Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cannabinoids and the expanded endocannabinoid system in neurological disorders

Abstract

Anecdotal evidence that cannabis preparations have medical benefits together with the discovery of the psychotropic plant cannabinoid Δ9-tetrahydrocannabinol (THC) initiated efforts to develop cannabinoid-based therapeutics. These efforts have been marked by disappointment, especially in relation to the unwanted central effects that result from activation of cannabinoid receptor 1 (CB1), which have limited the therapeutic use of drugs that activate or inactivate this receptor. The discovery of CB2 and of endogenous cannabinoid receptor ligands (endocannabinoids) raised new possibilities for safe targeting of this endocannabinoid system. However, clinical success has been limited, complicated by the discovery of an expanded endocannabinoid system — known as the endocannabinoidome — that includes several mediators that are biochemically related to the endocannabinoids, and their receptors and metabolic enzymes. The approvals of nabiximols, a mixture of THC and the non-psychotropic cannabinoid cannabidiol, for the treatment of spasticity and neuropathic pain in multiple sclerosis, and of purified botanical cannabidiol for the treatment of otherwise untreatable forms of paediatric epilepsy, have brought the therapeutic use of cannabinoids and endocannabinoids in neurological diseases into the limelight. In this Review, we provide an overview of the endocannabinoid system and the endocannabinoidome before discussing their involvement in and clinical relevance to a variety of neurological disorders, including Parkinson disease, Alzheimer disease, Huntington disease, multiple sclerosis, amyotrophic lateral sclerosis, traumatic brain injury, stroke, epilepsy and glioblastoma.

Key points

  • Cannabinoid receptors 1 and 2 (CB1 and CB2), the two endocannabinoids anandamide and 2-arachidonoylglycerol, and endocannabinoid anabolic and catabolic enzymes form the endocannabinoid system.

  • Endocannabinoid signalling is involved in regulation of cell, tissue, organ and organism homeostasis, brain development, neurotransmitter release and synaptic plasticity, and cytokine release from microglia, and hence is implicated in multiple neurological disorders.

  • Endocannabinoid signalling is altered in most neurological disorders; enhancers or inhibitors of endocannabinoid signalling can have therapeutic effects in preclinical models, depending on disease characteristics and the roles of CB1 and CB2.

  • Endocannabinoids can activate different receptors and their biosynthetic and catabolic pathways are often shared with other mediators. Consequently, the system is considered to be part of an expanded signalling system, the endocannabinoidome.

  • The endocannabinoidome hinders therapeutic targeting of endocannabinoid anabolic or catabolic enzymes but inhibitors of endocannabinoid inactivation and allosteric modulators of CB1 and CB2 are being actively investigated in neurological disorders.

  • The existence of the endocannabinoidome explains in part why some non-euphoric cannabinoids, which affect several endocannabinoidome proteins, are useful for the treatment of neurological disorders, such as multiple sclerosis and epilepsy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The expanded endocannabinoid system.
Fig. 2: Neurophysiological roles of the expanded endocannabinoid system.
Fig. 3: Endocannabinoidome receptors in acute or degenerative neurological disorders.

References

  1. 1.

    Alexander, S. P. Therapeutic potential of cannabis-related drugs. Prog. Neuropsychopharmacol. Biol. Psychiatry 64, 157–166 (2016).

    CAS  PubMed  Google Scholar 

  2. 2.

    Plasse, T. F. Clinical use of dronabinol. J. Clin. Oncol. 9, 2079–2080 (1991).

    CAS  PubMed  Google Scholar 

  3. 3.

    Novotna, A. et al. A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols* (Sativex®), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. Eur. J. Neurol. 18, 1122–1131 (2011). The clinical study that led to the approval of nabiximols for the treatment of MS spasticity.

    CAS  PubMed  Google Scholar 

  4. 4.

    Keating, G. M. Delta-9-tetrahydrocannabinol/cannabidiol oromucosal spray (Sativex®): a review in multiple sclerosis-related spasticity. Drugs 77, 563–574 (2017).

    CAS  PubMed  Google Scholar 

  5. 5.

    Mechoulam, R. et al. The structure of cannabidiol. Tetrahedron 19, 2073–2078 (1963).

    CAS  PubMed  Google Scholar 

  6. 6.

    Mechoulam, R. & Gaoni, Y. A total synthesis of DL-Δ1-tetrahydrocannabinol, the active constituent of hashish. J. Am. Chem. Soc. 87, 3273–3275 (1965).

    CAS  PubMed  Google Scholar 

  7. 7.

    Matsuda, L. A. et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

    CAS  Google Scholar 

  8. 8.

    Munro, S., Thomas, K. L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65 (1993).

    CAS  PubMed  Google Scholar 

  9. 9.

    Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992). The first study that led to the identification of an endogenous ligand of cannabinoid receptors.

    CAS  Google Scholar 

  10. 10.

    Mechoulam, R. et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83–90 (1995).

    CAS  PubMed  Google Scholar 

  11. 11.

    Sugiura, T. et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97 (1995).

    CAS  PubMed  Google Scholar 

  12. 12.

    Di Marzo, V. & Fontana, A. Anandamide, an endogenous cannabinomimetic eicosanoid: ‘killing two birds with one stone. Prostaglandins Leukot. Essent. Fatty Acids 53, 1–11 (1995).

    PubMed  Google Scholar 

  13. 13.

    Mazzola, C., Micale, V. & Drago, F. Amnesia induced by beta-amyloid fragments is counteracted by cannabinoid CB1 receptor blockade. Eur. J. Pharmacol. 47, 219–225 (2003). The first evidence that CB1 receptors contribute to cognitive impairement in a mouse model of AD.

    Google Scholar 

  14. 14.

    Cerri, S. et al. Neuroprotective potential of adenosine A2A and cannabinoid CB1 receptor antagonists in an animal model of Parkinson disease. J. Neuropathol. Exp. Neurol. 73, 414–424 (2014).

    CAS  PubMed  Google Scholar 

  15. 15.

    Lunn, C. A. et al. Biology and therapeutic potential of cannabinoid CB2 receptor inverse agonists. Br. J. Pharmacol. 153, 226–239 (2008).

    CAS  PubMed  Google Scholar 

  16. 16.

    Nguyen, T. et al. Allosteric modulation: an alternate approach targeting the cannabinoid CB1 receptor. Med. Res. Rev. 37, 441–474 (2017).

    CAS  PubMed  Google Scholar 

  17. 17.

    Di Marzo, V. New approaches and challenges to targeting the endocannabinoid system. Nat. Rev. Drug Discov. 17, 623–639 (2018).

    PubMed  Google Scholar 

  18. 18.

    Lucas, C. J., Galettis, P. & Schneider, J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br. J. Clin. Pharmacol. 84, 2477–2482 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Abi-Jaoude, E. et al. Preliminary evidence on cannabis effectiveness and tolerability for adults with Tourette syndrome. J. Neuropsychiatry Clin. Neurosci. 29, 391–400 (2017).

    PubMed  Google Scholar 

  20. 20.

    Kerai, A., Sim, T. F. & Emmerton, L. Medical cannabis: a needs analysis for people with epilepsy. Complement Ther. Clin. Pract. 33, 43–48 (2018).

    PubMed  Google Scholar 

  21. 21.

    Stetten, N. et al. The level of evidence of medical marijuana use for treating disabilities: a scoping review. Disabil. Rehabil. 20, 1–12 (2018).

    Google Scholar 

  22. 22.

    Adams, R., Pease, D. C., Clark, J. H. & Baker, B. R. Structure of cannabinol. I. Preparation of an isomer, 3-hydroxy-1-n-amyl-6,6,9-trimethyl-6-dibenzopyran. J. Am. Chem. Soc. 62, 2197–2200 (1940).

    CAS  Google Scholar 

  23. 23.

    Little, P. J. et al. Pharmacology and stereoselectivity of structurally novel cannabinoids in mice. J. Pharmacol. Exp. Ther. 247, 1046–1051 (1988).

    CAS  PubMed  Google Scholar 

  24. 24.

    Beardsley, P. M., Scimeca, J. A. & Martin, B. R. Studies on the agonistic activity of delta 9-11-tetrahydrocannabinol in mice, dogs and rhesus monkeys and its interactions with delta 9-tetrahydrocannabinol. J. Pharmacol. Exp. Ther. 241, 521–526 (1987).

    CAS  PubMed  Google Scholar 

  25. 25.

    Turner, S. E. et al. Molecular pharmacology of phytocannabinoids. Prog. Chem. Org. Nat. Prod. 103, 61–101 (2017).

    CAS  PubMed  Google Scholar 

  26. 26.

    Mechoulam, R. et al. Chemical basis of hashish activity. Science 169, 611–612 (1970).

    CAS  PubMed  Google Scholar 

  27. 27.

    Devinsky, O. et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol. 15, 270–278 (2016).

    CAS  PubMed  Google Scholar 

  28. 28.

    Devinsky, O. et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N. Engl. J. Med. 376, 2011–2020 (2017). One of the clinical trials that led to approval of botanical cannabidiol for the treatment of rare forms of paediatric epilepsy.

    CAS  PubMed  Google Scholar 

  29. 29.

    Devane, W. A. et al. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 34, 605–613 (1988). The first evidence for the existence of a specific binding site for THC.

    CAS  PubMed  Google Scholar 

  30. 30.

    Bisogno, T. et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol. 163, 463–468 (2003). Identification of the first endocannabinoid biosythetic enzymes.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Cravatt, B. F. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83–87 (1996). Identification of the first endocannabinoid-degrading enzyme.

    CAS  PubMed  Google Scholar 

  32. 32.

    Dinh, T. P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl Acad. Sci. USA 99, 10819–10824 (2002).

    CAS  PubMed  Google Scholar 

  33. 33.

    Okamoto, Y. et al. Molecular characterization of a phospholipase D generating anandamide and its congeners. J. Biol. Chem. 279, 5298–5305 (2004).

    CAS  PubMed  Google Scholar 

  34. 34.

    Jung, K. M. et al. An amyloid beta42-dependent deficit in anandamide mobilization is associated with cognitive dysfunction in Alzheimer’s disease. Neurobiol. Aging 33, 1522–1532 (2012).

    CAS  PubMed  Google Scholar 

  35. 35.

    Altamura, C. et al. Elevation of plasma 2-arachidonoylglycerol levels in Alzheimer’s disease patients as a potential protective mechanism against neurodegenerative decline. J. Alzheimers Dis. 46, 497–506 (2015).

    CAS  PubMed  Google Scholar 

  36. 36.

    Di Iorio et al. The endocannabinoid system: a putative role in neurodegenerative diseases. Int. J. High Risk Behav. Addict. 2, 100–106 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Aymerich, M. S. et al. Cannabinoid pharmacology/therapeutics in chronic degenerative disorders affecting the central nervous system. Biochem. Pharmacol. 157, 67–84 (2018).

    CAS  PubMed  Google Scholar 

  38. 38.

    Mulder, J. et al. Molecular reorganization of endocannabinoid signalling in Alzheimer’s disease. Brain 134, 1041–1060 (2011). The first molecular evidence that endocannabinoid signalling might be overactive in AD.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Celorrio, M. et al. Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson’s disease. Brain Behav. Immun. 57, 94–105 (2016).

    CAS  PubMed  Google Scholar 

  40. 40.

    D’Addario, C. et al. Epigenetic regulation of fatty acid amide hydrolase in Alzheimer disease. PLOS ONE 7, e39186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Bilsland, L. G. et al. Increasing cannabinoid levels by pharmacological and genetic manipulation delay disease progression in SOD1 mice. FASEB J. 20, 1003–1005 (2006).

    CAS  PubMed  Google Scholar 

  42. 42.

    Di Marzo, V. Targeting the endocannabinoid system: to enhance or reduce? Nat. Rev. Drug Discov. 7, 438–455 (2008).

    PubMed  Google Scholar 

  43. 43.

    Kawahara, H. et al. Inhibition of fatty acid amide hydrolase unmasks CB1 receptor and TRPV1 channel-mediated modulation of glutamatergic synaptic transmission in midbrain periaqueductal grey. Br. J. Pharmacol. 163, 1214–1222 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Benito, C. et al. beta-Amyloid exacerbates inflammation in astrocytes lacking fatty acid amide hydrolase through a mechanism involving PPAR-alpha, PPAR-gamma and TRPV1, but not CB(1) or CB(2) receptors. Br. J. Pharmacol. 166, 1474–1489 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Hansen, H. S. et al. GPR119 as a fat sensor. Trends. Pharmacol. Sci. 33, 374–381 (2012).

    CAS  PubMed  Google Scholar 

  46. 46.

    Luchicchi, A. et al. Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR-alpha nuclear receptors. Addict. Biol. 15, 277–288 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Blankman, J. L., Simon, G. M. & Cravatt, B. F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 14, 1347–1356 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Zygmunt, P. M. et al. Monoacylglycerols activate TRPV1–a link between phospholipase C and TRPV1. PLOS ONE 8, e81618 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kozak, K. R., Prusakiewicz, J. J. & Marnett, L. J. Oxidative metabolism of endocannabinoids by COX-2. Curr. Pharm. Des. 10, 659–667 (2004).

    CAS  PubMed  Google Scholar 

  50. 50.

    Valdeolivas, S. et al. The inhibition of 2-arachidonoyl-glycerol (2-AG) biosynthesis, rather than enhancing striatal damage, protects striatal neurons from malonate-induced death: a potential role of cyclooxygenase-2-dependent metabolism of 2-AG. Cell Death Dis. 4, e862 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Liang, Y. et al. Identification and pharmacological characterization of the prostaglandin FP receptor and FP receptor variant complexes. Br. J. Pharmacol. 154, 1079–1093 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Nakane, S. et al. 2-Arachidonoyl-sn-glycero-3-phosphate, an arachidonic acid-containing lysophosphatidic acid: occurrence and rapid enzymatic conversion to 2-arachidonoyl-sn-glycerol, a cannabinoid receptor ligand, in rat brain. Arch. Biochem. Biophys. 402, 51–58 (2002).

    CAS  PubMed  Google Scholar 

  53. 53.

    Tsuboi, K. et al. Predominant expression of lysosomal N-acylethanolamine-hydrolyzing acid amidase in macrophages revealed by immunochemical studies. Biochim. Biophys. Acta 1771, 623–632 (2007).

    CAS  PubMed  Google Scholar 

  54. 54.

    Navia-Paldanius, D. et al. Increased tonic cannabinoid CB1R activity and brain region-specific desensitization of CB1R Gi/o signaling axis in mice with global genetic knockout of monoacylglycerol lipase. Eur. J. Pharm. Sci. 77, 180–188 (2015).

    CAS  PubMed  Google Scholar 

  55. 55.

    Imperatore, R. et al. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB(1)R signaling and anxiety-like behavior. J. Neurochem. 135, 799–813 (2015).

    CAS  PubMed  Google Scholar 

  56. 56.

    Nomura, D. K. et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem. Biol. 18, 846–856 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Piro, J. R. et al. A dysregulated endocannabinoid-eicosanoid network supports pathogenesis in a mouse model of Alzheimer’s disease. Cell. Rep. 1, 617–623 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Saghatelian, A. et al. A FAAH-regulated class of N-acyl taurines that activates TRP ion channels. Biochemistry 45, 9007–9015 (2006).

    CAS  PubMed  Google Scholar 

  59. 59.

    Verhoeckx, K. C. et al. Presence, formation and putative biological activities of N-acyl serotonins, a novel class of fatty-acid derived mediators, in the intestinal tract. Biochim. Biophys. Acta 1811, 578–586 (2011). Identification of N-acyl-serotonins, endocannabinoidome molecules with a dual mechanism of action.

    CAS  PubMed  Google Scholar 

  60. 60.

    Chu, C. J. et al. N-oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J. Biol. Chem. 278, 13633–13639 (2003).

    CAS  PubMed  Google Scholar 

  61. 61.

    Di Marzo, V. & Wang, J. (eds) The Endocannabinoidome: The World of Endocannabinoids and Related Mediators (Elsevier, 2015).

  62. 62.

    Morales, P., Goya, P. & Jagerovic, N. Emerging strategies targeting CB2 cannabinoid receptor: biased agonism and allosterism. Biochem. Pharmacol. 157, 8–17 (2018).

    CAS  PubMed  Google Scholar 

  63. 63.

    Dopart, R. et al. Allosteric modulators of cannabinoid receptor 1: developing compounds for improved specificity. Drug Metab. Rev. 50, 3–13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Bauer, M. et al. Identification and quantification of a new family of peptide endocannabinoids (Pepcans) showing negative allosteric modulation at CB1 receptors. J. Biol. Chem. 287, 36944–36967 (2012). Identification of the first endogenous peptidic allosteric modulators of cannabinoid receptors.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Pamplona, F. A. et al. Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor. Proc. Natl Acad. Sci. USA 109, 21134–21139 (2012).

    CAS  PubMed  Google Scholar 

  66. 66.

    Vallee, M. et al. Pregnenolone can protect the brain from cannabis intoxication. Science 343, 94–98 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Cristino, L., Imperatore, R. & Di Marzo, V. Techniques for the cellular and subcellular localization of endocannabinoid receptors and enzymes in the mammalian brain. Methods. Enzymol. 593, 61–98 (2017).

    CAS  PubMed  Google Scholar 

  68. 68.

    Hu, S. S. & Mackie, K. Distribution of the endocannabinoid system in the central nervous system. Handb. Exp. Pharmacol. 231, 59–93 (2015).

    CAS  PubMed  Google Scholar 

  69. 69.

    Katona, I. & Freund, T. F. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat. Med. 14, 923–930 (2008).

    CAS  PubMed  Google Scholar 

  70. 70.

    Matyas, F. et al. Identification of the sites of 2-arachidonoylglycerol synthesis and action imply retrograde endocannabinoid signaling at both GABAergic and glutamatergic synapses in the ventral tegmental area. Neuropharmacology 54, 95–107 (2008).

    CAS  PubMed  Google Scholar 

  71. 71.

    Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592 (2001). The first evidence that CB1 and endocannabinoids act as retrograde neuromodulators of synaptic plasticity.

    CAS  PubMed  Google Scholar 

  72. 72.

    Araque, A. et al. Synaptic functions of endocannabinoid signaling in health and disease. Neuropharmacology 124, 13–24 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Marinelli, S. et al. The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self-inhibition in neocortical interneurons. J. Neurosci. 28, 13532–13541 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Koch, M. et al. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 519, 45–50 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Morello, G. et al. Orexin-A represses satiety-inducing POMC neurons and contributes to obesity via stimulation of endocannabinoid signaling. Proc. Natl Acad. Sci. USA 113, 4759–4764 (2016).

    CAS  PubMed  Google Scholar 

  76. 76.

    Benard, G. et al. Mitochondrial CB(1) receptors regulate neuronal energy metabolism. Nat. Neurosci. 15, 558–564 (2012). Identification of putative mitochondrial CB1 receptors.

    CAS  PubMed  Google Scholar 

  77. 77.

    Hebert-Chatelain, E. et al. A cannabinoid link between mitochondria and memory. Nature 539, 555–559 (2016).

    CAS  PubMed  Google Scholar 

  78. 78.

    Bosier, B. et al. Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes. Mol. Metab. 2, 393–404 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Robin, L. M. et al. Astroglial CB1 receptors determine synaptic D-serine availability to enable recognition memory. Neuron 98, 935–944.e5 (2018).

    CAS  PubMed  Google Scholar 

  80. 80.

    Prenderville, J. A., Kelly, Á. M. & Downer, E. J. The role of cannabinoids in adult neurogenesis. Br. J. Pharmacol. 172, 3950–3963 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Cassano, T. et al. Cannabinoid receptor 2 signaling in neurodegenerative disorders: from pathogenesis to a promising therapeutic target. Front. Neurosci. 11, 30 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Palazuelos, J. et al. CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling. J. Biol. Chem. 287, 1198–1209 (2012).

    CAS  PubMed  Google Scholar 

  83. 83.

    Chung, Y. C. et al. CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson’s disease. Exp. Mol. Med. 48, e205 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Xi, Z. X. et al. Brain cannabinoid CB(2) receptors modulate cocaine’s actions in mice. Nat. Neurosci. 14, 1160–1166 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Navarrete, F. et al. Role of CB2 cannabinoid receptors in the rewarding, reinforcing, and physical effects of nicotine. Neuropsychopharmacology 38, 2515–2524 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Marchalant, Y. et al. Validating antibodies to the cannabinoid CB2 receptor: antibody sensitivity is not evidence of antibody specificity. J. Histochem. Cytochem. 62, 395–404 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Soethoudt, M. et al. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat. Commun. 8, 13958 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Stempel, A. V. et al. Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampus. Neuron 90, 795–809 (2016). The first molecular study to suggest a mechanism of action for CB2 receptors in neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Cristino, L. et al. Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 139, 1405–1415 (2006).

    CAS  PubMed  Google Scholar 

  90. 90.

    Cristino, L. et al. Immunohistochemical localization of anabolic and catabolic enzymes for anandamide and other putative endovanilloids in the hippocampus and cerebellar cortex of the mouse brain. Neuroscience 151, 955–968 (2008).

    CAS  PubMed  Google Scholar 

  91. 91.

    Edwards, J. G. TRPV1 in the central nervous system: synaptic plasticity, function, and pharmacological implications. Prog. Drug Res. 68, 77–104 (2014).

    CAS  PubMed  Google Scholar 

  92. 92.

    Sun, F. J. et al. Increased expression of TRPV1 in the cortex and hippocampus from patients with mesial temporal lobe epilepsy. J. Mol. Neurosci. 49, 182–193 (2013).

    CAS  PubMed  Google Scholar 

  93. 93.

    Bhaskaran, M. D. & Smith, B. N. Cannabinoid-mediated inhibition of recurrent excitatory circuitry in the dentate gyrus in a mouse model of temporal lobe epilepsy. PLOS ONE 5, e10683 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    Chavez, A. E., Chiu, C. Q. & Castillo, P. E. TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Nat. Neurosci. 13, 1511–1518 (2010). Important evidence for a functional role of TRPV1 in neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Marrone, M. C. et al. TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice. Nat. Commun. 10, 15292 (2017).

    Google Scholar 

  96. 96.

    Stampanoni Bassi, M. et al. Transient receptor potential vanilloid 1 modulates central inflammation in multiple sclerosis. Front. Neurol. 10, 30 (2019).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Villapol, S. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol. Neurobiol. 38, 121–132 (2018).

    CAS  PubMed  Google Scholar 

  98. 98.

    Blednov, Y. A. et al. Peroxisome proliferator-activated receptors alpha and gamma are linked with alcohol consumption in mice and withdrawal and dependence in humans. Alcohol Clin. Exp. Res. 39, 136–145 (2015).

    CAS  PubMed  Google Scholar 

  99. 99.

    Donvito, G. et al. N-oleoyl-glycine reduces nicotine reward and withdrawal in mice. Neuropharmacology 148, 320–331 (2018). Identification of an endogenous nicotine anti-additive molecule.

    PubMed  Google Scholar 

  100. 100.

    Laleh, P. et al. Oleoylethanolamide increases the expression of PPAR-alpha and reduces appetite and body weight in obese people: a clinical trial. Appetite 128, 44–49 (2018).

    PubMed  Google Scholar 

  101. 101.

    Quintanilla, R. A., Utreras, E. & Cabezas-Opazo, F. A. Role of PPAR gamma in the differentiation and function of neurons. PPAR Res. 2014, 768594 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Sylantyev, S. et al. Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc. Natl Acad. Sci. USA 110, 5193–5198 (2013).

    CAS  PubMed  Google Scholar 

  103. 103.

    Kaplan, J. S. et al. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proc. Natl Acad. Sci. USA 114, 11229–11234 (2017).

    CAS  PubMed  Google Scholar 

  104. 104.

    McHugh, D. et al. siRNA knockdown of GPR18 receptors in BV-2 microglia attenuates N-arachidonoyl glycine-induced cell migration. J. Mol. Signal. 7, 10 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Penumarti, A. & Abdel-Rahman, A. A. The novel endocannabinoid receptor GPR18 is expressed in the rostral ventrolateral medulla and exerts tonic restraining influence on blood pressure. J. Pharmacol. Exp. Ther. 349, 29–38 (2014).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Sharkey, K. A. & Wiley, J. W. The role of the endocannabinoid system in the brain-gut axis. Gastroenterology 151, 252–266 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Cani, P. D. et al. Endocannabinoids–at the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol. 12, 133–143 (2016).

    CAS  PubMed  Google Scholar 

  108. 108.

    Muccioli, G. G. et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol. Syst. Biol. 6, 392 (2010). One of the first studies to link the endocannabinoid system with the gut microbiota.

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Mehrpouya-Bahrami, P. et al. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci. Rep. 7, 15645 (2017).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Guida, F. et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav. Immun. 67, 230–245 (2018). Discovery of the potential role of intestinal N-acyl-serotonins in antibiotic-induced depression.

    CAS  PubMed  Google Scholar 

  111. 111.

    Rousseaux, C. et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat. Med. 13, 35–37 (2007). Identification of an important potential link between probiotic therapeutic effects and the endocannabinoid system.

    CAS  PubMed  Google Scholar 

  112. 112.

    Geurts, L. et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat. Commun. 6, 6495 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Janakiraman, M. & Krishnamoorthy, G. Emerging role of diet and microbiota interactions in neuroinflammation. Front. Immunol. 9, 2067 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Garcia-Arencibia, M. et al. Cannabinoid CB1 receptors are early downregulated followed by a further upregulation in the basal ganglia of mice with deletion of specific PARK genes. J. Neural Transm. Suppl. 73, 269–275 (2009).

    CAS  Google Scholar 

  115. 115.

    Walsh, S. et al. Loss of cannabinoid CB1 receptor expression in the 6-hydroxydopamine-induced nigrostriatal terminal lesion model of Parkinson’s disease in the rat. Brain Res. Bull. 81, 543–548 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Rojo-Bustamante, E. et al. The expression of cannabinoid type 1 receptor and 2-arachidonoyl glycerol synthesizing/degrading enzymes is altered in basal ganglia during the active phase of levodopa-induced dyskinesia. Neurobiol. Dis. 118, 64–75 (2018).

    CAS  PubMed  Google Scholar 

  117. 117.

    Van Laere, K. et al. Regional changes in type 1 cannabinoid receptor availability in Parkinson’s disease in vivo. Neurobiol. Aging 33, 620.e1–620.e8 (2012).

    Google Scholar 

  118. 118.

    Navarrete, F. et al. Cannabinoid CB1 and CB2 receptors, and monoacylglycerol lipase gene expression alterations in the basal ganglia of patients with Parkinson’s disease. Neurotherapeutics 15, 459–469 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Gomez-Galvez, Y. et al. Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 64, 200–208 (2016).

    CAS  PubMed  Google Scholar 

  120. 120.

    Morgese, M. G. et al. Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson’s disease: role of CB(1) and TRPV1 receptors. Exp. Neurol. 208, 110–119 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Fox, S. H. et al. Stimulation of cannabinoid receptors reduces levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov. Disord. 17, 1180–1187 (2002).

    PubMed  Google Scholar 

  122. 122.

    van der Stelt, M. et al. A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson’s disease. FASEB J. 19, 1140–1142 (2005).

    PubMed  Google Scholar 

  123. 123.

    Fernandez-Espejo, E. et al. Cannabinoid CB1 antagonists possess antiparkinsonian efficacy only in rats with very severe nigral lesion in experimental parkinsonism. Neurobiol. Dis. 18, 591–601 (2005).

    CAS  PubMed  Google Scholar 

  124. 124.

    Cao, X. et al. Blockade of cannabinoid type 1 receptors augments the antiparkinsonian action of levodopa without affecting dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys. J. Pharmacol. Exp. Ther. 323, 318–326 (2007).

    CAS  PubMed  Google Scholar 

  125. 125.

    Garcia-Arencibia, M. et al. Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson’s disease: importance of antioxidant and cannabinoid receptor-independent properties. Brain Res. 1134, 162–170 (2007).

    CAS  PubMed  Google Scholar 

  126. 126.

    Shi, J. et al. AM1241 alleviates MPTP-induced Parkinson’s disease and promotes the regeneration of DA neurons in PD mice. Oncotarget 8, 67837–67850 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Pisani, A. et al. High endogenous cannabinoid levels in the cerebrospinal fluid of untreated Parkinson’s disease patients. Ann. Neurol. 57, 777–779 (2005). The first data from human studies on the potential dysregulation of endocannabinoids in PD.

    PubMed  Google Scholar 

  128. 128.

    Gubellini, P. et al. Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J. Neurosci. 22, 6900–6907 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Di Marzo, V. et al. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson’s disease. FASEB J. 14, 1432–1438 (2000). The first evidence for a role of endocannabinoids in PD.

    PubMed  Google Scholar 

  130. 130.

    Pisani, V. et al. Dynamic changes of anandamide in the cerebrospinal fluid of Parkinson’s disease patients. Mov. Disord. 25, 920–924 (2010).

    PubMed  Google Scholar 

  131. 131.

    Fernandez-Suarez, D. et al. Monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model. Neurobiol. Aging 35, 2603–2616 (2014).

    CAS  PubMed  Google Scholar 

  132. 132.

    Esposito, E. et al. Neuroprotective activities of palmitoylethanolamide in an animal model of Parkinson’s disease. PLOS ONE 7, e41880 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Gonzalez-Aparicio, R. & Moratalla, R. Oleoylethanolamide reduces L-DOPA-induced dyskinesia via TRPV1 receptor in a mouse model of Parkinson s disease. Neurobiol. Dis. 62, 416–425 (2014).

    CAS  PubMed  Google Scholar 

  134. 134.

    Lastres-Becker, I. et al. Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson’s disease. Neurobiol. Dis. 19, 96–107 (2005).

    CAS  PubMed  Google Scholar 

  135. 135.

    Garcia, C. et al. Symptom-relieving and neuroprotective effects of the phytocannabinoid delta(9)-THCV in animal models of Parkinson’s disease. Br. J. Pharmacol. 163, 1495–1506 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Chagas, M. H. et al. Effects of cannabidiol in the treatment of patients with Parkinson’s disease: an exploratory double-blind trial. J. Psychopharmacol. 28, 1088–1098 (2014).

    PubMed  Google Scholar 

  137. 137.

    Sieradzan, K. A. et al. Cannabinoids reduce levodopa-induced dyskinesia in Parkinson’s disease: a pilot study. Neurology 57, 2108–2111 (2001).

    CAS  PubMed  Google Scholar 

  138. 138.

    Brotini, S., S.C., Schievano, C. & Guidi, L. Ultra-micronized palmitoylethanolamide: an efficacious adjuvant therapy for Parkinson’s disease. CNS Neurol. Disord. Drug Targets 16, 705–713 (2017).

    CAS  PubMed  Google Scholar 

  139. 139.

    Petrosino, S. & Di Marzo, V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. Br. J. Pharmacol. 174, 1349–1365 (2017).

    CAS  PubMed  Google Scholar 

  140. 140.

    Karkkaine, E., Tanila, H. & Laitinen, J. T. Functional autoradiography shows unaltered cannabinoid CB1 receptor signalling in hippocampus and cortex of APP/PS1 transgenic mice. CNS Neurol. Disord. Drug Targets 11, 1038–1044 (2012).

    CAS  PubMed  Google Scholar 

  141. 141.

    Maccarrone, M. et al. Early alteration of distribution and activity of hippocampal type-1 cannabinoid receptor in Alzheimer’s disease-like mice overexpressing the human mutant amyloid precursor protein. Pharmacol. Res. 130, 366–373 (2018).

    CAS  PubMed  Google Scholar 

  142. 142.

    Aso, E. et al. CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AbetaPP/PS1 mice. J. Alzheimers Dis. 35, 847–858 (2013).

    PubMed  Google Scholar 

  143. 143.

    Ramirez, B. G. et al. Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J. Neurosci. 25, 1904–1913 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Martin-Moreno, A. M. et al. Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease. Mol. Pharmacol. 79, 964–973 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Westlake, T. M. et al. Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience 63, 637–652 (1994).

    CAS  PubMed  Google Scholar 

  146. 146.

    Lee, J. H. et al. Intact cannabinoid CB1 receptors in the Alzheimer’s disease cortex. Neurochem. Int. 57, 985–989 (2010).

    CAS  PubMed  Google Scholar 

  147. 147.

    Ahmad, R. et al. In vivo type 1 cannabinoid receptor availability in Alzheimer’s disease. Eur. Neuropsychopharmacol. 24, 242–250 (2014).

    CAS  PubMed  Google Scholar 

  148. 148.

    Manuel, I. et al. Type-1 cannabinoid receptor activity during Alzheimer’s disease progression. J. Alzheimers Dis. 42, 761–766 (2014).

    CAS  PubMed  Google Scholar 

  149. 149.

    Esposito, G. et al. Opposing control of cannabinoid receptor stimulation on amyloid-beta-induced reactive gliosis: in vitro and in vivo evidence. J. Pharmacol. Exp. Ther. 322, 1144–1152 (2007).

    CAS  PubMed  Google Scholar 

  150. 150.

    Lopez, A. et al. Cannabinoid CB2 receptors in the mouse brain: relevance for Alzheimer’s disease. J. Neuroinflammation 15, 158 (2018).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Sheng, W. S. et al. Synthetic cannabinoid WIN55,212-2 inhibits generation of inflammatory mediators by IL-1beta-stimulated human astrocytes. Glia 49, 211–219 (2005).

    PubMed  Google Scholar 

  152. 152.

    Ehrhart, J. et al. Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J. Neuroinflammation 2, 29 (2005).

    PubMed  PubMed Central  Google Scholar 

  153. 153.

    Walter, L. et al. Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J. Neurosci. 23, 1398–1405 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Koppel, J. et al. CB2 receptor deficiency increases amyloid pathology and alters tau processing in a transgenic mouse model of Alzheimer’s disease. Mol. Med. 20, 29–36 (2014).

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Benito, C. et al. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J. Neurosci. 23, 11136–11141 (2003). The first evidence that the endocannabinoid system is altered in post-mortem brains from patients with AD.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Vazquez, C. et al. Endocannabinoid regulation of amyloid-induced neuroinflammation. Neurobiol. Aging 36, 3008–3019 (2015).

    CAS  PubMed  Google Scholar 

  157. 157.

    van der Stelt, M. et al. Endocannabinoids and beta-amyloid-induced neurotoxicity in vivo: effect of pharmacological elevation of endocannabinoid levels. Cell Mol. Life Sci. 63, 1410–1424 (2006).

    PubMed  Google Scholar 

  158. 158.

    Chen, R. et al. Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep. 2, 1329–1339 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Zhang, J. & Chen, C. Alleviation of neuropathology by inhibition of monoacylglycerol lipase in APP transgenic mice lacking CB2 receptors. Mol. Neurobiol. 55, 4802–4810 (2018).

    CAS  PubMed  Google Scholar 

  160. 160.

    Pihlaja, R. et al. Monoacylglycerol lipase inhibitor JZL184 reduces neuroinflammatory response in APdE9 mice and in adult mouse glial cells. J. Neuroinflammation 12, 81 (2015).

    PubMed  PubMed Central  Google Scholar 

  161. 161.

    D’Agostino, G. et al. Palmitoylethanolamide protects against the amyloid-beta25-35-induced learning and memory impairment in mice, an experimental model of Alzheimer disease. Neuropsychopharmacology 37, 1784–1792 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Bronzuoli, M. R. et al. Palmitoylethanolamide dampens reactive astrogliosis and improves neuronal trophic support in a triple transgenic model of Alzheimer’s disease: in vitro and in vivo evidence. Oxid. Med. Cell. Longev. 2018, 4720532 (2018).

    PubMed  PubMed Central  Google Scholar 

  163. 163.

    Esposito, G. et al. The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through Wnt/beta-catenin pathway rescue in PC12 cells. J. Mol. Med. 84, 253–258 (2006).

    CAS  PubMed  Google Scholar 

  164. 164.

    Cheng, D. et al. Long-term cannabidiol treatment prevents the development of social recognition memory deficits in Alzheimer’s disease transgenic mice. J. Alzheimers Dis. 42, 1383–1396 (2014).

    CAS  PubMed  Google Scholar 

  165. 165.

    Aso, E. et al. Cannabis-based medicine reduces multiple pathological processes in AbetaPP/PS1 mice. J. Alzheimers Dis. 43, 977–991 (2015).

    CAS  PubMed  Google Scholar 

  166. 166.

    Passmore, M. J. The cannabinoid receptor agonist nabilone for the treatment of dementia-related agitation. Int. J. Geriatr. Psychiatry 23, 116–117 (2008).

    PubMed  Google Scholar 

  167. 167.

    van den Elsen, G. A. et al. Tetrahydrocannabinol for neuropsychiatric symptoms in dementia: a randomized controlled trial. Neurology 84, 2338–2346 (2015).

    PubMed  PubMed Central  Google Scholar 

  168. 168.

    van den Elsen, G. A. H. et al. Tetrahydrocannabinol in behavioral disturbances in dementia: a crossover randomized controlled trial. Am. J. Geriatr. Psychiatry 23, 1214–1224 (2015).

    PubMed  Google Scholar 

  169. 169.

    van den Elsen, G. A. et al. Effects of tetrahydrocannabinol on balance and gait in patients with dementia: a randomised controlled crossover trial. J. Psychopharmacol. 31, 184–191 (2017).

    PubMed  Google Scholar 

  170. 170.

    Denovan-Wright, E. M. & Robertson, H. A. Cannabinoid receptor messenger RNA levels decrease in a subset of neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington’s disease mice. Neuroscience 98, 705–713 (2000).

    CAS  PubMed  Google Scholar 

  171. 171.

    Lastres-Becker, I. et al. Loss of mRNA levels, binding and activation of GTP-binding proteins for cannabinoid CB1 receptors in the basal ganglia of a transgenic model of Huntington’s disease. Brain Res. 929, 236–242 (2002).

    CAS  PubMed  Google Scholar 

  172. 172.

    Dowie, M. J. et al. Altered CB1 receptor and endocannabinoid levels precede motor symptom onset in a transgenic mouse model of Huntington’s disease. Neuroscience 163, 456–465 (2009).

    CAS  PubMed  Google Scholar 

  173. 173.

    Glass, M., Faull, R. L. & Dragunow, M. Loss of cannabinoid receptors in the substantia nigra in Huntington’s disease. Neuroscience 56, 523–527 (1993). The first evidence for defective endocannabinoid signalling in post-mortem brains from patients with HD.

    CAS  PubMed  Google Scholar 

  174. 174.

    Monory, K. et al. Genetic dissection of behavioural and autonomic effects of delta(9)-tetrahydrocannabinol in mice. PLOS Biol. 5, e269 (2007).

    PubMed  PubMed Central  Google Scholar 

  175. 175.

    Chiarlone, A. et al. A restricted population of CB1 cannabinoid receptors with neuroprotective activity. Proc. Natl Acad. Sci. USA 111, 8257–8262 (2014). Identification that CB1 receptors in only glutamatergic neurons have a neuroprotective role in HD.

    CAS  PubMed  Google Scholar 

  176. 176.

    Ruiz-Calvo, A. et al. Pathway-specific control of striatal neuron vulnerability by corticostriatal cannabinoid CB1 receptors. Cereb. Cortex 28, 307–322 (2018).

    PubMed  Google Scholar 

  177. 177.

    Mievis, S., Blum, D. & Ledent, C. Worsening of Huntington disease phenotype in CB1 receptor knockout mice. Neurobiol. Dis. 42, 524–529 (2011).

    CAS  PubMed  Google Scholar 

  178. 178.

    Palazuelos, J. et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain 132, 3152–3164 (2009).

    PubMed  Google Scholar 

  179. 179.

    Bouchard, J. et al. Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease. J. Neurosci. 32, 18259–18268 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Sagredo, O. et al. Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington’s disease. Glia 57, 1154–1167 (2009).

    PubMed  PubMed Central  Google Scholar 

  181. 181.

    Pietropaolo, S. et al. Chronic cannabinoid receptor stimulation selectively prevents motor impairments in a mouse model of Huntington’s disease. Neuropharmacology 89, 368–374 (2015).

    CAS  PubMed  Google Scholar 

  182. 182.

    Bisogno, T. et al. Symptom-related changes of endocannabinoid and palmitoylethanolamide levels in brain areas of R6/2 mice, a transgenic model of Huntington’s disease. Neurochem. Int. 52, 307–313 (2008).

    CAS  PubMed  Google Scholar 

  183. 183.

    Bari, M. et al. In vitro and in vivo models of Huntington’s disease show alterations in the endocannabinoid system. FEBS J. 280, 3376–3388 (2013).

    CAS  PubMed  Google Scholar 

  184. 184.

    Battista, N. et al. Severe deficiency of the fatty acid amide hydrolase (FAAH) activity segregates with the Huntington’s disease mutation in peripheral lymphocytes. Neurobiol. Dis. 27, 108–116 (2007).

    CAS  PubMed  Google Scholar 

  185. 185.

    Lastres-Becker, I. et al. Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of Huntington’s disease. J. Neurochem. 84, 1097–1109 (2003).

    CAS  PubMed  Google Scholar 

  186. 186.

    Sagredo, O. et al. Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV1 and adenosine A2A receptors. Eur. J. Neurosci. 26, 843–851 (2007).

    PubMed  Google Scholar 

  187. 187.

    Valdeolivas, S. et al. Neuroprotective properties of cannabigerol in Huntington’s disease: studies in R6/2 mice and 3-nitropropionate-lesioned mice. Neurotherapeutics 12, 185–199 (2015).

    CAS  PubMed  Google Scholar 

  188. 188.

    Sagredo, O., Pazos, M. R., Valdeolivas, S. & Fernandez-Ruiz, J. Cannabinoids: novel medicines for the treatment of Huntington’s disease. Recent Pat. CNS Drug Discov. 7, 41–48 (2012).

    CAS  PubMed  Google Scholar 

  189. 189.

    Lopez-Sendon Moreno, J. L. et al. A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease. J. Neurol. 263, 1390–1400 (2016).

    CAS  PubMed  Google Scholar 

  190. 190.

    Saft, C. et al. Cannabinoids for treatment of dystonia in Huntington’s disease. J. Huntingt. Dis. 7, 167–173 (2018).

    CAS  Google Scholar 

  191. 191.

    Consroe, P. et al. Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol. Biochem. Behav. 40, 701–708 (1991).

    CAS  PubMed  Google Scholar 

  192. 192.

    Curtis, A. et al. A pilot study using nabilone for symptomatic treatment in Huntington’s disease. Mov. Disord. 24, 2254–2259 (2009).

    PubMed  Google Scholar 

  193. 193.

    Muller-Vahl, K. R. et al. Treatment of Tourette’s syndrome with delta-9-tetrahydrocannabinol. Am. J. Psychiatry 156, 495 (1999). The first evidence that THC might have beneficial effect in Tourette syndrome.

    CAS  PubMed  Google Scholar 

  194. 194.

    Cabranes, A. et al. Decreased endocannabinoid levels in the brain and beneficial effects of agents activating cannabinoid and/or vanilloid receptors in a rat model of multiple sclerosis. Neurobiol. Dis. 20, 207–217 (2005).

    CAS  PubMed  Google Scholar 

  195. 195.

    Cabranes, A. et al. Changes in CB1 receptors in motor-related brain structures of chronic relapsing experimental allergic encephalomyelitis mice. Brain Res. 1107, 199–205 (2006).

    CAS  PubMed  Google Scholar 

  196. 196.

    Benito, C. et al. Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. J. Neurosci. 27, 2396–2402 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197.

    Loria, F. et al. Study of the regulation of the endocannabinoid system in a virus model of multiple sclerosis reveals a therapeutic effect of palmitoylethanolamide. Eur. J. Neurosci. 28, 633–641 (2008).

    PubMed  Google Scholar 

  198. 198.

    Jean-Gilles, L. et al. Plasma endocannabinoid levels in multiple sclerosis. J. Neurol. Sci. 287, 212–215 (2009).

    CAS  PubMed  Google Scholar 

  199. 199.

    Baker, D. et al. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 404, 84–87 (2000). The first study to demonstrate that CB1 receptors have a role in the control of MS spasticity.

    CAS  PubMed  Google Scholar 

  200. 200.

    Baker, D. et al. Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J. 15, 300–302 (2001). The first study to suggest that protective brain and spinal cord endocannabinoids are produced in parallel with the appearance of spasticity in an MS model.

    CAS  PubMed  Google Scholar 

  201. 201.

    Arevalo-Martin, A. et al. Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J. Neurosci. 23, 2511–2516 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202.

    Arevalo-Martin, A., Molina-Holgado, E. & Guaza, C. A. CB(1)/CB(2) receptor agonist, WIN 55,212-2, exerts its therapeutic effect in a viral autoimmune model of multiple sclerosis by restoring self-tolerance to myelin. Neuropharmacology 63, 385–393 (2012).

    CAS  PubMed  Google Scholar 

  203. 203.

    Maresz, K. et al. Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat. Med. 13, 492–497 (2007). The discovery of two different protective roles of CB1 and CB2 in a model of MS.

    CAS  PubMed  Google Scholar 

  204. 204.

    Sanchez Lopez, A. J. et al. Regulation of cannabinoid receptor gene expression and endocannabinoid levels in lymphocyte subsets by interferon-beta: a longitudinal study in multiple sclerosis patients. Clin. Exp. Immunol. 179, 119–127 (2015).

    CAS  PubMed  Google Scholar 

  205. 205.

    Musella, A. et al. Pre- and postsynaptic type-1 cannabinoid receptors control the alterations of glutamate transmission in experimental autoimmune encephalomyelitis. Neuropharmacology 79, 567–572 (2014).

    CAS  PubMed  Google Scholar 

  206. 206.

    Centonze, D. et al. The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain 130, 2543–2553 (2007). The discovery that endocannabinoid levels are altered in patients with MS.

    PubMed  Google Scholar 

  207. 207.

    Di Filippo, M. et al. Abnormalities in the cerebrospinal fluid levels of endocannabinoids in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 79, 1224–1229 (2008).

    PubMed  Google Scholar 

  208. 208.

    de Lago, E. et al. UCM707, an inhibitor of the anandamide uptake, behaves as a symptom control agent in models of Huntington’s disease and multiple sclerosis, but fails to delay/arrest the progression of different motor-related disorders. Eur. Neuropsychopharmacol. 16, 7–18 (2006).

    PubMed  Google Scholar 

  209. 209.

    Loria, F. et al. An endocannabinoid tone limits excitotoxicity in vitro and in a model of multiple sclerosis. Neurobiol. Dis. 37, 166–176 (2010).

    CAS  PubMed  Google Scholar 

  210. 210.

    Pryce, G. et al. Control of experimental spasticity by targeting the degradation of endocannabinoids using selective fatty acid amide hydrolase inhibitors. Mult. Scler. 19, 1896–1904 (2013).

    CAS  PubMed  Google Scholar 

  211. 211.

    Brindisi, M. et al. Development and pharmacological characterization of selective blockers of 2-arachidonoyl glycerol degradation with efficacy in rodent models of multiple sclerosis and pain. J. Med. Chem. 59, 2612–2632 (2016).

    CAS  PubMed  Google Scholar 

  212. 212.

    Wen, J. et al. Activation of CB2 receptor is required for the therapeutic effect of ABHD6 inhibition in experimental autoimmune encephalomyelitis. Neuropharmacology 99, 196–209 (2015).

    CAS  PubMed  Google Scholar 

  213. 213.

    Rahimi, A. et al. Interaction between the protective effects of cannabidiol and palmitoylethanolamide in experimental model of multiple sclerosis in C57BL/6 mice. Neuroscience 290, 279–287 (2015).

    CAS  PubMed  Google Scholar 

  214. 214.

    Kozela, E. et al. Cannabidiol inhibits pathogenic T cells, decreases spinal microglial activation and ameliorates multiple sclerosis-like disease in C57BL/6 mice. Br. J. Pharmacol. 163, 1507–1519 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. 215.

    Giacoppo, S., Bramanti, P. & Mazzon, E. Sativex in the management of multiple sclerosis-related spasticity: an overview of the last decade of clinical evaluation. Mult. Scler. Relat. Disord. 17, 22–31 (2017).

    PubMed  Google Scholar 

  216. 216.

    Mecha, M. et al. Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: a role for A2A receptors. Neurobiol. Dis. 59, 141–150 (2013).

    CAS  PubMed  Google Scholar 

  217. 217.

    Hilliard, A. et al. Evaluation of the effects of sativex (THC BDS: CBD BDS) on inhibition of spasticity in a chronic relapsing experimental allergic autoimmune encephalomyelitis: a model of multiple sclerosis. ISRN Neurol. 2012, 802649 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. 218.

    Markova, J. et al. Sativex® as add-on therapy vs. further optimized first-line ANTispastics (SAVANT) in resistant multiple sclerosis spasticity: a double-blind, placebo-controlled randomised clinical trial. Int. J. Neurosci. 129, 119–128 (2018).

    PubMed  Google Scholar 

  219. 219.

    Koch, G. et al. Cannabis-based treatment induces polarity-reversing plasticity assessed by theta burst stimulation in humans. Brain Stimul. 2, 229–233 (2009).

    PubMed  Google Scholar 

  220. 220.

    Carotenuto, A. et al. Upper motor neuron evaluation in multiple sclerosis patients treated with Sativex®. Acta Neurol. Scand. 135, 442–448 (2017).

    CAS  PubMed  Google Scholar 

  221. 221.

    Russo, M. et al. Sativex in the management of multiple sclerosis-related spasticity: role of the corticospinal modulation. Neural Plast. 2015, 656582 (2015).

    PubMed  PubMed Central  Google Scholar 

  222. 222.

    Turri, M. et al. Pain modulation after oromucosal cannabinoid spray (SATIVEX®) in patients with multiple sclerosis: a study with quantitative sensory testing and laser-evoked potentials. Medicines 5, 59 (2018).

    CAS  PubMed Central  Google Scholar 

  223. 223.

    Messina, S. et al. Sativex in resistant multiple sclerosis spasticity: discontinuation study in a large population of Italian patients (SA.FE. study). PLOS ONE 12, e0180651 (2017).

    PubMed  PubMed Central  Google Scholar 

  224. 224.

    Patti, F. et al. Efficacy and safety of cannabinoid oromucosal spray for multiple sclerosis spasticity. J. Neurol. Neurosurg. Psychiatry 87, 944–951 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. 225.

    Sorosina, M. et al. Clinical response to Nabiximols correlates with the downregulation of immune pathways in multiple sclerosis. Eur. J. Neurol. 25, 934–e70 (2018).

    CAS  PubMed  Google Scholar 

  226. 226.

    Orefice, N. S. et al. Oral palmitoylethanolamide treatment is associated with reduced cutaneous adverse effects of interferon-beta1a and circulating proinflammatory cytokines in relapsing-remitting multiple sclerosis. Neurotherapeutics 13, 428–438 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. 227.

    Moreno-Martet, M. et al. Changes in endocannabinoid receptors and enzymes in the spinal cord of SOD1(G93A) transgenic mice and evaluation of a Sativex®-like combination of phytocannabinoids: interest for future therapies in amyotrophic lateral sclerosis. CNS Neurosci. Ther. 20, 809–815 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. 228.

    Zhao, P. et al. Altered presymptomatic AMPA and cannabinoid receptor trafficking in motor neurons of ALS model mice: implications for excitotoxicity. Eur. J. Neurosci. 27, 572–579 (2008).

    PubMed  PubMed Central  Google Scholar 

  229. 229.

    Pasquarelli, N. et al. Evaluation of monoacylglycerol lipase as a therapeutic target in a transgenic mouse model of ALS. Neuropharmacology 124, 157–169 (2017).

    CAS  PubMed  Google Scholar 

  230. 230.

    Shoemaker, J. L. et al. The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset. J. Neurochem. 101, 87–98 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. 231.

    Espejo-Porras, F. et al. Changes in the endocannabinoid signaling system in CNS structures of TDP-43 transgenic mice: relevance for a neuroprotective therapy in TDP-43-related disorders. J. Neuroimmune Pharmacol. 10, 233–244 (2015).

    PubMed  Google Scholar 

  232. 232.

    Espejo-Porras, F., Fernandez-Ruiz, J. & de Lago, E. Analysis of endocannabinoid receptors and enzymes in the post-mortem motor cortex and spinal cord of amyotrophic lateral sclerosis patients. Amyotroph. Lateral Scler. Frontotemporal Degener. 19, 377–386 (2018).

    CAS  PubMed  Google Scholar 

  233. 233.

    Witting, A. et al. Endocannabinoids accumulate in spinal cord of SOD1 G93A transgenic mice. J. Neurochem. 89, 1555–1557 (2004).

    CAS  PubMed  Google Scholar 

  234. 234.

    Rajan, T. S. et al. Gingival stromal cells as an in vitro model: cannabidiol modulates genes linked with amyotrophic lateral sclerosis. J. Cell. Biochem. 118, 819–828 (2017).

    CAS  PubMed  Google Scholar 

  235. 235.

    Palma, E. et al. Acetylcholine receptors from human muscle as pharmacological targets for ALS therapy. Proc. Natl Acad. Sci. USA 113, 3060–3065 (2016).

    CAS  PubMed  Google Scholar 

  236. 236.

    Clemente, S. Amyotrophic lateral sclerosis treatment with ultramicronized palmitoylethanolamide: a case report. CNS Neurol. Disord. Drug Targets 11, 933–936 (2012). The first study to suggest a therapeutic effect of palmitoylethanolamide in ALS.

    CAS  PubMed  Google Scholar 

  237. 237.

    Donat, C. K. et al. Early increase of cannabinoid receptor density after experimental traumatic brain injury in the newborn piglet. Acta Neurobiol. Exp. 74, 197–210 (2014).

    Google Scholar 

  238. 238.

    Panikashvili, D. et al. CB1 cannabinoid receptors are involved in neuroprotection via NF-kappa B inhibition. J. Cereb. Blood Flow Metab. 25, 477–484 (2005).

    CAS  PubMed  Google Scholar 

  239. 239.

    Elliott, M. B. et al. Acute effects of a selective cannabinoid-2 receptor agonist on neuroinflammation in a model of traumatic brain injury. J. Neurotrauma 28, 973–981 (2011).

    PubMed  Google Scholar 

  240. 240.

    Amenta, P. S. et al. A cannabinoid type 2 receptor agonist attenuates blood-brain barrier damage and neurodegeneration in a murine model of traumatic brain injury. J. Neurosci. Res. 90, 2293–2305 (2012).

    CAS  PubMed  Google Scholar 

  241. 241.

    Panikashvili, D. et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413, 527–531 (2001).

    CAS  PubMed  Google Scholar 

  242. 242.

    Panikashvili, D. et al. The endocannabinoid 2-AG protects the blood-brain barrier after closed head injury and inhibits mRNA expression of proinflammatory cytokines. Neurobiol. Dis. 22, 257–264 (2006). The first study to suggest a protective role for endocannabinoids in brain trauma.

    CAS  PubMed  Google Scholar 

  243. 243.

    Tchantchou, F. et al. The fatty acid amide hydrolase inhibitor PF-3845 promotes neuronal survival, attenuates inflammation and improves functional recovery in mice with traumatic brain injury. Neuropharmacology 85, 427–439 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. 244.

    Tchantchou, F. & Zhang, Y. Selective inhibition of alpha/beta-hydrolase domain 6 attenuates neurodegeneration, alleviates blood brain barrier breakdown, and improves functional recovery in a mouse model of traumatic brain injury. J. Neurotrauma 30, 565–579 (2013).

    PubMed  PubMed Central  Google Scholar 

  245. 245.

    Katz, P. S. et al. Endocannabinoid degradation inhibition improves neurobehavioral function, blood-brain barrier integrity, and neuroinflammation following mild traumatic brain injury. J. Neurotrauma 32, 297–306 (2015).

    PubMed  PubMed Central  Google Scholar 

  246. 246.

    Mayeux, J. et al. Inhibition of endocannabinoid degradation improves outcomes from mild traumatic brain injury: a mechanistic role for synaptic hyperexcitability. J. Neurotrauma 34, 436–443 (2017).

    PubMed  PubMed Central  Google Scholar 

  247. 247.

    Ahmad, A. et al. Administration of palmitoylethanolamide (PEA) protects the neurovascular unit and reduces secondary injury after traumatic brain injury in mice. Brain Behav. Immun. 26, 1310–1321 (2012).

    CAS  PubMed  Google Scholar 

  248. 248.

    Cohen-Yeshurun, A. et al. N-arachidonoyl-L-serine (AraS) possesses proneurogenic properties in vitro and in vivo after traumatic brain injury. J. Cereb. Blood Flow Metab. 33, 1242–1250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. 249.

    Yang, D. X. et al. Inhibition of transient receptor potential vanilloid 1 attenuates blood–brain barrier disruption after traumatic brain injury in mice. J. Neurotrauma 36, 1279–1290 (2019).

    PubMed  Google Scholar 

  250. 250.

    Feigenbaum, J. J. et al. Nonpsychotropic cannabinoid acts as a functional N-methyl-D-aspartate receptor blocker. Proc. Natl Acad. Sci. USA 86, 9584–9587 (1989).

    CAS  PubMed  Google Scholar 

  251. 251.

    Maas, A. I. et al. Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol. 5, 38–45 (2006).

    CAS  PubMed  Google Scholar 

  252. 252.

    Chi, O. Z. et al. Effects of cannabinoid receptor agonist WIN 55,212-2 on blood-brain barrier disruption in focal cerebral ischemia in rats. Pharmacology 89, 333–338 (2012).

    CAS  PubMed  Google Scholar 

  253. 253.

    Mauler, F. et al. Neuroprotective and brain edema-reducing efficacy of the novel cannabinoid receptor agonist BAY 38-7271. Brain Res. 989, 99–111 (2003).

    CAS  PubMed  Google Scholar 

  254. 254.

    Hayakawa, K. et al. Delta9-tetrahydrocannabinol (delta9-THC) prevents cerebral infarction via hypothalamic-independent hypothermia. Life Sci. 80, 1466–1471 (2007).

    CAS  PubMed  Google Scholar 

  255. 255.

    Parmentier-Batteur, S. et al. Increased severity of stroke in CB1 cannabinoid receptor knock-out mice. J. Neurosci. 22, 9771–9775 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. 256.

    Muthian, S. et al. Anandamide content is increased and CB1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemia. Neuroscience 129, 743–750 (2004).

    CAS  PubMed  Google Scholar 

  257. 257.

    Zarruk, J. G. et al. Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. Stroke 43, 211–219 (2012).

    CAS  PubMed  Google Scholar 

  258. 258.

    Zhang, M. et al. CB2 receptor activation attenuates microcirculatory dysfunction during cerebral ischemic/reperfusion injury. Microvasc. Res. 78, 86–94 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. 259.

    Ward, S. J. et al. Surprising outcomes in cannabinoid CB1/CB2 receptor double knockout mice in two models of ischemia. Life Sci. 195, 1–5 (2018).

    CAS  PubMed  Google Scholar 

  260. 260.

    Schomacher, M. et al. Endocannabinoids mediate neuroprotection after transient focal cerebral ischemia. Brain Res. 1240, 213–220 (2008).

    CAS  PubMed  Google Scholar 

  261. 261.

    Sun, Y. et al. Cannabinoid activation of PPAR alpha; a novel neuroprotective mechanism. Br. J. Pharmacol. 152, 734–743 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. 262.

    Yang, L. C. et al. Chronic oleoylethanolamide treatment improves spatial cognitive deficits through enhancing hippocampal neurogenesis after transient focal cerebral ischemia. Biochem. Pharmacol. 94, 270–281 (2015).

    CAS  PubMed  Google Scholar 

  263. 263.

    Schabitz, W. R. et al. Release of fatty acid amides in a patient with hemispheric stroke: a microdialysis study. Stroke 33, 2112–2114 (2002).

    CAS  PubMed  Google Scholar 

  264. 264.

    Franklin, A. et al. Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cell motility. J. Neurosci. 23, 7767–7775 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. 265.

    Naccarato, M. et al. Possible anandamide and palmitoylethanolamide involvement in human stroke. Lipids Health Dis. 9, 47 (2010).

    PubMed  PubMed Central  Google Scholar 

  266. 266.

    Mishima, K. et al. Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor-dependent mechanism. Stroke 36, 1077–1082 (2005).

    PubMed  Google Scholar 

  267. 267.

    Khaksar, S. & Bigdeli, M. R. Anti-excitotoxic effects of cannabidiol are partly mediated by enhancement of NCX2 and NCX3 expression in animal model of cerebral ischemia. Eur. J. Pharmacol. 794, 270–279 (2017).

    CAS  PubMed  Google Scholar 

  268. 268.

    Alvarez, F. J. et al. Neuroprotective effects of the nonpsychoactive cannabinoid cannabidiol in hypoxic-ischemic newborn piglets. Pediatr. Res. 64, 653–658 (2008).

    CAS  PubMed  Google Scholar 

  269. 269.

    Castillo, A. et al. The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB(2) and adenosine receptors. Neurobiol. Dis. 37, 434–440 (2010).

    CAS  PubMed  Google Scholar 

  270. 270.

    Lafuente, H. et al. Cannabidiol reduces brain damage and improves functional recovery after acute hypoxia-ischemia in newborn pigs. Pediatr. Res. 70, 272–277 (2011).

    CAS  PubMed  Google Scholar 

  271. 271.

    Pazos, M. R. et al. Cannabidiol administration after hypoxia-ischemia to newborn rats reduces long-term brain injury and restores neurobehavioral function. Neuropharmacology 63, 776–783 (2012).

    CAS  PubMed  Google Scholar 

  272. 272.

    Ceprian, M. et al. Cannabidiol reduces brain damage and improves functional recovery in a neonatal rat model of arterial ischemic stroke. Neuropharmacology 116, 151–159 (2017).

    CAS  PubMed  Google Scholar 

  273. 273.

    Marinelli, L. et al. A randomised controlled cross-over double-blind pilot study protocol on THC:CBD oromucosal spray efficacy as an add-on therapy for post-stroke spasticity. BMJ Open 7, e016843 (2017).

    PubMed  PubMed Central  Google Scholar 

  274. 274.

    Caltagirone, C. et al. Co-ultramicronized palmitoylethanolamide/luteolin in the treatment of cerebral ischemia: from rodent to man. Transl. Stroke Res. 7, 54–69 (2016).

    CAS  PubMed  Google Scholar 

  275. 275.

    Vinogradova, L. V. & van Rijn, C. M. Long-term disease-modifying effect of the endocannabinoid agonist WIN55,212-2 in a rat model of audiogenic epilepsy. Pharmacol. Rep. 67, 501–503 (2015).

    CAS  PubMed  Google Scholar 

  276. 276.

    Di Maio, R., Cannon, J. R. & Greenamyre, J. T. Post-status epilepticus treatment with the cannabinoid agonist WIN 55,212-2 prevents chronic epileptic hippocampal damage in rats. Neurobiol. Dis. 73, 356–365 (2015).

    PubMed  Google Scholar 

  277. 277.

    Wallace, M. J. et al. The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J. Pharmacol. Exp. Ther. 307, 129–137 (2003).

    CAS  PubMed  Google Scholar 

  278. 278.

    Vinogradova, L. V., Shatskova, A. B. & van Rijn, C. M. Pro-epileptic effects of the cannabinoid receptor antagonist SR141716 in a model of audiogenic epilepsy. Epilepsy Res. 96, 250–256 (2011).

    CAS  PubMed  Google Scholar 

  279. 279.

    Echegoyen, J. et al. Single application of a CB1 receptor antagonist rapidly following head injury prevents long-term hyperexcitability in a rat model. Epilepsy Res. 85, 123–127 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. 280.

    Wang, X. et al. CB1 receptor antagonism prevents long-term hyperexcitability after head injury by regulation of dynorphin-KOR system and mGluR5 in rat hippocampus. Brain Res. 1646, 174–181 (2016).

    CAS  PubMed  Google Scholar 

  281. 281.

    Feng, B. et al. Transient increase of interleukin-1beta after prolonged febrile seizures promotes adult epileptogenesis through long-lasting upregulating endocannabinoid signaling. Sci. Rep. 6, 21931 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. 282.

    Wallace, M. J. et al. Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur. J. Pharmacol. 428, 51–57 (2001).

    CAS  PubMed  Google Scholar 

  283. 283.

    Luszczki, J. J. et al. Effects of WIN 55,212-2 mesylate on the anticonvulsant action of lamotrigine, oxcarbazepine, pregabalin and topiramate against maximal electroshock-induced seizures in mice. Eur. J. Pharmacol. 720, 247–254 (2013).

    CAS  PubMed  Google Scholar 

  284. 284.

    Payandemehr, B. et al. Involvement of PPAR receptors in the anticonvulsant effects of a cannabinoid agonist, WIN 55,212-2. Prog. Neuropsychopharmacol. Biol. Psychiatry 57, 140–145 (2015).

    CAS  PubMed  Google Scholar 

  285. 285.

    Bahremand, A. et al. Involvement of nitrergic system in the anticonvulsant effect of the cannabinoid CB(1) agonist ACEA in the pentylenetetrazole-induced seizure in mice. Epilepsy Res. 84, 110–119 (2009).

    CAS  PubMed  Google Scholar 

  286. 286.

    Marsicano, G. et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88 (2003). The first study to demonstrate the on-demand neuroprotective role of endocannabinoids and CB1 against excitotoxicity-induced neuronal damage.

    CAS  PubMed  Google Scholar 

  287. 287.

    Lerner, R. et al. Targeting brain and peripheral plasticity of the lipidome in acute kainic acid-induced epileptic seizures in mice via quantitative mass spectrometry. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 255–267 (2017).

    CAS  PubMed  Google Scholar 

  288. 288.

    Chen, K. et al. Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron 39, 599–611 (2003).

    CAS  PubMed  Google Scholar 

  289. 289.

    Vilela, L. R. et al. Effects of cannabinoids and endocannabinoid hydrolysis inhibition on pentylenetetrazole-induced seizure and electroencephalographic activity in rats. Epilepsy Res. 104, 195–202 (2013).

    CAS  PubMed  Google Scholar 

  290. 290.

    Shubina, L., Aliev, R. & Kitchigina, V. Attenuation of kainic acid-induced status epilepticus by inhibition of endocannabinoid transport and degradation in guinea pigs. Epilepsy Res. 111, 33–44 (2015).

    CAS  PubMed  Google Scholar 

  291. 291.

    Manna, S. S. & Umathe, S. N. Involvement of transient receptor potential vanilloid type 1 channels in the pro-convulsant effect of anandamide in pentylenetetrazole-induced seizures. Epilepsy Res. 100, 113–124 (2012).

    CAS  PubMed  Google Scholar 

  292. 292.

    Zareie, P. et al. Anticonvulsive effects of endocannabinoids; an investigation to determine the role of regulatory components of endocannabinoid metabolism in the pentylenetetrazol induced tonic- clonic seizures. Metab. Brain Dis. 33, 939–948 (2018).

    CAS  PubMed  Google Scholar 

  293. 293.

    Naydenov, A. V. et al. ABHD6 blockade exerts antiepileptic activity in PTZ-induced seizures and in spontaneous seizures in R6/2 mice. Neuron 83, 361–371 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  294. 294.

    Griebel, G. et al. Selective blockade of the hydrolysis of the endocannabinoid 2-arachidonoylglycerol impairs learning and memory performance while producing antinociceptive activity in rodents. Sci. Rep. 5, 7642 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. 295.

    Ma, L. et al. Disease-modifying effects of RHC80267 and JZL184 in a pilocarpine mouse model of temporal lobe epilepsy. CNS Neurosci. Ther. 20, 905–915 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  296. 296.

    Shirazi, M. et al. Involvement of central TRPV1 receptors in pentylenetetrazole and amygdala-induced kindling in male rats. Neurol. Sci. 35, 1235–1241 (2014).

    PubMed  Google Scholar 

  297. 297.

    Aghaei, I. et al. Palmitoylethanolamide attenuates PTZ-induced seizures through CB1 and CB2 receptors. Epilepsy Res. 117, 23–28 (2015).

    CAS  PubMed  Google Scholar 

  298. 298.

    Jones, N. A. et al. Cannabidiol displays antiepileptiform and antiseizure properties in vitro and in vivo. J. Pharmacol. Exp. Ther. 332, 569–577 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  299. 299.

    Jones, N. A. et al. Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures. Seizure 21, 344–352 (2012).

    PubMed  Google Scholar 

  300. 300.

    Khan, A. A. et al. Cannabidiol exerts antiepileptic effects by restoring hippocampal interneuron functions in a temporal lobe epilepsy model. Br. J. Pharmacol. 175, 2097–2115 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. 301.

    Hill, A. J. et al. Cannabidivarin is anticonvulsant in mouse and rat. Br. J. Pharmacol. 167, 1629–1642 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. 302.

    Thiele, E. A. et al. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 391, 1085–1096 (2018). One of two controlled clinical studies that led to the approval of botanical cannabidiol against rare and untreatable forms of paediatric epilepsy.

    CAS  PubMed  Google Scholar 

  303. 303.

    Szaflarski, J. P. et al. Cannabidiol improves frequency and severity of seizures and reduces adverse events in an open-label add-on prospective study. Epilepsy Behav. 87, 131–136 (2018).

    PubMed  Google Scholar 

  304. 304.

    Devinsky, O. et al. Open-label use of highly purified CBD (Epidiolex®) in patients with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes. Epilepsy Behav. 86, 131–137 (2018).

    PubMed  Google Scholar 

  305. 305.

    Gofshteyn, J. S. Cannabidiol as a potential treatment for febrile infection-related epilepsy syndrome (FIRES) in the acute and chronic phases. J. Child. Neurol. 32, 35–40 (2017).

    PubMed  Google Scholar 

  306. 306.

    Gaston, T. E. et al. Interactions between cannabidiol and commonly used antiepileptic drugs. Epilepsia 58, 1586–1592 (2017).

    CAS  PubMed  Google Scholar 

  307. 307.

    De Jesus, M. L. et al. Opposite changes in cannabinoid CB1 and CB2 receptor expression in human gliomas. Neurochem. Int. 56, 829–833 (2010).

    PubMed  Google Scholar 

  308. 308.

    Wu, X. et al. Alteration of endocannabinoid system in human gliomas. J. Neurochem. 120, 842–849 (2012).

    CAS  PubMed  Google Scholar 

  309. 309.

    Ellert-Miklaszewska, A., Ciechomska, I. & Kaminska, B. Cannabinoid signaling in glioma cells. Adv. Exp. Med. Biol. 986, 209–220 (2013).

    CAS  PubMed  Google Scholar 

  310. 310.

    Galve-Roperh, I. et al. Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat. Med. 6, 313–319 (2000). The first study to suggest that THC could be used in the treatment of glioblastoma.

    CAS  PubMed  Google Scholar 

  311. 311.

    Blazquez, C. et al. Inhibition of tumor angiogenesis by cannabinoids. FASEB J. 17, 529–531 (2003).

    CAS  PubMed  Google Scholar 

  312. 312.

    Gurley, S. N. et al. Mechanism of anti-glioma activity and in vivo efficacy of the cannabinoid ligand KM-233. J. Neurooncol. 110, 163–177 (2012).

    CAS  PubMed  Google Scholar 

  313. 313.

    Sanchez, C. et al. Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor. Cancer Res. 61, 5784–5789 (2001).

    CAS  PubMed  Google Scholar 

  314. 314.

    Aguado, T. et al. Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis. J. Biol. Chem. 282, 6854–6862 (2007).

    CAS  PubMed  Google Scholar 

  315. 315.

    Ma, C. et al. Anti-carcinogenic activity of anandamide on human glioma in vitro and in vivo. Mol. Med. Rep. 13, 1558–1562 (2016).

    CAS  PubMed  Google Scholar 

  316. 316.

    Stock, K. et al. Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1. Nat. Med. 18, 1232–1238 (2012). The discovery that endocannabinoid-like mediators acting at TRPV1 could have a role in the control of glioblastoma.

    CAS  PubMed  PubMed Central  Google Scholar 

  317. 317.

    Nabissi, M. et al. Post-transcriptional regulation of 5′-untranslated regions of human transient receptor potential vanilloid type-1 (TRPV-1) channels: role in the survival of glioma patients. Oncotarget 7, 81541–81554 (2016).

    PubMed  PubMed Central  Google Scholar 

  318. 318.

    Vaccani, A. et al. Cannabidiol inhibits human glioma cell migration through a cannabinoid receptor-independent mechanism. Br. J. Pharmacol. 144, 1032–1036 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  319. 319.

    Moreno, E. et al. Targeting CB2-GPR55 receptor heteromers modulates cancer cell signaling. J. Biol. Chem. 289, 21960–21972 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  320. 320.

    Scott, K. A., Dalgleish, A. G. & Liu, W. M. The combination of cannabidiol and delta9-tetrahydrocannabinol enhances the anticancer effects of radiation in an orthotopic murine glioma model. Mol. Cancer. Ther. 13, 2955–2967 (2014).

    CAS  PubMed  Google Scholar 

  321. 321.

    Torres, S. et al. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol. Cancer. Ther. 10, 90–103 (2011).

    CAS  PubMed  Google Scholar 

  322. 322.

    Nabissi, M. et al. Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis 34, 48–57 (2013).

    CAS  PubMed  Google Scholar 

  323. 323.

    Nabissi, M. et al. Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner. Int. J. Cancer 137, 1855–1869 (2015).

    CAS  PubMed  Google Scholar 

  324. 324.

    GW Pharmaceuticals. GW Pharmaceuticals achieves positive results in phase 2 proof of concept study in glioma. gwpharm https://www.gwpharm.co.uk/about/news/gw-pharmaceuticals-achieves-positive-results-phase-2-proof-concept-study-glioma (2017).

  325. 325.

    US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT01654497 (2017).

  326. 326.

    Chiurchiù, V. et al. Modulation of monocytes by bioactive lipid anandamide in multiple sclerosis involves distinct Toll-like receptors. Pharmacol. Res. 113, 313–319 (2016).

    PubMed  Google Scholar 

  327. 327.

    Franco, R. & Fernández-Suárez, D. Alternatively activated microglia and macrophages in the central nervous system. Prog. Neurobiol. 131, 65–86 (2015).

    CAS  PubMed  Google Scholar 

  328. 328.

    Muller-Vahl, K. R. Treatment of Tourette syndrome with cannabinoids. Behav. Neurol. 27, 119–124 (2013).

    PubMed  PubMed Central  Google Scholar 

  329. 329.

    Ruzic Zecevic, D. et al. Investigational cannabinoids in seizure disorders, what have we learned thus far? Expert Opin. Investig. Drugs 27, 535–541 (2018).

    CAS  PubMed  Google Scholar 

  330. 330.

    US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT03202303 (2019).

  331. 331.

    Ganley, O. H., Graessle, O. E. & Robinson, H. J. Anti-inflammatory activity on compounds obtained from egg yolk, peanut oil, and soybean lecithin. J. Lab. Clin. Med. 51, 709–714 (1958).

    CAS  PubMed  Google Scholar 

  332. 332.

    Guida, F. et al. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Sci. Rep. 7, 375 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  333. 333.

    Chiurchiù, V. et al. Resolution of inflammation is altered in chronic heart failure and entails a dysfunctional responsiveness of T lymphocytes. FASEB J. 33, 909–916 (2019).

    PubMed  Google Scholar 

  334. 334.

    Mestre, L. et al. Gut microbiota, cannabinoid system and neuroimmune interactions: new perspectives in multiple sclerosis. Biochem. Pharmacol 157, 51–66 (2018).

    CAS  PubMed  Google Scholar 

  335. 335.

    Russo, R. et al. Gut-brain axis: role of lipids in the regulation of inflammation, pain and CNS diseases. Curr. Med. Chem. 25, 3930–3952 (2018).

    CAS  PubMed  Google Scholar 

  336. 336.

    Hata, T. et al. Regulation of gut luminal serotonin by commensal microbiota in mice. PLOS ONE 12, e0180745 (2017).

    PubMed  PubMed Central  Google Scholar 

  337. 337.

    Yunes, R. A. et al. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 42, 197–204 (2016).

    CAS  PubMed  Google Scholar 

  338. 338.

    Cohen, L. J. et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2018).

    Google Scholar 

  339. 339.

    Bell, J. S. et al. From nose to gut - the role of the microbiome in neurological disease. Neuropathol. Appl. Neurobiol. 45, 195–215 (2019).

    CAS  PubMed  Google Scholar 

  340. 340.

    Veilleux, A., Di Marzo, V. and Silvestri, C. The expanded endocannabinoid system/endocannabinoidome as a potential target for treating diabetes mellitus. Curr. Diabetes Rep. 19, 117 (2019).

    CAS  Google Scholar 

  341. 341.

    Lutz, B. & Marsicano, G. in Encyclopedia of Neuroscience (eds Squire, L. R. et al.) 963–975 (Elsevier, 2009).

  342. 342.

    Müller, F. J., Snyder, E. Y. & Loring, J. F. Gene therapy: can neural stem cells deliver? Nat. Rev. Neurosci. 7, 75–84 (2006).

    PubMed  Google Scholar 

  343. 343.

    Hu, X. et al. Microglial and macrophage polarization — new prospects for brain repair. Nat. Rev. Neurol. 11, 56–64 (2015).

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Vincenzo Di Marzo.

Ethics declarations

Competing interests

L.C. receives research grants from GW Pharmaceuticals. V.D. is a consultant for GW Pharmaceuticals and receives research grants from Epitech Italy and GW Pharmaceuticals. T.B. declares no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks Robert Blair, Valerio Chiurchiù and John Zajicek for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cristino, L., Bisogno, T. & Di Marzo, V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 16, 9–29 (2020). https://doi.org/10.1038/s41582-019-0284-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing