Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Immune reconstitution therapies: concepts for durable remission in multiple sclerosis

An Author Correction to this article was published on 14 January 2020

This article has been updated

Abstract

New so-called immune reconstitution therapies (IRTs) have the potential to induce long-term or even permanent drug-free remission in people with multiple sclerosis (MS). These therapies deplete components of the immune system with the aim of allowing the immune system to renew itself. Haematopoietic stem cell transplantation, the oral formulation cladribine and the monoclonal antibodies alemtuzumab, rituximab and ocrelizumab are frequently categorized as IRTs. However, the evidence that IRTs indeed renew adaptive immune cell repertoires and rebuild a healthy immune system in people with MS is variable. Instead, IRTs might foster the expansion of those cells that survive immunosuppression, and this expansion could be associated with acquisition of new functional phenotypes. Understanding immunological changes induced by IRTs and how they correlate with clinical outcomes will be instrumental in guiding the optimal use of immune reconstitution as a durable therapeutic strategy. This Perspectives article critically discusses the efficacy and potential mechanisms of IRTs in the context of immune system renewal and durable disease remission in MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Change history

References

  1. Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Babbe, H. et al. Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192, 393–404 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Palanichamy, A. et al. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci. Transl Med. 6, 248ra106 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Obermeier, B. et al. Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nat. Med. 14, 688–693 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Qin, Y. et al. Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. J. Clin. Invest. 102, 1045–1050 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baecher-Allan, C., Kaskow, B. J. & Weiner, H. L. Multiple sclerosis: mechanisms and immunotherapy. Neuron 97, 742–768 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Wekerle, H., Flugel, A., Fugger, L., Schett, G. & Serreze, D. Autoimmunity’s next top models. Nat. Med. 18, 66–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. International Multiple Sclerosis Genetics Consortium. et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013).

    Article  CAS  Google Scholar 

  9. Billingham, R. E., Brent, L. & Medawar, P. B. Actively acquired tolerance of foreign cells. Nature 172, 603–606 (1953).

    Article  CAS  PubMed  Google Scholar 

  10. Qin, S. et al. “Infectious” transplantation tolerance. Science 259, 974–977 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Piotti, G., Ma, J., Adams, E., Cobbold, S. & Waldmann, H. Guiding postablative lymphocyte reconstitution as a route toward transplantation tolerance. Am. J. Transpl. 14, 1678–1689 (2014).

    Article  CAS  Google Scholar 

  12. Sun, B. et al. Non-depleting anti-CD4 monoclonal antibody induces immune tolerance to ERT in a murine model of Pompe disease. Mol. Genet. Metab. Rep. 1, 446–450 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kawai, T. et al. Long-term results in recipients of combined HLA-mismatched kidney and bone marrow transplantation without maintenance immunosuppression. Am. J. Transpl. 14, 1599–1611 (2014).

    Article  CAS  Google Scholar 

  14. Thompson, A. J., Baranzini, S. E., Geurts, J., Hemmer, B. & Ciccarelli, O. Multiple sclerosis. Lancet 391, 1622–1636 (2018).

    Article  PubMed  Google Scholar 

  15. Mexhitaj, I. et al. Abnormal effector and regulatory T cell subsets in paediatric-onset multiple sclerosis. Brain 142, 617–632 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hohlfeld, R., Dornmair, K., Meinl, E. & Wekerle, H. The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol. 15, 198–209 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Atkins, H. L. et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet 388, 576–585 (2016).

    Article  PubMed  Google Scholar 

  18. Muraro, P. A. et al. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat. Rev. Neurol. 13, 391–405 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Tuohy, O. et al. Alemtuzumab treatment of multiple sclerosis: long-term safety and efficacy. J. Neurol. Neurosurg. Psychiatry 86, 208–215 (2015).

    Article  PubMed  Google Scholar 

  20. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. von Essen, M. R. et al. Proinflammatory CD20+ T cells in the pathogenesis of multiple sclerosis. Brain 142, 120–132 (2019).

    Article  Google Scholar 

  22. Cross, A. H., Stark, J. L., Lauber, J., Ramsbottom, M. J. & Lyons, J. A. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J. Neuroimmunol. 180, 63–70 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martin Mdel, P. et al. Depletion of B lymphocytes from cerebral perivascular spaces by rituximab. Arch. Neurol. 66, 1016–1020 (2009).

    PubMed  Google Scholar 

  24. Duddy, M. et al. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J. Immunol. 178, 6092–6099 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Bar-Or, A. et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann. Neurol. 67, 452–461 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Barr, T. A. et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J. Exp. Med. 209, 1001–1010 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, R. et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci. Transl Med. 7, 310ra166 (2015).

    PubMed  Google Scholar 

  28. Stasi, R. et al. Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell-depleting therapy with rituximab. Blood 112, 1147–1150 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Maurer, M. A. et al. Rituximab induces sustained reduction of pathogenic B cells in patients with peripheral nervous system autoimmunity. J. Clin. Invest. 122, 1393–1402 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hausler, D. et al. Functional characterization of reappearing B cells after anti-CD20 treatment of CNS autoimmune disease. Proc. Natl Acad. Sci. USA. 115, 9773–9778 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pellkofer, H. L. et al. Long-term follow-up of patients with neuromyelitis optica after repeated therapy with rituximab. Neurology 76, 1310–1315 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Kim, S. H., Huh, S. Y., Lee, S. J., Joung, A. & Kim, H. J. A 5-year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol. 70, 1110–1117 (2013).

    Article  PubMed  Google Scholar 

  33. Stuve, O. et al. Long-term B-lymphocyte depletion with rituximab in patients with relapsing-remitting multiple sclerosis. Arch. Neurol. 66, 259–261 (2009).

    PubMed  Google Scholar 

  34. Havrdova, E. et al. Alemtuzumab CARE-MS I 5-year follow-up: durable efficacy in the absence of continuous MS therapy. Neurology 89, 1107–1116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodig, S. J. et al. Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H). Clin. Cancer Res. 12, 7174–7179 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Thompson, S. A., Jones, J. L., Cox, A. L., Compston, D. A. & Coles, A. J. B-cell reconstitution and BAFF after alemtuzumab (Campath-1H) treatment of multiple sclerosis. J. Clin. Immunol. 30, 99–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Jones, J. L. et al. IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J. Clin. Invest. 119, 2052–2061 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. De Mercanti, S. et al. Alemtuzumab long-term immunologic effect: Treg suppressor function increases up to 24 months. Neurol. Neuroimmunol. Neuroinflamm. 3, e194 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jones, J. L. et al. Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation. Proc. Natl Acad. Sci. USA 110, 20200–20205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, Y. et al. Restoration of regulatory B cell deficiency following alemtuzumab therapy in patients with relapsing multiple sclerosis. J. Neuroinflamm. 15, 300 (2018).

    Article  CAS  Google Scholar 

  41. Zhang, X. et al. Differential reconstitution of T cell subsets following immunodepleting treatment with alemtuzumab (anti-CD52 monoclonal antibody) in patients with relapsing-remitting multiple sclerosis. J. Immunol. 191, 5867–5874 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Cooles, F. A. et al. Immune reconstitution 20 years after treatment with alemtuzumab in a rheumatoid arthritis cohort: implications for lymphocyte depleting therapies. Arthritis Res. Ther. 18, 302 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gelfand, J. M., Cotter, J., Klingman, J., Huang, E. J. & Cree, B. A. Massive CNS monocytic infiltration at autopsy in an alemtuzumab-treated patient with NMO. Neurol. Neuroimmunol. Neuroinflamm. 1, e34 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Azzopardi, L., Cox, A. L., McCarthy, C. L., Jones, J. L. & Coles, A. J. Alemtuzumab use in neuromyelitis optica spectrum disorders: a brief case series. J. Neurol. 263, 25–29 (2016).

    Article  PubMed  Google Scholar 

  45. Ruck, T. et al. ALAIN01–alemtuzumab in autoimmune inflammatory neurodegeneration: mechanisms of action and neuroprotective potential. BMC Neurol. 16, 34 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pfeuffer, S. et al. Alemtuzumab-induced changes in cerebrospinal fluid immune cell pattern — a prospective observational study [abstract P1200]. Mult. Scler. 24, 677–678 (2018).

    Article  Google Scholar 

  47. Giovannoni, G. et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N. Engl. J. Med. 362, 416–426 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Giovannoni, G. et al. Safety and efficacy of cladribine tablets in patients with relapsing-remitting multiple sclerosis: results from the randomized extension trial of the CLARITY study. Mult. Scler. 24, 1594–1604 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Robertson, L. E. et al. Induction of apoptotic cell death in chronic lymphocytic leukemia by 2-chloro-2’-deoxyadenosine and 9-beta-d-arabinosyl-2-fluoroadenine. Blood 81, 143–150 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Wiendl, H. Cladribine — an old newcomer for pulsed immune reconstitution in MS. Nat. Rev. Neurol. 13, 573–574 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Baker, D. et al. Both cladribine and alemtuzumab may effect MS via B-cell depletion. Neurol. Neuroimmunol. Neuroinflamm. 4, e360 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ceronie, B. et al. Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells. J. Neurol. 265, 1199–1209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rejdak, K., Stelmasiak, Z. & Grieb, P. Cladribine induces long lasting oligoclonal bands disappearance in relapsing multiple sclerosis patients: 10-year observational study. Multiple Scler. Relat. Disord. 27, 117–120 (2019).

    Article  Google Scholar 

  54. Laugel, B. et al. Cladribine inhibits cytokine secretion by T cells independently of deoxycytidine kinase activity. J. Neuroimmunol. 240–241, 52–57 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Korsen, M., Bragado Alonso, S., Peix, L., Broker, B. M. & Dressel, A. Cladribine exposure results in a sustained modulation of the cytokine response in human peripheral blood mononuclear cells. PloS one 10, e0129182 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Mitosek-Szewczyk, K. et al. Impact of cladribine therapy on changes in circulating dendritic cell subsets, T cells and B cells in patients with multiple sclerosis. J. Neurol. Sci. 332, 35–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Kraus, S. H. et al. Cladribine exerts an immunomodulatory effect on human and murine dendritic cells. Int. Immunopharmacol. 18, 347–357 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Kopadze, T., Dobert, M., Leussink, V. I., Dehmel, T. & Kieseier, B. C. Cladribine impedes in vitro migration of mononuclear cells: a possible implication for treating multiple sclerosis. Eur. J. Neurol. 16, 409–412 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Musella, A. et al. Cladribine interferes with IL-1beta synaptic effects in experimental multiple sclerosis. J. Neuroimmunol. 264, 8–13 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Fassas, A. et al. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transplant. 20, 631–638 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Snowden, J. A. et al. Evolution, trends, outcomes, and economics of hematopoietic stem cell transplantation in severe autoimmune diseases. Blood Adv. 1, 2742–2755 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Muraro, P. A. et al. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurol. 74, 459–469 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Burt, R. K. et al. Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis: a randomized clinical trial. JAMA 321, 165–174 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fassas, A. et al. Autologous stem cell transplantation in progressive multiple sclerosis — an interim analysis of efficacy. J. Clin. Immunol. 20, 24–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Moore, J. et al. A pilot randomized trial comparing CD34-selected versus unmanipulated hemopoietic stem cell transplantation for severe, refractory rheumatoid arthritis. Arthritis Rheum. 46, 2301–2309 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Feng, X. et al. Rabbit ATG but not horse ATG promotes expansion of functional CD4+CD25highFOXP3+ regulatory T cells in vitro. Blood 111, 3675–3683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kekre, N. & Antin, J. H. ATG in allogeneic stem cell transplantation: standard of care in 2017? Counterpoint. Blood Adv. 1, 573–576 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Palchaudhuri, R. et al. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nat. Biotechnol. 34, 738–745 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. de Andrade Pereira, B. et al. Tolerance of activated pathogenic CD4+ T cells by transcriptional targeting of dendritic cells. Gene Ther. 22, 382–390 (2015).

    Article  PubMed  CAS  Google Scholar 

  70. Muraro, P. A. et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J. Exp. Med. 201, 805–816 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Alexander, T. et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 113, 214–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Muraro, P. A. et al. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J. Clin. Invest. 124, 1168–1172 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mondria, T., Lamers, C. H., te Boekhorst, P. A., Gratama, J. W. & Hintzen, R. Q. Bone-marrow transplantation fails to halt intrathecal lymphocyte activation in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 79, 1013–1015 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Saiz, A. et al. MRI and CSF oligoclonal bands after autologous hematopoietic stem cell transplantation in MS. Neurology 56, 1084–1089 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Nash, R. A. et al. High-dose immunosuppressive therapy and autologous HCT for relapsing-remitting MS. Neurology 88, 842–852 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Korn, T. & Kallies, A. T cell responses in the central nervous system. Nat. Rev. Immunol. 17, 179–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Darlington, P. J. et al. Diminished Th17 (not Th1) responses underlie multiple sclerosis disease abrogation after hematopoietic stem cell transplantation. Ann. Neurol. 73, 341–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Abrahamsson, S. V. et al. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 136, 2888–2903 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  79. de Paula, A. S. A. et al. Autologous haematopoietic stem cell transplantation reduces abnormalities in the expression of immune genes in multiple sclerosis. Clin. Sci. 128, 111–120 (2015).

    Article  CAS  Google Scholar 

  80. Arruda, L. C. et al. Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients. Bone Marrow Transplant. 50, 380–389 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Alexander, T. et al. SCT for severe autoimmune diseases: consensus guidelines of the European Society for Blood and Marrow Transplantation for immune monitoring and biobanking. Bone Marrow Transplant. 50, 173–180 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Schulze-Koops, H. Lymphopenia and autoimmune diseases. Arthritis Res. Ther. 6, 178–180 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Daniels, G. H. et al. Alemtuzumab-related thyroid dysfunction in a phase 2 trial of patients with relapsing-remitting multiple sclerosis. J. Clin. Endocrinol. Metab. 99, 80–89 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Willis, M. D. et al. Sarcoidosis following alemtuzumab treatment for multiple sclerosis. Multiple Scler. J. 24, 1779–1782 (2018).

    Article  CAS  Google Scholar 

  85. Wiendl, H., Calabresi, P. A. & Meuth, S. G. Defining response profiles after alemtuzumab: rare paradoxical disease exacerbation. Neurology 90, 309–311 (2018).

    Article  PubMed  Google Scholar 

  86. Sakaguchi, N., Miyai, K. & Sakaguchi, S. Ionizing radiation and autoimmunity. Induction of autoimmune disease in mice by high dose fractionated total lymphoid irradiation and its prevention by inoculating normal T cells. J. Immunol. 152, 2586–2595 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the Swiss National Science Foundation (grant 31003A_169664 to J.D.L.), the German Ministry of Education, Science, Research and Technology (BMBF, German Competence Network of MS (KKNMS)) (grant 01GI1603D to T.R. and grant FKZ01FI1603A to H.W.), the Collaborative Research Centre TR-128 ‘Initiating/Effector versus Regulatory Mechanisms in Multiple Sclerosis – Progress towards Tackling the Disease’ (project A09, A10 and Z02 to H.W.), the National Institute of Health Research (project 16/126/26 to P.A.M.), the National Institute of Health Research Biomedical Research Centre funding scheme to Imperial College London (P.A.M.) and the NIH Penn Autoimmunity Centers of Excellence (A.B.O.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussions of its content, writing and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Jan D. Lünemann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks A. Coles and J. Snowden for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lünemann, J.D., Ruck, T., Muraro, P.A. et al. Immune reconstitution therapies: concepts for durable remission in multiple sclerosis. Nat Rev Neurol 16, 56–62 (2020). https://doi.org/10.1038/s41582-019-0268-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-019-0268-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing