Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The metabolic face of migraine — from pathophysiology to treatment

Abstract

Migraine can be regarded as a conserved, adaptive response that occurs in genetically predisposed individuals with a mismatch between the brain’s energy reserve and workload. Given the high prevalence of migraine, genotypes associated with the condition seem likely to have conferred an evolutionary advantage. Technological advances have enabled the examination of different aspects of cerebral metabolism in patients with migraine, and complementary animal research has highlighted possible metabolic mechanisms in migraine pathophysiology. An increasing amount of evidence — much of it clinical — suggests that migraine is a response to cerebral energy deficiency or oxidative stress levels that exceed antioxidant capacity and that the attack itself helps to restore brain energy homeostasis and reduces harmful oxidative stress levels. Greater understanding of metabolism in migraine offers novel therapeutic opportunities. In this Review, we describe the evidence for abnormalities in energy metabolism and mitochondrial function in migraine, with a focus on clinical data (including neuroimaging, biochemical, genetic and therapeutic studies), and consider the relationship of these abnormalities with the abnormal sensory processing and cerebral hyper-responsivity observed in migraine. We discuss experimental data to consider potential mechanisms by which metabolic abnormalities could generate attacks. Finally, we highlight potential treatments that target cerebral metabolism, such as nutraceuticals, ketone bodies and dietary interventions.

Key points

  • Prevalent triggers of migraine attacks can all be linked to unbalanced cerebral energy metabolism and/or oxidative stress.

  • Magnetic resonance spectroscopy studies have shown that mitochondrial phosphorylation potential and ATP are decreased in the brains of people with migraine between attacks. Glucose (and lipid) metabolism and mitochondrial functions are abnormal in the peripheral blood.

  • Among patients with migraine, various single nucleotide polymorphisms are present in non-coding mitochondrial DNA and nuclear-encoded mitochondrial proteins; common variants associated with migraine are functionally involved in mitochondrial metabolism.

  • Metabolic enhancers, such as riboflavin and coenzyme Q10, and dietary or pharmacological ketogenesis improve migraine but novel, more efficient metabolic strategies are needed.

  • Experimental studies indicate a link between cerebral energy disequilibrium and cortical spreading depression and/or trigeminovascular system activation; calcitonin gene-related peptide and pituitary adenylate cyclase-activating peptide could also help restore energy homeostasis.

  • Migraine can be regarded as a conserved, adaptive response that occurs in individuals with a genetic predisposition and a mismatch between the brain’s energy reserve and workload.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Cerebral metabolomics that might be involved in migraine pathogenesis and therapeutic targets.
Fig. 2: Metabolic face of migraine attack generation and resolution.

References

  1. Gray, P. A. & Burtness, H. I. Hypoglycemic headache. Endocrinology 19, 549–560 (1935).

    Google Scholar 

  2. Amery, W. K. Brain hypoxia: the turning-point in the genesis of the migraine attack? Cephalalgia 2, 83–109 (1982). This article is the first to have drawn attention to the possible role of brain hypoxia in migraine pathogenesis.

    CAS  PubMed  Google Scholar 

  3. Schoenen, J., Ambrosini, A., Sándor, P. S. & Maertens de Noordhout, A. Evoked potentials and transcranial magnetic stimulation in migraine: published data and viewpoint on their pathophysiologic significance. Clin. Neurophysiol. 114, 955–972 (2003).

    PubMed  Google Scholar 

  4. Schoenen, J. Pathogenesis of migraine: the biobehavioural and hypoxia theories reconciled. Acta Neurol. Belg. 94, 79–86 (1994). This article presents the hypothesis that the conjunction of abnormal energy metabolism and information processing in the brain may be able to generate migraine attacks.

    CAS  PubMed  Google Scholar 

  5. Pavlovic, J. M., Buse, D. C., Sollars, C. M., Haut, S. & Lipton, R. B. Trigger factors and premonitory features of migraine attacks: summary of studies. Headache 54, 1670–1679 (2014).

    PubMed  Google Scholar 

  6. Peroutka, S. J. What turns on a migraine? A systematic review of migraine precipitating factors. Curr. Pain Headache Rep. 18, 454 (2014).

    PubMed  Google Scholar 

  7. Kelman, L. The triggers or precipitants of the acute migraine attack. Cephalalgia 27, 394–402 (2007).

    CAS  PubMed  Google Scholar 

  8. Schoonman, G. G., Evers, D. J., Terwindt, G. M., van Dijk, J. G. & Ferrari, M. D. The prevalence of premonitory symptoms in migraine: a questionnaire study in 461 patients. Cephalalgia 26, 1209–1213 (2006).

    CAS  PubMed  Google Scholar 

  9. Spierings, E. L. H., Donoghue, S., Mian, A. & Wöber, C. Sufficiency and necessity in migraine: how do we figure out if triggers are absolute or partial and, if partial, additive or potentiating? Curr. Pain Headache Rep. 18, 455 (2014).

    PubMed  Google Scholar 

  10. Borkum, J. M. Migraine triggers and oxidative stress: a narrative review and synthesis. Headache 56, 12–35 (2016).

    PubMed  Google Scholar 

  11. Pingitore, A. et al. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition 31, 916–922 (2015).

    CAS  PubMed  Google Scholar 

  12. Powers, S. K., Radak, Z. & Ji, L. L. Exercise-induced oxidative stress: past, present and future. J. Physiol. 594, 5081–5092 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schiavone, S., Jaquet, V., Trabace, L. & Krause, K.-H. Severe life stress and oxidative stress in the brain: from animal models to human pathology. Antioxid. Redox Signal. 18, 1475–1490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Trivedi, M. S., Holger, D., Bui, A. T., Craddock, T. J. A. & Tartar, J. L. Short-term sleep deprivation leads to decreased systemic redox metabolites and altered epigenetic status. PLOS ONE 12, e0181978 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. Angelucci, F. L. et al. Physiological effect of olfactory stimuli inhalation in humans: an overview. Int. J. Cosmet. Sci. 36, 117–123 (2014).

    CAS  PubMed  Google Scholar 

  16. Franken, C. et al. Phthalate-induced oxidative stress and association with asthma-related airway inflammation in adolescents. Int. J. Hyg. Environ. Health 220, 468–477 (2017).

    CAS  PubMed  Google Scholar 

  17. Nakamura, M., Kuse, Y., Tsuruma, K., Shimazawa, M. & Hara, H. The involvement of the oxidative stress in murine blue LED light-induced retinal damage model. Biol. Pharm. Bull. 40, 1219–1225 (2017).

    CAS  PubMed  Google Scholar 

  18. Demirel, R. et al. Noise induces oxidative stress in rat. Eur. J. Gen. Med. 6, 20–24 (2009).

    CAS  Google Scholar 

  19. Arngrim, N. et al. Migraine induced by hypoxia: an MRI spectroscopy and angiography study. Brain 139, 723–737 (2016). In this study, normobaric hypoxia induced migraine headache, but not aura in patients with migraine.

    PubMed  Google Scholar 

  20. Broessner, G. et al. Hypoxia triggers high-altitude headache with migraine features: a prospective trial. Cephalalgia 36, 765–771 (2016).

    PubMed  Google Scholar 

  21. Arregui, A. et al. High prevalence of migraine in a high-altitude population. Neurology 41, 1668–1668 (1991).

    CAS  PubMed  Google Scholar 

  22. Reddy, V. D., Padmavathi, P., Kavitha, G., Saradamma, B. & Varadacharyulu, N. Alcohol-induced oxidative/nitrosative stress alters brain mitochondrial membrane properties. Mol. Cell. Biochem. 375, 39–47 (2013).

    CAS  PubMed  Google Scholar 

  23. Chauvel, V., Schoenen, J. & Multon, S. Influence of ovarian hormones on cortical spreading depression and its suppression by L-kynurenine in rat. PLOS ONE 8, e82279 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Chauvel, V., Multon, S. & Schoenen, J. Estrogen-dependent effects of 5-hydroxytryptophan on cortical spreading depression in rat: modelling the serotonin-ovarian hormone interaction in migraine aura. Cephalalgia 38, 427–436 (2018).

    PubMed  Google Scholar 

  25. Irwin, R. W. et al. Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology 149, 3167–3175 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mauvais-Jarvis, F., Clegg, D. J. & Hevener, A. L. The role of estrogens in control of energy balance and glucose homeostasis. Endocr. Rev. 34, 309–338 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Welch, K. M., Levine, S. R., D’Andrea, G., Schultz, L. R. & Helpern, J. A. Preliminary observations on brain energy metabolism in migraine studied by in vivo phosphorus 31 NMR spectroscopy. Neurology 39, 538–541 (1989). A pioneering study that showed that mitochondrial energy metabolism is abnormal in the brain of patients with migraine.

    CAS  PubMed  Google Scholar 

  28. Barbiroli, B. et al. Abnormal brain and muscle energy metabolism shown by 31P magnetic resonance spectroscopy in patients affected by migraine with aura. Neurology 42, 1209–1214 (1992).

    CAS  PubMed  Google Scholar 

  29. Kim, J. H. et al. Interictal metabolic changes in episodic migraine: a voxel-based FDG-PET study. Cephalalgia 30, 53–61 (2010).

    CAS  PubMed  Google Scholar 

  30. Lodi, R. et al. Deficit of brain and skeletal muscle bioenergetics and low brain magnesium in juvenile migraine: an in vivo 31P magnetic resonance spectroscopy interictal study. Pediatr. Res. 42, 866–871 (1997).

    CAS  PubMed  Google Scholar 

  31. Lodi, R. et al. Deficient energy metabolism is associated with low free magnesium in the brains of patients with migraine and cluster headache. Brain Res. Bull. 54, 437–441 (2001).

    CAS  PubMed  Google Scholar 

  32. Montagna, P. et al. 31P-magnetic resonance spectroscopy in migraine without aura. Neurology 44, 666–669 (1994).

    CAS  PubMed  Google Scholar 

  33. Reyngoudt, H., Achten, E. & Paemeleire, K. Magnetic resonance spectroscopy in migraine: what have we learned so far? Cephalalgia 32, 845–859 (2012).

    PubMed  Google Scholar 

  34. Schulz, U. G. et al. Association between cortical metabolite levels and clinical manifestations of migrainous aura: an MR-spectroscopy study. Brain J. Neurol. 130, 3102–3110 (2007).

    CAS  Google Scholar 

  35. Lodi, R. et al. Quantitative analysis of skeletal muscle bioenergetics and proton efflux in migraine and cluster headache. J. Neurol. Sci. 146, 73–80 (1997).

    CAS  PubMed  Google Scholar 

  36. Barbiroli, B. et al. Complicated migraine studied by phosphorus magnetic resonance spectroscopy. Cephalalgia 10, 263–272 (1990).

    CAS  PubMed  Google Scholar 

  37. Cevoli, S., Favoni, V. & Cortelli, P. Energy metabolism impairment in migraine. Curr. Med. Chem. https://doi.org/10.2174/0929867325666180622154411 (2018). Excellent comprehensive review of energy metabolism in migraine highlighting the pivotal contribution of the Bologna group initiated by the late Pasaquale Montagna.

  38. Reyngoudt, H., Paemeleire, K., Descamps, B., De Deene, Y. & Achten, E. 31P-MRS demonstrates a reduction in high-energy phosphates in the occipital lobe of migraine without aura patients. Cephalalgia 31, 1243–1253 (2011). This study showed that absolute brain levels of ATP are reduced interictally in patients with migraine without aura.

    PubMed  Google Scholar 

  39. Ramadan, N. M. et al. Low brain magnesium in migraine. Headache 29, 416–419 (1989). The first study to show that magnesium is low in the brain of patients with migraine.

    CAS  PubMed  Google Scholar 

  40. Sandor, P. S. et al. MR-spectroscopic imaging during visual stimulation in subgroups of migraine with aura. Cephalalgia 25, 507–518 (2005). This study revealed that resting and stimulation-induced levels of lactate in the occipital cortex differ among phenotypic subtypes of patients with migraine with aura.

    CAS  PubMed  Google Scholar 

  41. Watanabe, H., Kuwabara, T., Ohkubo, M., Tsuji, S. & Yuasa, T. Elevation of cerebral lactate detected by localized 1H-magnetic resonance spectroscopy in migraine during the interictal period. Neurology 47, 1093–1095 (1996).

    CAS  PubMed  Google Scholar 

  42. Reyngoudt, H. et al. Does visual cortex lactate increase following photic stimulation in migraine without aura patients? A functional (1)H-MRS study. J. Headache Pain 12, 295–302 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Prescot, A. et al. Excitatory neurotransmitters in brain regions in interictal migraine patients. Mol. Pain 5, 34 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Mohamed, R. E., Aboelsafa, A. A. & Al-Malt, A. M. Interictal alterations of thalamic metabolic concentration ratios in migraine without aura detected by proton magnetic resonance spectroscopy. Egypt. J. Radiol. Nucl. Med. 44, 859–870 (2013).

    Google Scholar 

  45. Becerra, L. et al. A ‘complex’ of brain metabolites distinguish altered chemistry in the cingulate cortex of episodic migraine patients. Neuroimage Clin. 11, 588–594 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sappey-Marinier, D. et al. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J. Cereb. Blood Flow Metab. 12, 584–592 (1992).

    CAS  PubMed  Google Scholar 

  47. Magistretti, P. J. & Pellerin, L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Phil. Trans. R. Soc. Lond. B 354, 1155–1163 (1999). This is a review of brain energy metabolism, in particular of the “neuron–astrocyte lactate shuttle” by the authors who first described this important phenomenon.

    CAS  Google Scholar 

  48. Gantenbein, A. R. et al. Sensory information processing may be neuroenergetically more demanding in migraine patients. Neuroreport 24, 202–205 (2013).

    PubMed  Google Scholar 

  49. Lisicki, M. et al. Evidence of an increased neuronal activation-to-resting glucose uptake ratio in the visual cortex of migraine patients: a study comparing 18FDG-PET and visual evoked potentials. J. Headache Pain 19, 49 (2018). This study showed that in patients with migraine there is a mismatch between neuronal activation and glucose uptake in the visual system between attacks.

    PubMed  PubMed Central  Google Scholar 

  50. Littlewood, J. et al. Low platelet monoamine oxidase activity in headache: no correlation with phenolsulphotransferase, succinate dehydrogenase, platelet preparation method or smoking. J. Neurol. Neurosurg. Psychiatry 47, 338–343 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sangiorgi, S. et al. Abnormal platelet mitochondrial function in patients affected by migraine with and without aura. Cephalalgia 14, 21–23 (1994).

    CAS  PubMed  Google Scholar 

  52. Montagna, P. et al. Mitochondrial abnormalities in migraine. Preliminary findings. Headache 28, 477–480 (1988).

    CAS  PubMed  Google Scholar 

  53. Okada, H., Araga, S., Takeshima, T. & Nakashima, K. Plasma lactic acid and pyruvic acid levels in migraine and tension-type headache. Headache 38, 39–42 (1998).

    CAS  PubMed  Google Scholar 

  54. Alp, R., Selek, S., Alp, S. I., Taşkin, A. & Koçyiğit, A. Oxidative and antioxidative balance in patients of migraine. Eur. Rev. Med. Pharmacol. Sci. 14, 877–882 (2010).

    CAS  PubMed  Google Scholar 

  55. Aytaç, B. et al. Decreased antioxidant status in migraine patients with brain white matter hyperintensities. Neurol. Sci. 35, 1925–1929 (2014).

    PubMed  Google Scholar 

  56. Bernecker, C. et al. Oxidative stress is associated with migraine and migraine-related metabolic risk in females. Eur. J. Neurol. 18, 1233–1239 (2011).

    CAS  PubMed  Google Scholar 

  57. Bolayir, E. et al. Intraerythrocyte antioxidant enzyme activities in migraine and tension-type headaches. J. Chin. Med. Assoc. 67, 263–267 (2004).

    PubMed  Google Scholar 

  58. Ciancarelli, I., Tozzi-Ciancarelli, M., Massimo, C. D., Marini, C. & Carolei, A. Urinary nitric oxide metabolites and lipid peroxidation by-products in migraine. Cephalalgia 23, 39–42 (2003).

    CAS  PubMed  Google Scholar 

  59. Ciancarelli, I., Tozzi-Ciancarelli, M., Spacca, G., Massimo, C. D. & Carolei, A. Relationship between biofeedback and oxidative stress in patients with chronic migraine. Cephalalgia 27, 1136–1141 (2007).

    CAS  PubMed  Google Scholar 

  60. Eren, Y., Dirik, E., Neşelioğlu, S. & Erel, Ö. Oxidative stress and decreased thiol level in patients with migraine: cross-sectional study. Acta Neurol. Belg. 115, 643–649 (2015).

    PubMed  Google Scholar 

  61. Geyik, S., Altunısık, E., Neyal, A. M. & Taysi, S. Oxidative stress and DNA damage in patients with migraine. J. Headache Pain 17, 10 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. Gumusyayla, S. et al. A novel oxidative stress marker in migraine patients: dynamic thiol-disulphide homeostasis. Neurol. Sci. 37, 1311–1317 (2016).

    PubMed  Google Scholar 

  63. Shimomura, T. et al. Platelet superoxide dismutase in migraine and tension-type headache. Cephalalgia 14, 215–218 (1994).

    CAS  PubMed  Google Scholar 

  64. Tozzi-Ciancarelli, M. et al. Oxidative stress and platelet responsiveness in migraine. Cephalalgia 17, 580–584 (1997).

    CAS  PubMed  Google Scholar 

  65. Tripathi, G. M., Kalita, J. & Misra, U. K. A study of oxidative stress in migraine with special reference to prophylactic therapy. Int. J. Neurosci. 128, 318–324 (2018).

    CAS  PubMed  Google Scholar 

  66. Tuncel, D., Tolun, F. I., Gokce, M., İmrek, S. & Ekerbiçer, H. Oxidative stress in migraine with and without aura. Biol. Trace Elem. Res. 126, 92–97 (2008).

    CAS  PubMed  Google Scholar 

  67. Yilmaz, G., Sürer, H., Inan, L. E., Coskun, O. & Yücel, D. Increased nitrosative and oxidative stress in platelets of migraine patients. Tohoku J. Exp. Med. 211, 23–30 (2007).

    CAS  PubMed  Google Scholar 

  68. Neri, M. et al. A meta-analysis of biomarkers related to oxidative stress and nitric oxide pathway in migraine. Cephalalgia 35, 931–937 (2015).

    PubMed  Google Scholar 

  69. Gonullu, H. et al. The levels of trace elements and heavy metals in patients with acute migraine headache. J. Pak. Med. Assoc. 65, 694–697 (2015).

    PubMed  Google Scholar 

  70. Welch, K. M., Nagesh, V., Aurora, S. K. & Gelman, N. Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache 41, 629–637 (2001).

    CAS  PubMed  Google Scholar 

  71. Blau, J. N. & Cumings, J. N. Method of precipitating and preventing some migraine attacks. Br. Med. J. 2, 1242–1243 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Roberts, H. J. Migraine and related vascular headaches due to diabetogenic hyperinsulinism. Observations on pathogenesis and rational treatment in 421 patients. Headache 7, 41–62 (1967).

    CAS  PubMed  Google Scholar 

  73. Binder, C. & Bendtson, I. Endocrine emergencies. Hypoglycaemia. Baillieres Clin. Endocrinol. Metab. 6, 23–39 (1992).

    CAS  PubMed  Google Scholar 

  74. Denuelle, M., Fabre, N., Payoux, P., Chollet, F. & Geraud, G. Hypothalamic activation in spontaneous migraine attacks. Headache 47, 1418–1426 (2007). This study was the first to demonstrate activation of the hypothalamus during attacks of migraine without aura.

    PubMed  Google Scholar 

  75. Maniyar, F. H., Sprenger, T., Monteith, T., Schankin, C. & Goadsby, P. J. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain J. Neurol. 137, 232–241 (2014). This study showed that the hypothalamus is activated during the premonitory phase of migraine attacks.

    Google Scholar 

  76. Schulte, L. H. & May, A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain J. Neurol. 139, 1987–1993 (2016). Daily recordings in a patient with migraine confirmed that the hypothalamus is activated hours before the migraine headache starts.

    Google Scholar 

  77. Montagna, P., Pierangeli, G. & Cortelli, P. The primary headaches as a reflection of genetic darwinian adaptive behavioral responses. Headache 50, 273–289 (2010).

    PubMed  Google Scholar 

  78. Pearce, J. Insulin induced hypoglycaemia in migraine. J. Neurol. Neurosurg. Psychiatry 34, 154–156 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hockaday, J. M., Williamson, D. H. & Whitty, C. W. M. Blood-glucose levels and fatty-acid metabolism in migraine related to fasting. Lancet 297, 1153–1156 (1971). An early study of metabolic responses and migraine attack generation after a glucose tolerance test; 6 of 10 patients developed an attack and increases in free fatty acids and ketone bodies.

    Google Scholar 

  80. Christiansen, I., Thomsen, L. L., Daugaard, D., Ulrich, V. & Olesen, J. Glyceryl trinitrate induces attacks of migraine without aura in sufferers of migraine with aura. Cephalalgia 19, 660–667 (1999). discussion 626.

    CAS  PubMed  Google Scholar 

  81. Shaw, S. W., Johnson, R. H. & Keogh, H. J. Metabolic changes during glucose tolerance tests in migraine attacks. J. Neurol. Sci. 33, 51–59 (1977).

    CAS  PubMed  Google Scholar 

  82. Dexter, J. D., Roberts, J. & Byer, J. A. The five hour glucose tolerance test and effect of low sucrose diet in migraine. Headache 18, 91–94 (1978).

    CAS  PubMed  Google Scholar 

  83. Cavestro, C. et al. Insulin metabolism is altered in migraineurs: a new pathogenic mechanism for migraine? Headache 47, 1436–1442 (2007).

    PubMed  Google Scholar 

  84. Rainero, I., Govone, F., Gai, A., Vacca, A. & Rubino, E. Is migraine primarily a metaboloendocrine disorder? Curr. Pain Headache Rep. 22, 36 (2018).

    PubMed  Google Scholar 

  85. Sacco, S. et al. Insulin resistance in migraineurs: results from a case-control study. Cephalalgia 34, 349–356 (2014).

    CAS  PubMed  Google Scholar 

  86. Kokavec, A. Effect of sucrose consumption on serum insulin, serum cortisol and insulin sensitivity in migraine: evidence of sex differences. Physiol. Behav. 142, 170–178 (2015).

    CAS  PubMed  Google Scholar 

  87. Siva, Z. O. et al. Determinants of glucose metabolism and the role of NPY in the progression of insulin resistance in chronic migraine. Cephalalgia 38, 1773–1781 (2018).

    PubMed  Google Scholar 

  88. Brand-Miller, J. C., Griffin, H. J. & Colagiuri, S. The carnivore connection hypothesis: revisited. J. Obes. 2012, 258624 (2012).

    PubMed  Google Scholar 

  89. Issad, T. et al. Effects of fasting on tissue glucose utilization in conscious resting rats. Major glucose-sparing effect in working muscles. Biochem. J. 246, 241–244 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Stepien, M. et al. Increasing protein at the expense of carbohydrate in the diet down-regulates glucose utilization as glucose sparing effect in rats. PLOS ONE 6, e14664 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, X. et al. Are glucose and insulin metabolism and diabetes associated with migraine? A community-based, case-control study. J. Oral Facial Pain Headache 31, 240–250 (2017).

    PubMed  Google Scholar 

  92. Antonazzo, I. C. et al. Diabetes is associated with decreased migraine risk: a nationwide cohort study. Cephalalgia 38, 1759–1764 (2018).

    PubMed  Google Scholar 

  93. Streel, S. et al. Screening for the metabolic syndrome in subjects with migraine. Cephalalgia 37, 1180–1188 (2017).

    PubMed  Google Scholar 

  94. He, Z. et al. Metabolic syndrome in female migraine patients is associated with medication overuse headache: a clinic-based study in China. Eur. J. Neurol. 22, 1228–1234 (2015).

    CAS  PubMed  Google Scholar 

  95. Bigal, M. E., Liberman, J. N. & Lipton, R. B. Obesity and migraine: a population study. Neurology 66, 545–550 (2006). A population study that revealed an association between obesity and chronic migraine.

    PubMed  Google Scholar 

  96. Ziegler, D. K., Hassanein, R. S., Kodanaz, A. & Meek, J. C. Circadian rhythms of plasma cortisol in migraine. J. Neurol. Neurosurg. Psychiatry 42, 741–748 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Peres, M. F. et al. Hypothalamic involvement in chronic migraine. J. Neurol. Neurosurg. Psychiatry 71, 747–751 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lippi, G. & Mattiuzzi, C. Cortisol and migraine: a systematic literature review. Agri 29, 95–99 (2017).

    PubMed  Google Scholar 

  99. Hsu, L. K. et al. Early morning migraine. Nocturnal plasma levels of catecholamines, tryptophan, glucose, and free fatty acids and sleep encephalographs. Lancet 1, 447–451 (1977).

    CAS  PubMed  Google Scholar 

  100. Coggan, J. S. et al. Norepinephrine stimulates glycogenolysis in astrocytes to fuel neurons with lactate. PLOS Comput. Biol. 14, e1006392 (2018).

    PubMed  PubMed Central  Google Scholar 

  101. Jacome, D. E. Hypoglycemia rebound migraine. Headache 41, 895–898 (2001).

    CAS  PubMed  Google Scholar 

  102. De Silva, K. L., Ron, M. A. & Pearce, J. Blood sugar response to glucagon in migraine. J. Neurol. Neurosurg. Psychiatry 37, 105–107 (1974).

    PubMed  PubMed Central  Google Scholar 

  103. Peterlin, B. L., Sacco, S., Bernecker, C. & Scher, A. I. Adipokines and migraine: a systematic review. Headache 56, 622–644 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Guldiken, B., Guldiken, S., Demir, M., Turgut, N. & Tugrul, A. Low leptin levels in migraine: a case control study. Headache 48, 1103–1107 (2008).

    PubMed  Google Scholar 

  105. Domínguez, C. et al. Role of adipocytokines in the pathophysiology of migraine: a cross-sectional study. Cephalalgia 38, 904–911 (2018).

    PubMed  Google Scholar 

  106. Van Houten, B., Hunter, S. E. & Meyer, J. N. Mitochondrial DNA damage induced autophagy, cell death, and disease. Front. Biosci. Landmark Ed. 21, 42–54 (2016).

    PubMed  PubMed Central  Google Scholar 

  107. Yang, J.-L., Weissman, L., Bohr, V. A. & Mattson, M. P. Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair 7, 1110–1120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Roos-Araujo, D., Stuart, S., Lea, R. A., Haupt, L. M. & Griffiths, L. R. Epigenetics and migraine; complex mitochondrial interactions contributing to disease susceptibility. Gene 543, 1–7 (2014).

    CAS  PubMed  Google Scholar 

  109. MacGregor, E. A. Oestrogen and attacks of migraine with and without aura. Lancet Neurol. 3, 354–361 (2004).

    CAS  PubMed  Google Scholar 

  110. Lemos, C. et al. Assessing risk factors for migraine: differences in gender transmission. PLOS ONE 7, e50626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kraya, T., Deschauer, M., Joshi, P. R., Zierz, S. & Gaul, C. Prevalence of headache in patients with mitochondrial disease: a cross-sectional study. Headache 58, 45–52 (2018).

    PubMed  Google Scholar 

  112. Vollono, C., Primiano, G., Della Marca, G., Losurdo, A. & Servidei, S. Migraine in mitochondrial disorders: prevalence and characteristics. Cephalalgia 38, 1093–1106 (2018).

    PubMed  Google Scholar 

  113. Montagna, P. et al. MELAS syndrome: characteristic migrainous and epileptic features and maternal transmission. Neurology 38, 751–754 (1988).

    CAS  PubMed  Google Scholar 

  114. Guo, S. et al. Prevalence of migraine in persons with the 3243A>G mutation in mitochondrial DNA. Eur. J. Neurol. 23, 175–181 (2016).

    CAS  PubMed  Google Scholar 

  115. Altmann, J. et al. Expanded phenotypic spectrum of the m.8344A>G “MERRF” mutation: data from the German mitoNET registry. J. Neurol. 263, 961–972 (2016).

    CAS  PubMed  Google Scholar 

  116. Buzzi, M. G. et al. mtDNA A3243G MELAS mutation is not associated with multigenerational female migraine. Neurology 54, 1005–1007 (2000).

    CAS  PubMed  Google Scholar 

  117. Cevoli, S. et al. High frequency of migraine-only patients negative for the 3243 A>G tRNALeu mtDNA mutation in two MELAS families. Cephalalgia 30, 919–927 (2010).

    PubMed  Google Scholar 

  118. Fachal, L. et al. No evidence of association between common European mitochondrial DNA variants in Alzheimer, Parkinson, and migraine in the Spanish population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168B, 54–65 (2015).

    PubMed  Google Scholar 

  119. Haan, J. et al. Search for mitochondrial DNA mutations in migraine subgroups. Cephalalgia 19, 20–22 (1999).

    CAS  PubMed  Google Scholar 

  120. Klopstock, T. et al. Mitochondrial DNA in migraine with aura. Neurology 46, 1735–1738 (1996). A negative search for mtDNA mutations associated with migraine with aura.

    CAS  PubMed  Google Scholar 

  121. Rozen, T. D. et al. Study of mitochondrial DNA mutations in patients with migraine with prolonged aura. Headache 44, 674–677 (2004).

    PubMed  Google Scholar 

  122. Russell, M. B., Diamant, M. & Nørby, S. Genetic heterogeneity of migraine with and without aura in Danes cannot be explained by mutation in mtDNA nucleotide pair 11084. Acta Neurol. Scand. 96, 171–173 (1997).

    CAS  PubMed  Google Scholar 

  123. Ojaimi, J., Katsabanis, S., Bower, S., Quigley, A. & Byrne, E. Mitochondrial DNA in stroke and migraine with aura. Cerebrovasc. Dis. 8, 102–106 (1998).

    CAS  PubMed  Google Scholar 

  124. Larsen, S. et al. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H. Biochim. Biophys. Acta 1837, 226–231 (2014).

    CAS  PubMed  Google Scholar 

  125. Martínez-Redondo, D. et al. Human mitochondrial haplogroup H: the highest VO2max consumer–is it a paradox? Mitochondrion 10, 102–107 (2010).

    PubMed  Google Scholar 

  126. Di Lorenzo, C. et al. Mitochondrial DNA haplogroups influence the therapeutic response to riboflavin in migraineurs. Neurology 72, 1588–1594 (2009). A pharmacogenic study that showed that patients with migraine who have non-H mtDNA haplogroups respond better to high-dose riboflavin than those with the H haplogroup.

    PubMed  Google Scholar 

  127. Majamaa, K., Finnilä, S., Turkka, J. & Hassinen, I. E. Mitochondrial DNA haplogroup U as a risk factor for occipital stroke in migraine. Lancet 352, 455–456 (1998).

    CAS  PubMed  Google Scholar 

  128. Wang, Q. et al. Mitochondrial DNA control region sequence variation in migraine headache and cyclic vomiting syndrome. Am. J. Med. Genet. A. 131, 50–58 (2004).

    PubMed  Google Scholar 

  129. Zaki, E. et al. Two common mitochondrial dna polymorphisms are highly associated with migraine headache and cyclic vomiting syndrome. Cephalalgia 29, 719–728 (2009). A study that showed that childhood migraine and cyclic vomiting are associated with a high prevalence of two mtDNA polymorphisms.

    CAS  PubMed  Google Scholar 

  130. Boles, R. G. et al. Increased prevalence of two mitochondrial DNA polymorphisms in functional disease: are we describing different parts of an energy-depleted elephant? Mitochondrion 23, 1–6 (2015).

    CAS  PubMed  Google Scholar 

  131. Stuart, S. & Griffiths, L. R. A possible role for mitochondrial dysfunction in migraine. Mol. Genet. Genomics 287, 837–844 (2012).

    CAS  PubMed  Google Scholar 

  132. Stuart, S. et al. Gene-centric analysis implicates nuclear encoded mitochondrial protein gene variants in migraine susceptibility. Mol. Genet. Genomic Med. 5, 157–163 (2017). The first evidence that polymorphisms in genes that encode nuclear-encoded mitochondrial proteins might play a role in migraine.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Palmirotta, R. et al. Is SOD2 Ala16Val polymorphism associated with migraine with aura phenotype? Antioxid. Redox Signal. 22, 275–279 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Saygi, S. et al. Superoxide dismutase and catalase genotypes in pediatric migraine patients. J. Child Neurol. 30, 1586–1590 (2015).

    PubMed  Google Scholar 

  135. Kowa, H. et al. The homozygous C677T mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for migraine. Am. J. Med. Genet. 96, 762–764 (2000).

    CAS  PubMed  Google Scholar 

  136. Lea, R. A., Ovcaric, M., Sundholm, J., MacMillan, J. & Griffiths, L. R. The methylenetetrahydrofolate reductase gene variant C677T influences susceptibility to migraine with aura. BMC Med. 2, 3 (2004).

    PubMed  PubMed Central  Google Scholar 

  137. Bhattacharjee, N. & Borah, A. Oxidative stress and mitochondrial dysfunction are the underlying events of dopaminergic neurodegeneration in homocysteine rat model of Parkinson’s disease. Neurochem. Int. 101, 48–55 (2016).

    CAS  PubMed  Google Scholar 

  138. Kaunisto, M. et al. Testing of variants of the MTHFR and ESR1 genes in 1798 Finnish individuals fails to confirm the association with migraine with aura. Cephalalgia 26, 1462–1472 (2006).

    CAS  PubMed  Google Scholar 

  139. Lee, J., Wong, S. A., Li, B. U. K. & Boles, R. G. NextGen nuclear DNA sequencing in cyclic vomiting syndrome reveals a significant association with the stress-induced calcium channel (RYR2). Neurogastroenterol. Motil. 27, 990–996 (2015).

    CAS  PubMed  Google Scholar 

  140. Curtain, R., Tajouri, L., Lea, R., MacMillan, J. & Griffiths, L. No mutations detected in the INSR gene in a chromosome 19p13 linked migraine pedigree. Eur. J. Med. Genet. 49, 57–62 (2006).

    PubMed  Google Scholar 

  141. Kaunisto, M. A. et al. Chromosome 19p13 loci in Finnish migraine with aura families. Am. J. Med. Genet. B Neuropsychiatr. Genet. 132B, 85–89 (2005).

    PubMed  PubMed Central  Google Scholar 

  142. McCarthy, L. C. et al. Single-nucleotide polymorphism alleles in the insulin receptor gene are associated with typical migraine. Genomics 78, 135–149 (2001).

    CAS  PubMed  Google Scholar 

  143. Netzer, C. et al. Replication study of the insulin receptor gene in migraine with aura. Genomics 91, 503–507 (2008).

    CAS  PubMed  Google Scholar 

  144. Mohammad, S. S., Coman, D. & Calvert, S. Glucose transporter 1 deficiency syndrome and hemiplegic migraines as a dominant presenting clinical feature. J. Paediatr. Child Health 50, 1025–1026 (2014).

    PubMed  Google Scholar 

  145. Gormley, P. et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat. Genet. 48, 856–866 (2016). A large meta-analysis of genome-wide association studies, which showed that a great number of loci are each responsible for a very small proportion of the genetic risk of migraine.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Eising, E. et al. Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology: a GWAS-based study using the Allen Human Brain Atlas. Hum. Genet. 135, 425–439 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Hershey, A., Horn, P., Kabbouche, M., O’Brien, H. & Powers, S. Genomic expression patterns in menstrual-related migraine in adolescents. Headache 52, 68–79 (2012).

    PubMed  PubMed Central  Google Scholar 

  148. Woldeamanuel, Y., Rapoport, A. & Cowan, R. The place of corticosteroids in migraine attack management: a 65-year systematic review with pooled analysis and critical appraisal. Cephalalgia 35, 996–1024 (2015).

    CAS  PubMed  Google Scholar 

  149. Derry, C. J., Derry, S. & Moore, R. A. Caffeine as an analgesic adjuvant for acute pain in adults. Cochrane Database Syst. Rev. 11, CD009281 (2014).

    Google Scholar 

  150. Nagatomo, K. & Kubo, Y. Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels. Proc. Natl Acad. Sci. USA 105, 17373–17378 (2008).

    CAS  PubMed  Google Scholar 

  151. Lovallo, W. R. et al. Caffeine stimulation of cortisol secretion across the waking hours in relation to caffeine intake levels. Psychosom. Med. 67, 734–739 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Wu, B. H. Dose effects of caffeine ingestion on acute hormonal responses to resistance exercise. J. Sports Med. Phys. Fit. 55, 1242–1251 (2015).

    CAS  Google Scholar 

  153. Khani, S. & Tayek, J. A. Cortisol increases gluconeogenesis in humans: its role in the metabolic syndrome. Clin. Sci. 101, 739–747 (2001).

    CAS  PubMed  Google Scholar 

  154. Pagano, G. et al. An in vivo and in vitro study of the mechanism of prednisone-induced insulin resistance in healthy subjects. J. Clin. Invest. 72, 1814–1820 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Bigal, M. E. & Lipton, R. B. Concepts and mechanisms of migraine chronification. Headache 48, 7–15 (2008).

    PubMed  Google Scholar 

  156. Lee, M. J., Choi, H. A., Choi, H. & Chung, C.-S. Caffeine discontinuation improves acute migraine treatment: a prospective clinic-based study. J. Headache Pain 17, 71 (2016).

    PubMed  PubMed Central  Google Scholar 

  157. Kalra, E. K. Nutraceutical–definition and introduction. AAPS PharmSci 5, 27–28 (2003).

    PubMed Central  Google Scholar 

  158. Rajapakse, T. & Pringsheim, T. Nutraceuticals in migraine: a summary of existing guidelines for use. Headache 56, 808–816 (2016).

    PubMed  Google Scholar 

  159. Shaik, M. M. & Gan, S. H. Vitamin supplementation as possible prophylactic treatment against migraine with aura and menstrual migraine. Biomed Res. Int. 2015, 469529 (2015).

    PubMed  PubMed Central  Google Scholar 

  160. Barile, M., Giancaspero, T. A., Leone, P., Galluccio, M. & Indiveri, C. Riboflavin transport and metabolism in humans. J. Inherit. Metab. Dis. 39, 545–557 (2016).

    CAS  PubMed  Google Scholar 

  161. Bütün, A., Nazıroğlu, M., Demirci, S., Çelik, Ö. & Uğuz, A. C. Riboflavin and vitamin E increase brain calcium and antioxidants, and microsomal calcium-ATP-ase values in rat headache models induced by glyceryl trinitrate. J. Membr. Biol. 248, 205–213 (2015).

    PubMed  Google Scholar 

  162. Marashly, E. T. & Bohlega, S. A. Riboflavin has neuroprotective potential: focus on Parkinson’s disease and migraine. Front. Neurol. 8, 333 (2017).

    PubMed  PubMed Central  Google Scholar 

  163. Boehnke, C. et al. High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre. Eur. J. Neurol. 11, 475–477 (2004).

    CAS  PubMed  Google Scholar 

  164. Condò, M., Posar, A., Arbizzani, A. & Parmeggiani, A. Riboflavin prophylaxis in pediatric and adolescent migraine. J. Headache Pain 10, 361–365 (2009).

    PubMed  PubMed Central  Google Scholar 

  165. Gaul, C., Diener, H.-C. & Danesch, U., Migravent® Study Group. Improvement of migraine symptoms with a proprietary supplement containing riboflavin, magnesium and Q10: a randomized, placebo-controlled, double-blind, multicenter trial. J. Headache Pain 16, 516 (2015).

    PubMed  Google Scholar 

  166. Schoenen, J., Jacquy, J. & Lenaerts, M. Effectiveness of high-dose riboflavin in migraine prophylaxis. A randomized controlled trial. Neurology 50, 466–470 (1998). A placebo-controlled trial that showed that 400 mg riboflavin daily is effective for migraine prevention.

    CAS  PubMed  Google Scholar 

  167. Bruijn, J. et al. Medium-dose riboflavin as a prophylactic agent in children with migraine: a preliminary placebo-controlled, randomised, double-blind, cross-over trial. Cephalalgia 30, 1426–1434 (2010).

    PubMed  Google Scholar 

  168. Rahimdel, A., Mellat, A., Zeinali, A., Jafari, E. & Ayatollahi, P. Comparison between intravenous sodium valproate and subcutaneous sumatriptan for treatment of acute migraine attacks; double-blind randomized clinical trial. Iran. J. Med. Sci. 39, 171–177 (2014).

    PubMed  PubMed Central  Google Scholar 

  169. Thompson, D. F. & Saluja, H. S. Prophylaxis of migraine headaches with riboflavin: a systematic review. J. Clin. Pharm. Ther. 42, 394–403 (2017).

    CAS  PubMed  Google Scholar 

  170. Prangthip, P., Kettawan, A., Posuwan, J., Okuno, M. & Okamoto, T. An improvement of oxidative stress in diabetic rats by ubiquinone-10 and ubiquinol-10 and bioavailability after short- and long-term coenzyme Q10 supplementation. J. Diet. Suppl. 13, 647–659 (2016).

    CAS  PubMed  Google Scholar 

  171. Yang, X. et al. Neuroprotection of coenzyme Q10 in neurodegenerative diseases. Curr. Top. Med. Chem. 16, 858–866 (2016).

    CAS  PubMed  Google Scholar 

  172. Dahri, M., Hashemilar, M., Asghari-Jafarabadi, M. & Tarighat-Esfanjani, A. Efficacy of coenzyme Q10 for the prevention of migraine in women: a randomized, double-blind, placebo-controlled study. Eur. J. Integr. Med. 16, 8–14 (2017).

    Google Scholar 

  173. Dahri, M., Tarighat-Esfanjani, A., Asghari-Jafarabadi, M. & Hashemilar, M. Oral coenzyme Q10 supplementation in patients with migraine: effects on clinical features and inflammatory markers. Nutr. Neurosci. 22, 607–615 (2019).

    CAS  PubMed  Google Scholar 

  174. Sándor, P. S. et al. Efficacy of coenzyme Q10 in migraine prophylaxis: a randomized controlled trial. Neurology 64, 713–715 (2005).

    PubMed  Google Scholar 

  175. Hajihashemi, P., Askari, G., Khorvash, F., Reza Maracy, M. & Nourian, M. The effects of concurrent coenzyme Q10, l-carnitine supplementation in migraine prophylaxis: a randomized, placebo-controlled, double-blind trial. Cephalalgia 39, 648–654 (2019).

    PubMed  Google Scholar 

  176. Slater, S. K. et al. A randomized, double-blinded, placebo-controlled, crossover, add-on study of coenzyme Q10 in the prevention of pediatric and adolescent migraine. Cephalalgia 31, 897–905 (2011).

    PubMed  Google Scholar 

  177. Hershey, A. D. et al. Coenzyme Q10 deficiency and response to supplementation in pediatric and adolescent migraine. Headache 47, 73–80 (2007).

    PubMed  Google Scholar 

  178. Müller, U. & Krieglstein, J. Prolonged pretreatment with α-lipoic acid protects cultured neurons against hypoxic, glutamate-, or iron-induced injury. J. Cereb. Blood Flow Metab. 15, 624–630 (1995).

    PubMed  Google Scholar 

  179. Packer, L., Witt, E. H. & Tritschler, H. J. alpha-Lipoic acid as a biological antioxidant. Free. Radic. Biol. Med. 19, 227–250 (1995).

    CAS  PubMed  Google Scholar 

  180. Magis, D. et al. A randomized double-blind placebo-controlled trial of thioctic acid in migraine prophylaxis. Headache 47, 52–57 (2007).

    PubMed  Google Scholar 

  181. Cavestro, C. et al. Alpha-lipoic acid shows promise to improve migraine in patients with insulin resistance: a 6-month exploratory study. J. Med. Food 21, 269–273 (2018).

    CAS  PubMed  Google Scholar 

  182. Ali, A. M., Awad, T. G. & Al-Adl, N. M. Efficacy of combined topiramate/thioctic acid therapy in migraine prophylaxis. Saudi Pharm. J. 18, 239–243 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Lea, R., Colson, N., Quinlan, S., Macmillan, J. & Griffiths, L. The effects of vitamin supplementation and MTHFR (C677T) genotype on homocysteine-lowering and migraine disability. Pharmacogenet. Genomics 19, 422–428 (2009).

    CAS  PubMed  Google Scholar 

  184. Menon, S. et al. Genotypes of the MTHFR C677T and MTRR A66G genes act independently to reduce migraine disability in response to vitamin supplementation. Pharmacogenet. Genomics 22, 741–749 (2012).

    CAS  PubMed  Google Scholar 

  185. Menon, S. et al. The effect of 1 mg folic acid supplementation on clinical outcomes in female migraine with aura patients. J. Headache Pain 17, 60 (2016).

    PubMed  PubMed Central  Google Scholar 

  186. Prousky, J. & Seely, D. The treatment of migraines and tension-type headaches with intravenous and oral niacin (nicotinic acid): systematic review of the literature. Nutr. J. 4, 3 (2005).

    PubMed  PubMed Central  Google Scholar 

  187. Facchinetti, F., Sances, G., Borella, P., Genazzani, A. R. & Nappi, G. Magnesium prophylaxis of menstrual migraine: effects on intracellular magnesium. Headache 31, 298–301 (1991).

    CAS  PubMed  Google Scholar 

  188. Chiu, H.-Y., Yeh, T.-H., Huang, Y.-C. & Chen, P.-Y. Effects of intravenous and oral magnesium on reducing migraine: a meta-analysis of randomized controlled trials. Pain Physician 19, E97–E112 (2016).

    PubMed  Google Scholar 

  189. Karimi, N., Razian, A. & Heidari, M. The efficacy of magnesium oxide and sodium valproate in prevention of migraine headache: a randomized, controlled, double-blind, crossover study. Acta Neurol. Belg. https://doi.org/10.1007/s13760-019-01101-x (2019).

  190. Tarighat Esfanjani, A. et al. The effects of magnesium, L-carnitine, and concurrent magnesium-L-carnitine supplementation in migraine prophylaxis. Biol. Trace Elem. Res. 150, 42–48 (2012).

    PubMed  Google Scholar 

  191. Hagen, K. et al. Acetyl-l-carnitine versus placebo for migraine prophylaxis: a randomized, triple-blind, crossover study. Cephalalgia 35, 987–995 (2015).

    PubMed  Google Scholar 

  192. Yang, H., Shan, W., Zhu, F., Wu, J. & Wang, Q. Ketone bodies in neurological diseases: focus on neuroprotection and underlying mechanisms. Front. Neurol. 10, 585 (2019).

    PubMed  PubMed Central  Google Scholar 

  193. Gross, E. C., Klement, R. J., Schoenen, J., D’Agostino, D. P. & Fischer, D. Potential protective mechanisms of ketone bodies in migraine prevention. Nutrients 11, 811 (2019). A comprehensive review of the various potential mechanisms by which ketone bodies might protect against migraine.

    CAS  PubMed Central  Google Scholar 

  194. Al-Karagholi, M. A.-M., Hansen, J. M., Guo, S., Olesen, J. & Ashina, M. Opening of ATP-sensitive potassium channels causes migraine attacks: a new target for the treatment of migraine. Brain J. Neurol. awz199 (2019). A demonstration that a K ATP channel opener induces migraine headache in patients with migraine.

  195. Strahlman, R. S. Can ketosis help migraine sufferers? A case report. Headache 46, 182 (2006).

    PubMed  Google Scholar 

  196. Di Lorenzo, C. et al. Diet transiently improves migraine in two twin sisters: possible role of ketogenesis? Funct. Neurol. 28, 305–308 (2013). The first clinical indication that a ketogenic diet can improve migraine.

    PubMed  Google Scholar 

  197. Maggioni, F., Margoni, M. & Zanchin, G. Ketogenic diet in migraine treatment: a brief but ancient history. Cephalalgia 31, 1150–1151 (2011).

    PubMed  Google Scholar 

  198. SCHNABEL, T. G. An experience with a ketogenic dietary in migraine. Ann. Intern. Med. 2, 341 (1928).

    Google Scholar 

  199. Di Lorenzo, C. et al. Migraine improvement during short lasting ketogenesis: a proof-of-concept study. Eur. J. Neurol. 22, 170–177 (2015).

    PubMed  Google Scholar 

  200. Di Lorenzo, C. et al. Cortical functional correlates of responsiveness to short-lasting preventive intervention with ketogenic diet in migraine: a multimodal evoked potentials study. J. Headache Pain 17, 58 (2016).

    PubMed  PubMed Central  Google Scholar 

  201. Di Lorenzo, C. et al. A randomized double-blind, cross-over trial of very low-calorie diet in overweight migraine patients: a possible role for ketones? Nutrients 11, 1742 (2019).

    PubMed Central  Google Scholar 

  202. Gross, E. et al. Efficacy and safety of exogenous ketone bodies for preventive treatment of migraine: a study protocol for a single-centred, randomised, placebo-controlled, double-blind crossover trial. Trials 20, 61 (2019).

    PubMed  PubMed Central  Google Scholar 

  203. Varkey, E., Cider, A., Carlsson, J. & Linde, M. Exercise as migraine prophylaxis: a randomized study using relaxation and topiramate as controls. Cephalalgia 31, 1428–1438 (2011).

    PubMed  PubMed Central  Google Scholar 

  204. Ding, Q., Vaynman, S., Souda, P., Whitelegge, J. P. & Gomez-Pinilla, F. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur. J. Neurosci. 24, 1265–1276 (2006).

    PubMed  Google Scholar 

  205. Steiner, J. L., Murphy, E. A., McClellan, J. L., Carmichael, M. D. & Davis, J. M. Exercise training increases mitochondrial biogenesis in the brain. J. Appl. Physiol. (1985) 111, 1066–1071 (2011).

    CAS  Google Scholar 

  206. Silberstein, S. D., Latsko, M. & Schoenen, J. in Multidisciplinary Management of Migraine: Pharmacological, Manual, and Other Therapies (eds Fernandez-de-las-Penas, C., Chaitow, L., & Schoenen, J.) 91–102 (Jones & Bartlett Learning, 2013).

  207. Motaghinejad, M., Motevalian, M. & Shabab, B. Neuroprotective effects of various doses of topiramate against methylphenidate induced oxidative stress and inflammation in rat isolated hippocampus. Clin. Exp. Pharmacol. Physiol. 43, 360–371 (2016).

    CAS  PubMed  Google Scholar 

  208. Kudin, A. P., Debska-Vielhaber, G., Vielhaber, S., Elger, C. E. & Kunz, W. S. The mechanism of neuroprotection by topiramate in an animal model of epilepsy. Epilepsia 45, 1478–1487 (2004).

    CAS  PubMed  Google Scholar 

  209. Franzoni, E. et al. Topiramate: effects on serum lipids and lipoproteins levels in children. Eur. J. Neurol. 14, 1334–1337 (2007).

    CAS  PubMed  Google Scholar 

  210. Wilkes, J. J., Nelson, E., Osborne, M., Demarest, K. T. & Olefsky, J. M. Topiramate is an insulin-sensitizing compound in vivo with direct effects on adipocytes in female ZDF rats. Am. J. Physiol. Endocrinol. Metab. 288, E617–E624 (2005).

    CAS  PubMed  Google Scholar 

  211. Li, R. et al. Valproate attenuates nitroglycerin-induced trigeminovascular activation by preserving mitochondrial function in a rat model of migraine. Med. Sci. Monit. 22, 3229–3237 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Sitarz, K. S. et al. Valproic acid triggers increased mitochondrial biogenesis in POLG-deficient fibroblasts. Mol. Genet. Metab. 112, 57–63 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Berilgen, M. S. et al. Comparison of the effects of amitriptyline and flunarizine on weight gain and serum leptin, C peptide and insulin levels when used as migraine preventive treatment. Cephalalgia 25, 1048–1053 (2005).

    CAS  PubMed  Google Scholar 

  214. Maggioni, F., Ruffatti, S., Dainese, F., Mainardi, F. & Zanchin, G. Weight variations in the prophylactic therapy of primary headaches: 6-month follow-up. J. Headache Pain 6, 322–324 (2005).

    PubMed  PubMed Central  Google Scholar 

  215. Lamont, L. S. Beta-blockers and their effects on protein metabolism and resting energy expenditure. J. Cardiopulm. Rehabil. 15, 183–185 (1995).

    CAS  PubMed  Google Scholar 

  216. Lipton, R. B. et al. Reduction in perceived stress as a migraine trigger: testing the “let-down headache” hypothesis. Neurology 82, 1395–1401 (2014).

    PubMed  PubMed Central  Google Scholar 

  217. Neubauer, J. A. & Sunderram, J. Oxygen-sensing neurons in the central nervous system. J. Appl. Physiol. (1985) 96, 367–374 (2004).

    CAS  Google Scholar 

  218. Lin, L.-C., Lewis, D. A. & Sibille, E. A human-mouse conserved sex bias in amygdala gene expression related to circadian clock and energy metabolism. Mol. Brain 4, 18 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Hoffmann, U., Sukhotinsky, I., Eikermann-Haerter, K. & Ayata, C. Glucose modulation of spreading depression susceptibility. J. Cereb. Blood Flow Metab. 33, 191–195 (2013).

    CAS  PubMed  Google Scholar 

  220. Kilic, K. et al. Inadequate brain glycogen or sleep increases spreading depression susceptibility. Ann. Neurol. 83, 61–73 (2018). A pivotal study that showed that in rodents, glucose shortage and sleep deprivation increase susceptibility to cortical spreading depression and open pannexin-1 megachannels, enabling activation of the trigeminovascular system.

    CAS  PubMed  Google Scholar 

  221. de Almeida Rabello Oliveira, M. et al. Effects of short-term and long-term treatment with medium- and long-chain triglycerides ketogenic diet on cortical spreading depression in young rats. Neurosci. Lett. 434, 66–70 (2008).

    PubMed  Google Scholar 

  222. Gerich, F. J., Hepp, S., Probst, I. & Müller, M. Mitochondrial inhibition prior to oxygen-withdrawal facilitates the occurrence of hypoxia-induced spreading depression in rat hippocampal slices. J. Neurophysiol. 96, 492–504 (2006).

    PubMed  Google Scholar 

  223. Takano, T. et al. Cortical spreading depression causes and coincides with tissue hypoxia. Nat. Neurosci. 10, 754–762 (2007).

    CAS  PubMed  Google Scholar 

  224. Angelova, P. R. et al. Functional oxygen sensitivity of astrocytes. J. Neurosci. 35, 10460–10473 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Chen, S.-P. et al. Inhibition of the P2X7-PANX1 complex suppresses spreading depolarization and neuroinflammation. Brain 140, 1643–1656 (2017).

    PubMed  Google Scholar 

  226. Bolay, H. et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med. 8, 136–142 (2002). The first study to show that CSD in rats can activate the trigeminovascular system.

    CAS  PubMed  Google Scholar 

  227. Karatas, H. et al. Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339, 1092–1095 (2013). This study showed that CSD-induced trigeminovascular activation is mediated by the opening of neuronal pannexin-1 channels.

    CAS  PubMed  Google Scholar 

  228. Feuerstein, D. et al. Regulation of cerebral metabolism during cortical spreading depression. J. Cereb. Blood Flow Metab. 36, 1965–1977 (2016).

    CAS  PubMed  Google Scholar 

  229. Yuzawa, I. et al. Cortical spreading depression impairs oxygen delivery and metabolism in mice. J. Cereb. Blood Flow Metab. 32, 376–386 (2012).

    CAS  PubMed  Google Scholar 

  230. Viggiano, E. et al. Cortical spreading depression produces a neuroprotective effect activating mitochondrial uncoupling protein-5. Neuropsychiatr. Dis. Treat. 12, 1705–1710 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Shatillo, A. et al. Cortical spreading depression induces oxidative stress in the trigeminal nociceptive system. Neuroscience 253, 341–349 (2013).

    CAS  PubMed  Google Scholar 

  232. Diener, H.-C. et al. CGRP as a new target in prevention and treatment of migraine. Lancet Neurol. 13, 1065–1067 (2014).

    CAS  PubMed  Google Scholar 

  233. Durham, P. L. Calcitonin gene-related peptide (CGRP) and migraine. Headache 46 (Suppl. 1), S3–S8 (2006).

    Google Scholar 

  234. Holland, P. R. et al. Acid-sensing ion channel 1: a novel therapeutic target for migraine with aura. Ann. Neurol. 72, 559–563 (2012).

    CAS  PubMed  Google Scholar 

  235. Benemei, S., Fusi, C., Trevisan, G. & Geppetti, P. The TRPA1 channel in migraine mechanism and treatment. Br. J. Pharmacol. 171, 2552–2567 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Kozai, D., Ogawa, N. & Mori, Y. Redox regulation of transient receptor potential channels. Antioxid. Redox Signal. 21, 971–986 (2014).

    CAS  PubMed  Google Scholar 

  237. Martins-Oliveira, M. et al. Neuroendocrine signaling modulates specific neural networks relevant to migraine. Neurobiol. Dis. 101, 16–26 (2017). An experimental study that showed that systemic metabolic changes can modulate firing of nociceptors in the spinal trigeminal nucleus.

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Ma, W., Berg, J. & Yellen, G. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. J. Neurosci. 27, 3618–3625 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Kawamura, M., Ruskin, D. N. & Masino, S. A. Metabolic autocrine regulation of neurons involves cooperation among pannexin hemichannels, adenosine receptors, and KATP channels. J. Neurosci. 30, 3886–3895 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Ghasemi, M., Mayasi, Y., Hannoun, A., Eslami, S. M. & Carandang, R. Nitric oxide and mitochondrial function in neurological diseases. Neuroscience 376, 48–71 (2018).

    CAS  PubMed  Google Scholar 

  241. Kruuse, C., Thomsen, L. L., Birk, S. & Olesen, J. Migraine can be induced by sildenafil without changes in middle cerebral artery diameter. Brain J. Neurol. 126, 241–247 (2003).

    Google Scholar 

  242. Bolaños, J. P., Peuchen, S., Heales, S. J., Land, J. M. & Clark, J. B. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J. Neurochem. 63, 910–916 (1994).

    PubMed  Google Scholar 

  243. Abad, N. et al. Metabolic assessment of a migraine model using relaxation-enhanced 1H spectroscopy at ultrahigh field. Magn. Reson. Med. 79, 1266–1275 (2018).

    CAS  PubMed  Google Scholar 

  244. Dong, X. et al. Abnormal mitochondrial dynamics and impaired mitochondrial biogenesis in trigeminal ganglion neurons in a rat model of migraine. Neurosci. Lett. 636, 127–133 (2017).

    CAS  PubMed  Google Scholar 

  245. Fried, N. T., Moffat, C., Seifert, E. L. & Oshinsky, M. L. Functional mitochondrial analysis in acute brain sections from adult rats reveals mitochondrial dysfunction in a rat model of migraine. Am. J. Physiol. Cell Physiol. 307, C1017–C1030 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Goadsby, P. J., Edvinsson, L. & Ekman, R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann. Neurol. 28, 183–187 (1990). By showing that CGRP levels in the blood in the jugular vein are increased during migraine attacks, this study paved the way for the novel migraine therapies that block CGRP neurotransmission.

    CAS  PubMed  Google Scholar 

  247. Lassen, L. H. et al. CGRP may play a causative role in migraine. Cephalalgia 22, 54–61 (2002).

    CAS  PubMed  Google Scholar 

  248. Khan, S., Olesen, A. & Ashina, M. CGRP, a target for preventive therapy in migraine and cluster headache: systematic review of clinical data. Cephalalgia 39, 374–389 (2019).

    PubMed  Google Scholar 

  249. Hansen, J. M., Hauge, A. W., Olesen, J. & Ashina, M. Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia 30, 1179–1186 (2010).

    PubMed  Google Scholar 

  250. Bai, Y.-X., Fang, F., Jiang, J.-L. & Xu, F. Extrinsic calcitonin gene-related peptide inhibits hyperoxia-induced alveolar epithelial type II cells apoptosis, oxidative stress, and reactive oxygen species (ROS) production by enhancing notch 1 and homocysteine-induced endoplasmic reticulum protein (HERP) expression. Med. Sci. Monit. 23, 5774–5782 (2017).

    PubMed  PubMed Central  Google Scholar 

  251. Dang, H.-X. et al. CGRP attenuates hyperoxia-induced oxidative stress-related injury to alveolar epithelial type II cells via the activation of the Sonic hedgehog pathway. Int. J. Mol. Med. 40, 209–216 (2017).

    CAS  PubMed  Google Scholar 

  252. Holzmann, B. Antiinflammatory activities of CGRP modulating innate immune responses in health and disease. Curr. Protein Pept. Sci. 14, 268–274 (2013).

    CAS  PubMed  Google Scholar 

  253. Smillie, S.-J. et al. An ongoing role of α-calcitonin gene-related peptide as part of a protective network against hypertension, vascular hypertrophy, and oxidative stress. Hypertension 63, 1056–1062 (2014).

    CAS  PubMed  Google Scholar 

  254. Hothersall, J. S., Muirhead, R. P. & Wimalawansa, S. The effect of amylin and calcitonin gene-related peptide on insulin-stimulated glucose transport in the diaphragm. Biochem. Biophys. Res. Commun. 169, 451–454 (1990).

    CAS  PubMed  Google Scholar 

  255. Morishita, T. et al. Effects of islet amyloid polypeptide (amylin) and calcitonin gene-related peptide (CGRP) on glucose metabolism in the rat. Diabetes Res. Clin. Pract. 15, 63–69 (1992).

    CAS  PubMed  Google Scholar 

  256. Leighton, B. & Foot, E. A. The role of the sensory peptide calcitonin-gene-related peptide(s) in skeletal muscle carbohydrate metabolism: effects of capsaicin and resiniferatoxin. Biochem. J. 307, 707–712 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Holland, P. R., Saengjaroentham, C. & Vila-Pueyo, M. The role of the brainstem in migraine: potential brainstem effects of CGRP and CGRP receptor activation in animal models. Cephalalgia 39, 390–402 (2019).

    PubMed  Google Scholar 

  258. Yi, C.-X. et al. Pituitary adenylate cyclase-activating polypeptide stimulates glucose production via the hepatic sympathetic innervation in rats. Diabetes 59, 1591–1600 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Lisicki, M. et al. Age related metabolic modifications in the migraine brain. Cephalalgia 39, 978–987 (2019).

    PubMed  Google Scholar 

  260. Liveing, E. On Megrim, Sick-headache, and Some Allied Disorders: A Contribution to the Pathology of Nerve-storms. (Churchill, 1873). The formulation of the concept that the migraine attack results from a disruption of brain homeostasis that the attack itself resolves.

  261. Loder, E. What is the evolutionary advantage of migraine? Cephalalgia 22, 624–632 (2002).

    CAS  PubMed  Google Scholar 

  262. de Tommaso, M. et al. Altered processing of sensory stimuli in patients with migraine. Nat. Rev. Neurol. 10, 144–155 (2014).

    PubMed  Google Scholar 

  263. Noseda, R. et al. Migraine photophobia originating in cone-driven retinal pathways. Brain J. Neurol. 139, 1971–1986 (2016).

    Google Scholar 

  264. Evers, S. et al. EFNS guideline on the drug treatment of migraine – revised report of an EFNS task force. Eur. J. Neurol. 16, 968–981 (2009).

    CAS  PubMed  Google Scholar 

  265. Holland, S. et al. Evidence-based guideline update: NSAIDS and other complementary treatments for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology 78, 1346–1353 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Marmura, M. J., Silberstein, S. D. & Schwedt, T. J. The acute treatment of migraine in adults: the American Headache Society evidence assessment of migraine pharmacotherapies. Headache 55, 3–20 (2015).

    Google Scholar 

  267. Silberstein, S. D. et al. Evidence-based guideline update: pharmacologic treatment for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology 78, 1337–1345 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Tfelt-Hansen, P. C. Evidence-based guideline update: pharmacologic treatment for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology 80, 869–870; correction 871 (2013).

    PubMed  Google Scholar 

  269. Pringsheim, T. et al. Canadian Headache Society guideline for migraine prophylaxis. Can. J. Neurol. Sci. 39, S1–S59 (2012).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.C.G. was responsible for the literature search and the main composition of the manuscript, including the majority of display items. M.L. edited the manuscript and provided additional text and display items. D.F. and P.S.S. edited the manuscript. J.S. was responsible for the design of the manuscript, edited in depth the manuscript and display items and provided additional text and citations. All authors proofread the final manuscript prior to submission.

Corresponding author

Correspondence to Jean Schoenen.

Ethics declarations

Competing interests

E.C.G. is the founder of KetoSwiss. E.C.G. and D.F. are the inventors of patent WO/2018/115158 held by the University Children’s Hospital Basel (UKBB) and the University of Basel for the use of β-hydroxybutyrate in migraine prevention. M.L., P.S.S. and J.S. declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks A. Carolei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gross, E.C., Lisicki, M., Fischer, D. et al. The metabolic face of migraine — from pathophysiology to treatment. Nat Rev Neurol 15, 627–643 (2019). https://doi.org/10.1038/s41582-019-0255-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-019-0255-4

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing