medicine review. Mov. Disord. 34, 180–198 (2019).

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    Chan, A. K. et al. Disparities in access to deep brain stimulation surgery for Parkinson disease: interaction between African American race and Medicaid use. JAMA Neurol. 71, 291–299 (2014).

    PubMed  Google Scholar 

  153. 153.

    Willis, A. W. et al. Disparities in deep brain stimulation surgery among insured elders with Parkinson disease. Neurology 82, 163–171 (2014).

    PubMed  PubMed Central  Google Scholar 

  154. 154.

    Hariz, G.-M. et al. Gender distribution of patients with Parkinson’s disease treated with subthalamic deep brain stimulation; a review of the 2000-2009 literature. Parkinsonism Relat. Disord. 17, 146–149 (2011).

    PubMed  Google Scholar 

  155. 155.

    Hariz, G.-M. et al. Gender differences in quality of life following subthalamic stimulation for Parkinson’s disease. Acta Neurol. Scand. 128, 281–285 (2013).

    PubMed  Google Scholar 

  156. 156.

    Romito, L. M., Contarino, F. M. & Albanese, A. Transient gender-related effects in Parkinson’s disease patients with subthalamic stimulation. J. Neurol. 257, 603–608 (2010).

    PubMed  Google Scholar 

  157. 157.

    Accolla, E. et al. Gender differences in patients with Parkinson’s disease treated with subthalamic deep brain stimulation. Mov. Disord. 22, 1150–1156 (2007).

    PubMed  Google Scholar 

  158. 158.

    Scelzo, E. et al. Deep brain stimulation during pregnancy and delivery: experience from a series of ‘DBS babies’. Front. Neurol. 6, 191 (2015).

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    Bhatia, K. P. et al. Consensus statement on the classification of tremors, from the Task Force on Tremor of the International Parkinson and Movement Disorder Society. Mov. Disord. 33, 75–87 (2018).

    PubMed  Google Scholar 

  160. 160.

    Louis, E. D. & Ferreira, J. J. How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor. Mov. Disord. 25, 534–541 (2010).

    PubMed  Google Scholar 

  161. 161.

    Louis, E. D., Thawani, S. P. & Andrews, H. F. Prevalence of essential tremor in a multiethnic, community-based study in northern Manhattan, New York, NY. Neuroepidemiology 32, 208–214 (2009).

    PubMed  PubMed Central  Google Scholar 

  162. 162.

    Glik, A. et al. Essential tremor might be less frequent than Parkinson’s disease in North Israel Arab villages. Mov. Disord. 24, 119–122 (2009).

    PubMed  PubMed Central  Google Scholar 

  163. 163.

    Mancini, M. L. et al. Prevalence of essential tremor in the territory of lake Trasimeno, Italy: results of a population-based study. Mov. Disord. 22, 540–545 (2007).

    PubMed  Google Scholar 

  164. 164.

    Dotchin, C. L. & Walker, R. W. The prevalence of essential tremor in rural northern Tanzania. J. Neurol. Neurosurg. Psychiatry 79, 1107–1109 (2008).

    CAS  PubMed  Google Scholar 

  165. 165.

    Tan, L. C. S., Venketasubramanian, N., Ramasamy, V., Gao, W. & Saw, S.-M. Prevalence of essential tremor in Singapore: a study on three races in an Asian country. Parkinsonism Relat. Disord. 11, 233–239 (2005).

    PubMed  Google Scholar 

  166. 166.

    Louis, E. D. & Vonsattel, J. P. G. The emerging neuropathology of essential tremor. Mov. Disord. 23, 174–182 (2008).

    PubMed  PubMed Central  Google Scholar 

  167. 167.

    Louis, E. D., Fernandez-Alvarez, E., Dure, L. S. 4th, Frucht, S. & Ford, B. Association between male gender and pediatric essential tremor. Mov. Disord. 20, 904–906 (2005).

    PubMed  Google Scholar 

  168. 168.

    Rajput, A. H., Offord, K. P., Beard, C. M. & Kurland, L. T. Essential tremor in Rochester, Minnesota: a 45-year study. J. Neurol. Neurosurg. Psychiatry 47, 466–470 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Larsson, T. & Sjogren, T. Essential tremor: a clinical and genetic population study. Acta Psychiatr. Scand. Suppl. 36, 1–176 (1960).

    CAS  PubMed  Google Scholar 

  170. 170.

    Hubble, J. P., Busenbark, K. L., Pahwa, R., Lyons, K. & Koller, W. C. Clinical expression of essential tremor: effects of gender and age. Mov. Disord. 12, 969–972 (1997).

    CAS  PubMed  Google Scholar 

  171. 171.

    Hardesty, D. E., Maraganore, D. M., Matsumoto, J. Y. & Louis, E. D. Increased risk of head tremor in women with essential tremor: longitudinal data from the Rochester Epidemiology Project. Mov. Disord. 19, 529–533 (2004).

    PubMed  Google Scholar 

  172. 172.

    Chen, W. et al. Topography of essential tremor. Parkinsonism Relat. Disord. 40, 58–63 (2017).

    PubMed  Google Scholar 

  173. 173.

    Veroniki, A. A. et al. Comparative safety of antiepileptic drugs for neurological development in children exposed during pregnancy and breast feeding: a systematic review and network meta-analysis. BMJ Open. 7, e017248 (2017).

    PubMed  PubMed Central  Google Scholar 

  174. 174.

    Bordelon, Y. M. & Smith, M. Movement disorders in pregnancy. Semin. Neurol. 27, 467–475 (2007).

    PubMed  Google Scholar 

  175. 175.

    Kranick, S. M., Mowry, E. M., Colcher, A., Horn, S. & Golbe, L. I. Movement disorders and pregnancy: a review of the literature. Mov. Disord. 25, 665–671 (2010).

    PubMed  Google Scholar 

  176. 176.

    Blomstedt, P. et al. Influence of age, gender and severity of tremor on outcome after thalamic and subthalamic DBS for essential tremor. Parkinsonism Relat. Disord. 17, 617–620 (2011).

    PubMed  Google Scholar 

  177. 177.

    Albanese, A. et al. Phenomenology and classification of dystonia: a consensus update. Mov. Disord. 28, 863–873 (2013).

    PubMed  PubMed Central  Google Scholar 

  178. 178.

    Jinnah, H. A. et al. The focal dystonias: current views and challenges for future research. Mov. Disord. 28, 926–943 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Steeves, T. D., Day, L., Dykeman, J., Jette, N. & Pringsheim, T. The prevalence of primary dystonia: a systematic review and meta-analysis. Mov. Disord. 27, 1789–1796 (2012).

    PubMed  Google Scholar 

  180. 180.

    Defazio, G. The epidemiology of primary dystonia: current evidence and perspectives. Eur. J. Neurol. 17 (Suppl. 1), 9–14 (2010).

    PubMed  Google Scholar 

  181. 181.

    Defazio, G., Abbruzzese, G., Livrea, P. & Berardelli, A. Epidemiology of primary dystonia. Lancet Neurol. 3, 673–678 (2004).

    PubMed  Google Scholar 

  182. 182.

    Williams, L. et al. Epidemiological, clinical and genetic aspects of adult onset isolated focal dystonia in Ireland. Eur. J. Neurol. 24, 73–81 (2017).

    CAS  PubMed  Google Scholar 

  183. 183.

    Hintze, J. M., Ludlow, C. L., Bansberg, S. F., Adler, C. H. & Lott, D. G. Spasmodic dysphonia: a review. Part 1: pathogenic factors. Otolaryngol. Head. Neck Surg. 157, 551–557 (2017).

    PubMed  Google Scholar 

  184. 184.

    Pandey, S. & Sharma, S. Meige’s syndrome: history, epidemiology, clinical features, pathogenesis and treatment. J. Neurol. Sci. 372, 162–170 (2017).

    PubMed  Google Scholar 

  185. 185.

    Soland, V. L., Bhatia, K. P. & Marsden, C. D. Sex prevalence of focal dystonias. J. Neurol. Neurosurg. Psychiatry 60, 204–205 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Defazio, G. et al. The Italian Dystonia Registry: rationale, design and preliminary findings. Neurol. Sci. 38, 819–825 (2017).

    PubMed  Google Scholar 

  187. 187.

    The Epidemiological Study of Dystonia in Europe (ESDE) Collaborative Group. A prevalence study of primary dystonia in eight European countries. J. Neurol. 247, 787–792 (2000).

    Google Scholar 

  188. 188.

    Torres-Russotto, D. & Perlmutter, J. S. Task-specific dystonias: a review. Ann. N. Y. Acad. Sci. 1142, 179–199 (2008).

    PubMed  PubMed Central  Google Scholar 

  189. 189.

    Dhungana, S. & Jankovic, J. Yips and other movement disorders in golfers. Mov. Disord. 28, 576–581 (2013).

    PubMed  Google Scholar 

  190. 190.

    Adler, C. H. et al. Are the yips a task-specific dystonia or ‘golfer’s cramp’? Mov. Disord. 26, 1993–1996 (2011).

    PubMed  Google Scholar 

  191. 191.

    Defazio, G., Berardelli, A. & Hallett, M. Do primary adult-onset focal dystonias share aetiological factors? Brain J. Neurol. 130, 1183–1193 (2007).

    Google Scholar 

  192. 192.

    Ham, J. H. et al. A prognostic factor in focal hand dystonia: typist’s cramp cases and literature review. J. Neurol. Sci. 371, 85–87 (2016).

    PubMed  Google Scholar 

  193. 193.

    Wijemanne, S. & Jankovic, J. Dopa-responsive dystonia — clinical and genetic heterogeneity. Nat. Rev. Neurol. 11, 414–424 (2015).

    CAS  PubMed  Google Scholar 

  194. 194.

    Cossu, G. & Colosimo, C. Hyperkinetic movement disorder emergencies. Curr. Neurol. Neurosci. Rep. 17, 6 (2017).

    PubMed  Google Scholar 

  195. 195.

    Savitt, D. & Jankovic, J. Tardive syndromes. J. Neurol. Sci. 389, 35–42 (2018).

    PubMed  Google Scholar 

  196. 196.

    Groen, J. L. et al. Phenotypes and genetic architecture of focal primary torsion dystonia. J. Neurol. Neurosurg. Psychiatry 83, 1006–1011 (2012).

    PubMed  Google Scholar 

  197. 197.

    Fiorio, M. et al. Tactile temporal discrimination in patients with blepharospasm. J. Neurol. Neurosurg. Psychiatry 79, 796–798 (2008).

    CAS  PubMed  Google Scholar 

  198. 198.

    Kimmich, O. et al. Temporal discrimination, a cervical dystonia endophenotype: penetrance and functional correlates. Mov. Disord. 29, 804–811 (2014).

    PubMed  Google Scholar 

  199. 199.

    Fiorio, M. et al. Defective temporal processing of sensory stimuli in DYT1 mutation carriers: a new endophenotype of dystonia? Brain J. Neurol. 130, 134–142 (2007).

    Google Scholar 

  200. 200.

    Scontrini, A. et al. Somatosensory temporal discrimination in patients with primary focal dystonia. J. Neurol. Neurosurg. Psychiatry 80, 1315–1319 (2009).

    CAS  PubMed  Google Scholar 

  201. 201.

    Kimmich, O. et al. Sporadic adult onset primary torsion dystonia is a genetic disorder by the temporal discrimination test. Brain J. Neurol. 134, 2656–2663 (2011).

    Google Scholar 

  202. 202.

    Hutchinson, M. et al. Cervical dystonia: a disorder of the midbrain network for covert attentional orienting. Front. Neurol. 5, 54 (2014).

    PubMed  PubMed Central  Google Scholar 

  203. 203.

    Green, C. D. & Han, J.-D. J. Epigenetic regulation by nuclear receptors. Epigenomics 3, 59–72 (2011).

    CAS  PubMed  Google Scholar 

  204. 204.

    Gwinn-Hardy, K. A., Adler, C. H., Weaver, A. L., Fish, N. M. & Newman, S. J. Effect of hormone variations and other factors on symptom severity in women with dystonia. Mayo Clin. Proc. 75, 235–240 (2000).

    CAS  PubMed  Google Scholar 

  205. 205.

    Rogers, J. D. & Fahn, S. Movement disorders and pregnancy. Adv. Neurol. 64, 163–178 (1994).

    CAS  PubMed  Google Scholar 

  206. 206.

    Martino, D. et al. Menopause and menarche in patients with primary blepharospasm: an exploratory case-control study. Eur. Neurol. 47, 161–164 (2002).

    PubMed  Google Scholar 

  207. 207.

    Zimprich, A. et al. Mutations in the gene encoding epsilon-sarcoglycan cause myoclonus-dystonia syndrome. Nat. Genet. 29, 66–69 (2001).

    CAS  PubMed  Google Scholar 

  208. 208.

    Lohmann, K. & Klein, C. Genetics of dystonia: What’s known? What’s new? What’s next? Mov. Disord. 28, 899–905 (2013).

    CAS  PubMed  Google Scholar 

  209. 209.

    Lee, L. V. et al. The unique phenomenology of sex-linked dystonia parkinsonism (XDP, DYT3, ‘Lubag’). Int. J. Neurosci. 121 (Suppl. 1), 3–11 (2011).

    PubMed  Google Scholar 

  210. 210.

    Marras, C. et al. Minimum incidence of primary cervical dystonia in a multiethnic health care population. Neurology 69, 676–680 (2007).

    CAS  PubMed  Google Scholar 

  211. 211.

    Matsumoto, S., Nishimura, M., Shibasaki, H. & Kaji, R. Epidemiology of primary dystonias in Japan: comparison with Western countries. Mov. Disord. 18, 1196–1198 (2003).

    PubMed  Google Scholar 

  212. 212.

    Peall, K. J., Kuiper, A., de Koning, T. J. & Tijssen, M. A. J. Non-motor symptoms in genetically defined dystonia: homogenous groups require systematic assessment. Parkinsonism Relat. Disord. 21, 1031–1040 (2015).

    CAS  PubMed  Google Scholar 

  213. 213.

    Conte, A. et al. Non-motor symptoms in patients with adult-onset focal dystonia: sensory and psychiatric disturbances. Parkinsonism Relat. Disord. 22 (Suppl. 1), 111–114 (2016).

    Google Scholar 

  214. 214.

    Eggink, H. et al. Motor and non-motor determinants of health-related quality of life in young dystonia patients. Parkinsonism Relat. Disord. 58, 50–55 (2019).

    PubMed  Google Scholar 

  215. 215.

    Novaretti, N. et al. The prevalence and correlation of non-motor symptoms in adult patients with idiopathic focal or segmental dystonia. Tremor Other Hyperkinetic Mov. 9, 596 (2019).

    Google Scholar 

  216. 216.

    Pirio Richardson, S., Wegele, A. R., Skipper, B., Deligtisch, A. & Jinnah, H. A. Dystonia treatment: patterns of medication use in an international cohort. Neurology 88, 543–550 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. 217.

    Contarino, M. F. et al. Clinical practice: evidence-based recommendations for the treatment of cervical dystonia with botulinum toxin. Front. Neurol. 8, 35 (2017).

    PubMed  PubMed Central  Google Scholar 

  218. 218.

    Ziman, N. et al. Pregnancy in a series of dystonia patients treated with deep brain stimulation: outcomes and management recommendations. Stereotact. Funct. Neurosurg. 94, 60–65 (2016).

    PubMed  Google Scholar 

  219. 219.

    Paluzzi, A. et al. Pregnancy in dystonic women with in situ deep brain stimulators. Mov. Disord. 21, 695–698 (2006).

    PubMed  Google Scholar 

  220. 220.

    Bates, G. P. et al. Huntington disease. Nat. Rev. Dis. Prim. 1, 15005 (2015).

    PubMed  Google Scholar 

  221. 221.

    MacDonald, M. E. et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983 (1993).

    Google Scholar 

  222. 222.

    Padovan-Neto, F. E. et al. Age- and sex-related changes in cortical and striatal nitric oxide synthase in the Q175 mouse model of Huntington’s disease. Nitric Oxide 83, 40–50 (2019).

    CAS  PubMed  Google Scholar 

  223. 223.

    Dorner, J. L., Miller, B. R., Barton, S. J., Brock, T. J. & Rebec, G. V. Sex differences in behavior and striatal ascorbate release in the 140 CAG knock-in mouse model of Huntington’s disease. Behav. Brain Res. 178, 90–97 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. 224.

    Bode, F. J. et al. Sex differences in a transgenic rat model of Huntington’s disease: decreased 17beta-estradiol levels correlate with reduced numbers of DARPP32+ neurons in males. Hum. Mol. Genet. 17, 2595–2609 (2008).

    CAS  PubMed  Google Scholar 

  225. 225.

    Fisher, E. R. & Hayden, M. R. Multisource ascertainment of Huntington disease in Canada: prevalence and population at risk. Mov. Disord. 29, 105–114 (2014).

    PubMed  Google Scholar 

  226. 226.

    Pringsheim, T. et al. The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov. Disord. 27, 1083–1091 (2012).

    PubMed  Google Scholar 

  227. 227.

    Bruzelius, E. et al. Huntington’s disease in the United States: variation by demographic and socioeconomic factors. Mov. Disord. 34, 858–865 (2019).

    PubMed  Google Scholar 

  228. 228.

    Duyao, M. et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat. Genet. 4, 387–392 (1993).

    CAS  PubMed  Google Scholar 

  229. 229.

    Kehoe, P., Krawczak, M., Harper, P. S., Owen, M. J. & Jones, A. L. Age of onset in Huntington disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. J. Med. Genet. 36, 108–111 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. 230.

    Lee, J. K. et al. Sex-specific effects of the Huntington gene on normal neurodevelopment. J. Neurosci. Res. 95, 398–408 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. 231.

    Aziz, N. A., van Belzen, M. J., Coops, I. D., Belfroid, R. D. M. & Roos, R. A. C. Parent-of-origin differences of mutant HTT CAG repeat instability in Huntington’s disease. Eur. J. Med. Genet. 54, e413–e418 (2011).

    PubMed  Google Scholar 

  232. 232.

    Ranen, N. G. et al. Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntington disease. Am. J. Hum. Genet. 57, 593–602 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. 233.

    Kremer, B. et al. Sex-dependent mechanisms for expansions and contractions of the CAG repeat on affected Huntington disease chromosomes. Am. J. Hum. Genet. 57, 343–350 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. 234.

    Farrer, L. A., Cupples, L. A., Kiely, D. K., Conneally, P. M. & Myers, R. H. Inverse relationship between age at onset of Huntington disease and paternal age suggests involvement of genetic imprinting. Am. J. Hum. Genet. 50, 528–535 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. 235.

    Zielonka, D. et al. The influence of gender on phenotype and disease progression in patients with Huntington’s disease. Parkinsonism Relat. Disord. 19, 192–197 (2013).

    PubMed  Google Scholar 

  236. 236.

    Foroud, T., Gray, J., Ivashina, J. & Conneally, P. M. Differences in duration of Huntington’s disease based on age at onset. J. Neurol. Neurosurg. Psychiatry 66, 52–56 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. 237.

    Myers, R. H. et al. Factors associated with slow progression in Huntington’s disease. Arch. Neurol. 48, 800–804 (1991).

    CAS  PubMed  Google Scholar 

  238. 238.

    Zielonka, D. et al. The contribution of gender differences in motor, behavioral and cognitive features to functional capacity, independence and quality of life in patients with Huntington’s disease. Parkinsonism Relat. Disord. 49, 42–47 (2018).

    PubMed  Google Scholar 

  239. 239.

    Markianos, M., Panas, M., Kalfakis, N. & Vassilopoulos, D. Plasma testosterone, dehydroepiandrosterone sulfate, and cortisol in female patients with Huntington’s disease. Neuro Endocrinol. Lett. 28, 199–203 (2007).

    CAS  PubMed  Google Scholar 

  240. 240.

    Markianos, M., Panas, M., Kalfakis, N. & Vassilopoulos, D. Plasma testosterone in male patients with Huntington’s disease: relations to severity of illness and dementia. Ann. Neurol. 57, 520–525 (2005).

    CAS  PubMed  Google Scholar 

  241. 241.

    van Duijn, E. et al. Neuropsychiatric symptoms in a European Huntington’s disease cohort (REGISTRY). J. Neurol. Neurosurg. Psychiatry 85, 1411–1418 (2014).

    PubMed  Google Scholar 

  242. 242.

    Dale, M., Maltby, J., Shimozaki, S., Cramp, R. & Rickards, H. Disease stage, but not sex, predicts depression and psychological distress in Huntington’s disease: a European population study. J. Psychosom. Res. 80, 17–22 (2016).

    PubMed  Google Scholar 

  243. 243.

    Costa de Miranda, R. et al. Body composition and bone mineral density in Huntington’s disease. Nutrition 59, 145–149 (2019).

    PubMed  Google Scholar 

  244. 244.

    Huntington Study Group. Tetrabenazine as antichorea therapy in Huntington disease: a randomized controlled trial. Neurology 66, 366–372 (2006).

    Google Scholar 

  245. 245.

    Frank, S. et al. A study of chorea after tetrabenazine withdrawal in patients with Huntington disease. Clin. Neuropharmacol. 31, 127–133 (2008).

    CAS  PubMed  Google Scholar 

  246. 246.

    Frank, S. Huntington Study Group/TETRA-HD Investigators. Tetrabenazine as anti-chorea therapy in Huntington disease: an open-label continuation study. BMC Neurol. 9, 62 (2009).

    PubMed  PubMed Central  Google Scholar 

  247. 247.

    Schultz, J. L., Kamholz, J. A., Nopoulos, P. C. & Killoran, A. Comparing risperidone and olanzapine to tetrabenazine for the management of chorea in Huntington disease: an analysis from the Enroll-HD database. Mov. Disord. Clin. Pract. 6, 132–138 (2019).

    PubMed  Google Scholar 

  248. 248.

    Rowe, K. C. et al. Patterns of serotonergic antidepressant usage in prodromal Huntington disease. Psychiatry Res. 196, 309–314 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. 249.

    Damkier, P. & Videbech, P. The safety of second-generation antipsychotics during pregnancy: a clinically focused review. CNS Drugs 32, 351–366 (2018).

    CAS  PubMed  Google Scholar 

  250. 250.

    Committee on Drugs. Use of psychoactive medication during pregnancy and possible effects on the fetus and newborn. Pediatrics 105, 880–887 (2000).

    Google Scholar 

  251. 251.

    Beier, K. & Pratt, D. P. Sydenham chorea. StatPearls https://www.statpearls.com/as/genetics/29792/ (2019).

  252. 252.

    Cardoso, F. Chorea gravidarum. Arch. Neurol. 59, 868–870 (2002).

    PubMed  Google Scholar 

  253. 253.

    Maia, D. P. et al. Pregnancy in patients with Sydenham’s chorea. Parkinsonism Relat. Disord. 18, 458–461 (2012).

    PubMed  Google Scholar 

  254. 254.

    Martino, D., Ganos, C. & Pringsheim, T. M. Tourette syndrome and chronic tic disorders: the clinical spectrum beyond tics. Int. Rev. Neurobiol. 134, 1461–1490 (2017).

    PubMed  Google Scholar 

  255. 255.

    Erenberg, G., Cruse, R. P. & Rothner, A. D. The natural history of Tourette syndrome: a follow-up study. Ann. Neurol. 22, 383–385 (1987).

    CAS  PubMed  Google Scholar 

  256. 256.

    Jankovic, J. & Rohaidy, H. Motor, behavioral and pharmacologic findings in Tourette’s syndrome. Can. J. Neurol. Sci. 14, 541–546 (1987).

    CAS  PubMed  Google Scholar 

  257. 257.

    Comings, D. E. & Comings, B. G. Tourette syndrome: clinical and psychological aspects of 250 cases. Am. J. Hum. Genet. 37, 435–450 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. 258.

    Eapen, V., Fox-Hiley, P., Banerjee, S. & Robertson, M. Clinical features and associated psychopathology in a Tourette syndrome cohort. Acta Neurol. Scand. 109, 255–260 (2004).

    CAS  PubMed  Google Scholar 

  259. 259.

    Freeman, R. D. et al. An international perspective on Tourette syndrome: selected findings from 3,500 individuals in 22 countries. Dev. Med. Child. Neurol. 42, 436–447 (2000).

    CAS  PubMed  Google Scholar 

  260. 260.

    Lapouse, R. & Monk, M. A. Behavior deviations in a representative sample of children: variation by sex, age, race, social class and family size. Am. J. Orthopsychiatry 34, 436–446 (1964).

    CAS  PubMed  Google Scholar 

  261. 261.

    Robertson, M. M. Diagnosing Tourette syndrome: is it a common disorder? J. Psychosom. Res. 55, 3–6 (2003).

    PubMed  Google Scholar 

  262. 262.

    Scahill, L., Sukhodolsky, D. G., Williams, S. K. & Leckman, J. F. Public health significance of tic disorders in children and adolescents. Adv. Neurol. 96, 240–248 (2005).

    PubMed  Google Scholar 

  263. 263.

    Robertson, M. M. The prevalence and epidemiology of Gilles de la Tourette syndrome. Part 1: the epidemiological and prevalence studies. J. Psychosom. Res. 65, 461–472 (2008).

    PubMed  Google Scholar 

  264. 264.

    Kerbeshian, J. & Burd, L. Epidemiology and comorbidity. The North Dakota prevalence studies of Tourette syndrome and other developmental disorders. Adv. Neurol. 58, 67–74 (1992).

    CAS  PubMed  Google Scholar 

  265. 265.

    Schlander, M., Schwarz, O., Rothenberger, A. & Roessner, V. Tic disorders: administrative prevalence and co-occurrence with attention-deficit/hyperactivity disorder in a German community sample. Eur. Psychiatry 26, 370–374 (2011).

    CAS  PubMed  Google Scholar 

  266. 266.

    Martino, D., Macerollo, A. & Leckman, J. F. Neuroendocrine aspects of Tourette syndrome. Int. Rev. Neurobiol. 112, 239–279 (2013).

    CAS  PubMed  Google Scholar 

  267. 267.

    Robertson, M. M. The Gilles de la Tourette syndrome: the current status. Arch. Dis. Child. Educ. Pract. Ed. 97, 166–175 (2012).

    PubMed  Google Scholar 

  268. 268.

    Motlagh, M. G. et al. Severe psychosocial stress and heavy cigarette smoking during pregnancy: an examination of the pre- and perinatal risk factors associated with ADHD and Tourette syndrome. Eur. Child. Adolesc. Psychiatry 19, 755–764 (2010).

    PubMed  PubMed Central  Google Scholar 

  269. 269.

    Dalsgaard, S., Waltoft, B. L., Leckman, J. F. & Mortensen, P. B. Maternal history of autoimmune disease and later development of Tourette syndrome in offspring. J. Am. Acad. Child. Adolesc. Psychiatry 54, 495–501.e1 (2015).

    PubMed  Google Scholar 

  270. 270.

    Fahim, C. et al. Somatosensory-motor bodily representation cortical thinning in Tourette: effects of tic severity, age and gender. Cortex 46, 750–760 (2010).

    PubMed  Google Scholar 

  271. 271.

    Lichter, D. G., Jackson, L. A. & Schachter, M. Clinical evidence of genomic imprinting in Tourette’s syndrome. Neurology 45, 924–928 (1995).

    CAS  PubMed  Google Scholar 

  272. 272.

    Mataix-Cols, D. et al. Familial risks of Tourette syndrome and chronic tic disorders. A population-based cohort study. JAMA Psychiatry 72, 787–793 (2015).

    PubMed  Google Scholar 

  273. 273.

    Zilhao, N. R. et al. Heritability of tic disorders: a twin-family study. Psychol. Med. 47, 1085–1096 (2017).

    CAS  PubMed  Google Scholar 

  274. 274.

    Yu, D. et al. Interrogating the genetic determinants of Tourette’s syndrome and other tic disorders through genome-wide association studies. Am. J. Psychiatry 176, 217–227 (2019).

    PubMed  Google Scholar 

  275. 275.

    Schwabe, M. J. & Konkol, R. J. Menstrual cycle-related fluctuations of tics in Tourette syndrome. Pediatr. Neurol. 8, 43–46 (1992).

    CAS  PubMed  Google Scholar 

  276. 276.

    Martino, D. & Hedderly, T. Tics and stereotypies: a comparative clinical review. Parkinsonism Relat. Disord. 59, 117–124 (2019).

    PubMed  Google Scholar 

  277. 277.

    Santangelo, S. L. et al. Tourette’s syndrome: what are the influences of gender and comorbid obsessive–compulsive disorder? J. Am. Acad. Child. Adolesc. Psychiatry 33, 795–804 (1994).

    CAS  PubMed  Google Scholar 

  278. 278.

    Rodgers, S. et al. Sex-related and non-sex-related comorbidity subtypes of tic disorders: a latent class approach. Eur. J. Neurol. 21, 700–707 (2014).

    CAS  PubMed  Google Scholar 

  279. 279.

    Lewin, A. B. et al. A phenomenological investigation of women with Tourette or other chronic tic disorders. Compr. Psychiatry 53, 525–534 (2012).

    PubMed  Google Scholar 

  280. 280.

    Schuerholz, L. J., Cutting, L., Mazzocco, M. M., Singer, H. S. & Denckla, M. B. Neuromotor functioning in children with Tourette syndrome with and without attention deficit hyperactivity disorder. J. Child. Neurol. 12, 438–442 (1997).

    CAS  PubMed  Google Scholar 

  281. 281.

    Kompoliti, K., Goetz, C. G., Leurgans, S., Raman, R. & Comella, C. L. Estrogen, progesterone, and tic severity in women with Gilles de la Tourette syndrome. Neurology 57, 1519 (2001).

    CAS  PubMed  Google Scholar 

  282. 282.

    Peterson, B. S. et al. Steroid hormones and CNS sexual dimorphisms modulate symptom expression in Tourette’s syndrome. Psychoneuroendocrinology 17, 553–563 (1992).

    PubMed  Google Scholar 

  283. 283.

    Pauls, D. L., Leckman, J. F., Towbin, K. E., Zahner, G. E. & Cohen, D. J. A possible genetic relationship exists between Tourette’s syndrome and obsessive-compulsive disorder. Psychopharmacol. Bull. 22, 730–733 (1986).

    CAS  PubMed  Google Scholar 

  284. 284.

    Burd, L. et al. Long-term follow-up of an epidemiologically defined cohort of patients with Tourette syndrome. J. Child. Neurol. 16, 431–437 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

E.M. and S.M. conceived the paper. All authors contributed to the literature search and to the writing. S.M. designed the figures. E.M. provided guidance for specific areas of competence and the overall manuscript outline.

Corresponding author

Correspondence to Elena Moro.

Ethics declarations

Competing interests

E.M. has received honoraria for lecturing from Medtronic and for acting as a consultant from Medtronic and Newronika. She has received research grants from Merz and educational grants from Boston, Homeperf and LVL. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks G. Defazio and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meoni, S., Macerollo, A. & Moro, E. Sex differences in movement disorders. Nat Rev Neurol 16, 84–96 (2020). https://doi.org/10.1038/s41582-019-0294-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing