The metabolic face of migraine — from pathophysiology to treatment

Article metrics

Abstract

Migraine can be regarded as a conserved, adaptive response that occurs in genetically predisposed individuals with a mismatch between the brain’s energy reserve and workload. Given the high prevalence of migraine, genotypes associated with the condition seem likely to have conferred an evolutionary advantage. Technological advances have enabled the examination of different aspects of cerebral metabolism in patients with migraine, and complementary animal research has highlighted possible metabolic mechanisms in migraine pathophysiology. An increasing amount of evidence — much of it clinical — suggests that migraine is a response to cerebral energy deficiency or oxidative stress levels that exceed antioxidant capacity and that the attack itself helps to restore brain energy homeostasis and reduces harmful oxidative stress levels. Greater understanding of metabolism in migraine offers novel therapeutic opportunities. In this Review, we describe the evidence for abnormalities in energy metabolism and mitochondrial function in migraine, with a focus on clinical data (including neuroimaging, biochemical, genetic and therapeutic studies), and consider the relationship of these abnormalities with the abnormal sensory processing and cerebral hyper-responsivity observed in migraine. We discuss experimental data to consider potential mechanisms by which metabolic abnormalities could generate attacks. Finally, we highlight potential treatments that target cerebral metabolism, such as nutraceuticals, ketone bodies and dietary interventions.

Key points

  • Prevalent triggers of migraine attacks can all be linked to unbalanced cerebral energy metabolism and/or oxidative stress.

  • Magnetic resonance spectroscopy studies have shown that mitochondrial phosphorylation potential and ATP are decreased in the brains of people with migraine between attacks. Glucose (and lipid) metabolism and mitochondrial functions are abnormal in the peripheral blood.

  • Among patients with migraine, various single nucleotide polymorphisms are present in non-coding mitochondrial DNA and nuclear-encoded mitochondrial proteins; common variants associated with migraine are functionally involved in mitochondrial metabolism.

  • Metabolic enhancers, such as riboflavin and coenzyme Q10, and dietary or pharmacological ketogenesis improve migraine but novel, more efficient metabolic strategies are needed.

  • Experimental studies indicate a link between cerebral energy disequilibrium and cortical spreading depression and/or trigeminovascular system activation; calcitonin gene-related peptide and pituitary adenylate cyclase-activating peptide could also help restore energy homeostasis.

  • Migraine can be regarded as a conserved, adaptive response that occurs in individuals with a genetic predisposition and a mismatch between the brain’s energy reserve and workload.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cerebral metabolomics that might be involved in migraine pathogenesis and therapeutic targets.
Fig. 2: Metabolic face of migraine attack generation and resolution.

References

  1. 1.

    Gray, P. A. & Burtness, H. I. Hypoglycemic headache. Endocrinology 19, 549–560 (1935).

  2. 2.

    Amery, W. K. Brain hypoxia: the turning-point in the genesis of the migraine attack? Cephalalgia 2, 83–109 (1982). This article is the first to have drawn attention to the possible role of brain hypoxia in migraine pathogenesis.

  3. 3.

    Schoenen, J., Ambrosini, A., Sándor, P. S. & Maertens de Noordhout, A. Evoked potentials and transcranial magnetic stimulation in migraine: published data and viewpoint on their pathophysiologic significance. Clin. Neurophysiol. 114, 955–972 (2003).

  4. 4.

    Schoenen, J. Pathogenesis of migraine: the biobehavioural and hypoxia theories reconciled. Acta Neurol. Belg. 94, 79–86 (1994). This article presents the hypothesis that the conjunction of abnormal energy metabolism and information processing in the brain may be able to generate migraine attacks.

  5. 5.

    Pavlovic, J. M., Buse, D. C., Sollars, C. M., Haut, S. & Lipton, R. B. Trigger factors and premonitory features of migraine attacks: summary of studies. Headache 54, 1670–1679 (2014).

  6. 6.

    Peroutka, S. J. What turns on a migraine? A systematic review of migraine precipitating factors. Curr. Pain Headache Rep. 18, 454 (2014).

  7. 7.

    Kelman, L. The triggers or precipitants of the acute migraine attack. Cephalalgia 27, 394–402 (2007).

  8. 8.

    Schoonman, G. G., Evers, D. J., Terwindt, G. M., van Dijk, J. G. & Ferrari, M. D. The prevalence of premonitory symptoms in migraine: a questionnaire study in 461 patients. Cephalalgia 26, 1209–1213 (2006).

  9. 9.

    Spierings, E. L. H., Donoghue, S., Mian, A. & Wöber, C. Sufficiency and necessity in migraine: how do we figure out if triggers are absolute or partial and, if partial, additive or potentiating? Curr. Pain Headache Rep. 18, 455 (2014).

  10. 10.

    Borkum, J. M. Migraine triggers and oxidative stress: a narrative review and synthesis. Headache 56, 12–35 (2016).

  11. 11.

    Pingitore, A. et al. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition 31, 916–922 (2015).

  12. 12.

    Powers, S. K., Radak, Z. & Ji, L. L. Exercise-induced oxidative stress: past, present and future. J. Physiol. 594, 5081–5092 (2016).

  13. 13.

    Schiavone, S., Jaquet, V., Trabace, L. & Krause, K.-H. Severe life stress and oxidative stress in the brain: from animal models to human pathology. Antioxid. Redox Signal. 18, 1475–1490 (2013).

  14. 14.

    Trivedi, M. S., Holger, D., Bui, A. T., Craddock, T. J. A. & Tartar, J. L. Short-term sleep deprivation leads to decreased systemic redox metabolites and altered epigenetic status. PLOS ONE 12, e0181978 (2017).

  15. 15.

    Angelucci, F. L. et al. Physiological effect of olfactory stimuli inhalation in humans: an overview. Int. J. Cosmet. Sci. 36, 117–123 (2014).

  16. 16.

    Franken, C. et al. Phthalate-induced oxidative stress and association with asthma-related airway inflammation in adolescents. Int. J. Hyg. Environ. Health 220, 468–477 (2017).

  17. 17.

    Nakamura, M., Kuse, Y., Tsuruma, K., Shimazawa, M. & Hara, H. The involvement of the oxidative stress in murine blue LED light-induced retinal damage model. Biol. Pharm. Bull. 40, 1219–1225 (2017).

  18. 18.

    Demirel, R. et al. Noise induces oxidative stress in rat. Eur. J. Gen. Med. 6, 20–24 (2009).

  19. 19.

    Arngrim, N. et al. Migraine induced by hypoxia: an MRI spectroscopy and angiography study. Brain 139, 723–737 (2016). In this study, normobaric hypoxia induced migraine headache, but not aura in patients with migraine.

  20. 20.

    Broessner, G. et al. Hypoxia triggers high-altitude headache with migraine features: a prospective trial. Cephalalgia 36, 765–771 (2016).

  21. 21.

    Arregui, A. et al. High prevalence of migraine in a high-altitude population. Neurology 41, 1668–1668 (1991).

  22. 22.

    Reddy, V. D., Padmavathi, P., Kavitha, G., Saradamma, B. & Varadacharyulu, N. Alcohol-induced oxidative/nitrosative stress alters brain mitochondrial membrane properties. Mol. Cell. Biochem. 375, 39–47 (2013).

  23. 23.

    Chauvel, V., Schoenen, J. & Multon, S. Influence of ovarian hormones on cortical spreading depression and its suppression by L-kynurenine in rat. PLOS ONE 8, e82279 (2013).

  24. 24.

    Chauvel, V., Multon, S. & Schoenen, J. Estrogen-dependent effects of 5-hydroxytryptophan on cortical spreading depression in rat: modelling the serotonin-ovarian hormone interaction in migraine aura. Cephalalgia 38, 427–436 (2018).

  25. 25.

    Irwin, R. W. et al. Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology 149, 3167–3175 (2008).

  26. 26.

    Mauvais-Jarvis, F., Clegg, D. J. & Hevener, A. L. The role of estrogens in control of energy balance and glucose homeostasis. Endocr. Rev. 34, 309–338 (2013).

  27. 27.

    Welch, K. M., Levine, S. R., D’Andrea, G., Schultz, L. R. & Helpern, J. A. Preliminary observations on brain energy metabolism in migraine studied by in vivo phosphorus 31 NMR spectroscopy. Neurology 39, 538–541 (1989). A pioneering study that showed that mitochondrial energy metabolism is abnormal in the brain of patients with migraine.

  28. 28.

    Barbiroli, B. et al. Abnormal brain and muscle energy metabolism shown by 31P magnetic resonance spectroscopy in patients affected by migraine with aura. Neurology 42, 1209–1214 (1992).

  29. 29.

    Kim, J. H. et al. Interictal metabolic changes in episodic migraine: a voxel-based FDG-PET study. Cephalalgia 30, 53–61 (2010).

  30. 30.

    Lodi, R. et al. Deficit of brain and skeletal muscle bioenergetics and low brain magnesium in juvenile migraine: an in vivo 31P magnetic resonance spectroscopy interictal study. Pediatr. Res. 42, 866–871 (1997).

  31. 31.

    Lodi, R. et al. Deficient energy metabolism is associated with low free magnesium in the brains of patients with migraine and cluster headache. Brain Res. Bull. 54, 437–441 (2001).

  32. 32.

    Montagna, P. et al. 31P-magnetic resonance spectroscopy in migraine without aura. Neurology 44, 666–669 (1994).

  33. 33.

    Reyngoudt, H., Achten, E. & Paemeleire, K. Magnetic resonance spectroscopy in migraine: what have we learned so far? Cephalalgia 32, 845–859 (2012).

  34. 34.

    Schulz, U. G. et al. Association between cortical metabolite levels and clinical manifestations of migrainous aura: an MR-spectroscopy study. Brain J. Neurol. 130, 3102–3110 (2007).

  35. 35.

    Lodi, R. et al. Quantitative analysis of skeletal muscle bioenergetics and proton efflux in migraine and cluster headache. J. Neurol. Sci. 146, 73–80 (1997).

  36. 36.

    Barbiroli, B. et al. Complicated migraine studied by phosphorus magnetic resonance spectroscopy. Cephalalgia 10, 263–272 (1990).

  37. 37.

    Cevoli, S., Favoni, V. & Cortelli, P. Energy metabolism impairment in migraine. Curr. Med. Chem. https://doi.org/10.2174/0929867325666180622154411 (2018). Excellent comprehensive review of energy metabolism in migraine highlighting the pivotal contribution of the Bologna group initiated by the late Pasaquale Montagna.

  38. 38.

    Reyngoudt, H., Paemeleire, K., Descamps, B., De Deene, Y. & Achten, E. 31P-MRS demonstrates a reduction in high-energy phosphates in the occipital lobe of migraine without aura patients. Cephalalgia 31, 1243–1253 (2011). This study showed that absolute brain levels of ATP are reduced interictally in patients with migraine without aura.

  39. 39.

    Ramadan, N. M. et al. Low brain magnesium in migraine. Headache 29, 416–419 (1989). The first study to show that magnesium is low in the brain of patients with migraine.

  40. 40.

    Sandor, P. S. et al. MR-spectroscopic imaging during visual stimulation in subgroups of migraine with aura. Cephalalgia 25, 507–518 (2005). This study revealed that resting and stimulation-induced levels of lactate in the occipital cortex differ among phenotypic subtypes of patients with migraine with aura.

  41. 41.

    Watanabe, H., Kuwabara, T., Ohkubo, M., Tsuji, S. & Yuasa, T. Elevation of cerebral lactate detected by localized 1H-magnetic resonance spectroscopy in migraine during the interictal period. Neurology 47, 1093–1095 (1996).

  42. 42.

    Reyngoudt, H. et al. Does visual cortex lactate increase following photic stimulation in migraine without aura patients? A functional (1)H-MRS study. J. Headache Pain 12, 295–302 (2011).

  43. 43.

    Prescot, A. et al. Excitatory neurotransmitters in brain regions in interictal migraine patients. Mol. Pain 5, 34 (2009).

  44. 44.

    Mohamed, R. E., Aboelsafa, A. A. & Al-Malt, A. M. Interictal alterations of thalamic metabolic concentration ratios in migraine without aura detected by proton magnetic resonance spectroscopy. Egypt. J. Radiol. Nucl. Med. 44, 859–870 (2013).

  45. 45.

    Becerra, L. et al. A ‘complex’ of brain metabolites distinguish altered chemistry in the cingulate cortex of episodic migraine patients. Neuroimage Clin. 11, 588–594 (2016).

  46. 46.

    Sappey-Marinier, D. et al. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J. Cereb. Blood Flow Metab. 12, 584–592 (1992).

  47. 47.

    Magistretti, P. J. & Pellerin, L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Phil. Trans. R. Soc. Lond. B 354, 1155–1163 (1999). This is a review of brain energy metabolism, in particular of the “neuron–astrocyte lactate shuttle” by the authors who first described this important phenomenon.

  48. 48.

    Gantenbein, A. R. et al. Sensory information processing may be neuroenergetically more demanding in migraine patients. Neuroreport 24, 202–205 (2013).

  49. 49.

    Lisicki, M. et al. Evidence of an increased neuronal activation-to-resting glucose uptake ratio in the visual cortex of migraine patients: a study comparing 18FDG-PET and visual evoked potentials. J. Headache Pain 19, 49 (2018). This study showed that in patients with migraine there is a mismatch between neuronal activation and glucose uptake in the visual system between attacks.

  50. 50.

    Littlewood, J. et al. Low platelet monoamine oxidase activity in headache: no correlation with phenolsulphotransferase, succinate dehydrogenase, platelet preparation method or smoking. J. Neurol. Neurosurg. Psychiatry 47, 338–343 (1984).

  51. 51.

    Sangiorgi, S. et al. Abnormal platelet mitochondrial function in patients affected by migraine with and without aura. Cephalalgia 14, 21–23 (1994).

  52. 52.

    Montagna, P. et al. Mitochondrial abnormalities in migraine. Preliminary findings. Headache 28, 477–480 (1988).

  53. 53.

    Okada, H., Araga, S., Takeshima, T. & Nakashima, K. Plasma lactic acid and pyruvic acid levels in migraine and tension-type headache. Headache 38, 39–42 (1998).

  54. 54.

    Alp, R., Selek, S., Alp, S. I., Taşkin, A. & Koçyiğit, A. Oxidative and antioxidative balance in patients of migraine. Eur. Rev. Med. Pharmacol. Sci. 14, 877–882 (2010).

  55. 55.

    Aytaç, B. et al. Decreased antioxidant status in migraine patients with brain white matter hyperintensities. Neurol. Sci. 35, 1925–1929 (2014).

  56. 56.

    Bernecker, C. et al. Oxidative stress is associated with migraine and migraine-related metabolic risk in females. Eur. J. Neurol. 18, 1233–1239 (2011).

  57. 57.

    Bolayir, E. et al. Intraerythrocyte antioxidant enzyme activities in migraine and tension-type headaches. J. Chin. Med. Assoc. 67, 263–267 (2004).

  58. 58.

    Ciancarelli, I., Tozzi-Ciancarelli, M., Massimo, C. D., Marini, C. & Carolei, A. Urinary nitric oxide metabolites and lipid peroxidation by-products in migraine. Cephalalgia 23, 39–42 (2003).

  59. 59.

    Ciancarelli, I., Tozzi-Ciancarelli, M., Spacca, G., Massimo, C. D. & Carolei, A. Relationship between biofeedback and oxidative stress in patients with chronic migraine. Cephalalgia 27, 1136–1141 (2007).

  60. 60.

    Eren, Y., Dirik, E., Neşelioğlu, S. & Erel, Ö. Oxidative stress and decreased thiol level in patients with migraine: cross-sectional study. Acta Neurol. Belg. 115, 643–649 (2015).

  61. 61.

    Geyik, S., Altunısık, E., Neyal, A. M. & Taysi, S. Oxidative stress and DNA damage in patients with migraine. J. Headache Pain 17, 10 (2016).

  62. 62.

    Gumusyayla, S. et al. A novel oxidative stress marker in migraine patients: dynamic thiol-disulphide homeostasis. Neurol. Sci. 37, 1311–1317 (2016).

  63. 63.

    Shimomura, T. et al. Platelet superoxide dismutase in migraine and tension-type headache. Cephalalgia 14, 215–218 (1994).

  64. 64.

    Tozzi-Ciancarelli, M. et al. Oxidative stress and platelet responsiveness in migraine. Cephalalgia 17, 580–584 (1997).

  65. 65.

    Tripathi, G. M., Kalita, J. & Misra, U. K. A study of oxidative stress in migraine with special reference to prophylactic therapy. Int. J. Neurosci. 128, 318–324 (2018).

  66. 66.

    Tuncel, D., Tolun, F. I., Gokce, M., İmrek, S. & Ekerbiçer, H. Oxidative stress in migraine with and without aura. Biol. Trace Elem. Res. 126, 92–97 (2008).

  67. 67.

    Yilmaz, G., Sürer, H., Inan, L. E., Coskun, O. & Yücel, D. Increased nitrosative and oxidative stress in platelets of migraine patients. Tohoku J. Exp. Med. 211, 23–30 (2007).

  68. 68.

    Neri, M. et al. A meta-analysis of biomarkers related to oxidative stress and nitric oxide pathway in migraine. Cephalalgia 35, 931–937 (2015).

  69. 69.

    Gonullu, H. et al. The levels of trace elements and heavy metals in patients with acute migraine headache. J. Pak. Med. Assoc. 65, 694–697 (2015).

  70. 70.

    Welch, K. M., Nagesh, V., Aurora, S. K. & Gelman, N. Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache 41, 629–637 (2001).

  71. 71.

    Blau, J. N. & Cumings, J. N. Method of precipitating and preventing some migraine attacks. Br. Med. J. 2, 1242–1243 (1966).

  72. 72.

    Roberts, H. J. Migraine and related vascular headaches due to diabetogenic hyperinsulinism. Observations on pathogenesis and rational treatment in 421 patients. Headache 7, 41–62 (1967).

  73. 73.

    Binder, C. & Bendtson, I. Endocrine emergencies. Hypoglycaemia. Baillieres Clin. Endocrinol. Metab. 6, 23–39 (1992).

  74. 74.

    Denuelle, M., Fabre, N., Payoux, P., Chollet, F. & Geraud, G. Hypothalamic activation in spontaneous migraine attacks. Headache 47, 1418–1426 (2007). This study was the first to demonstrate activation of the hypothalamus during attacks of migraine without aura.

  75. 75.

    Maniyar, F. H., Sprenger, T., Monteith, T., Schankin, C. & Goadsby, P. J. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain J. Neurol. 137, 232–241 (2014). This study showed that the hypothalamus is activated during the premonitory phase of migraine attacks.

  76. 76.

    Schulte, L. H. & May, A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain J. Neurol. 139, 1987–1993 (2016). Daily recordings in a patient with migraine confirmed that the hypothalamus is activated hours before the migraine headache starts.

  77. 77.

    Montagna, P., Pierangeli, G. & Cortelli, P. The primary headaches as a reflection of genetic darwinian adaptive behavioral responses. Headache 50, 273–289 (2010).

  78. 78.

    Pearce, J. Insulin induced hypoglycaemia in migraine. J. Neurol. Neurosurg. Psychiatry 34, 154–156 (1971).

  79. 79.

    Hockaday, J. M., Williamson, D. H. & Whitty, C. W. M. Blood-glucose levels and fatty-acid metabolism in migraine related to fasting. Lancet 297, 1153–1156 (1971). An early study of metabolic responses and migraine attack generation after a glucose tolerance test; 6 of 10 patients developed an attack and increases in free fatty acids and ketone bodies.

  80. 80.

    Christiansen, I., Thomsen, L. L., Daugaard, D., Ulrich, V. & Olesen, J. Glyceryl trinitrate induces attacks of migraine without aura in sufferers of migraine with aura. Cephalalgia 19, 660–667 (1999). discussion 626.

  81. 81.

    Shaw, S. W., Johnson, R. H. & Keogh, H. J. Metabolic changes during glucose tolerance tests in migraine attacks. J. Neurol. Sci. 33, 51–59 (1977).

  82. 82.

    Dexter, J. D., Roberts, J. & Byer, J. A. The five hour glucose tolerance test and effect of low sucrose diet in migraine. Headache 18, 91–94 (1978).

  83. 83.

    Cavestro, C. et al. Insulin metabolism is altered in migraineurs: a new pathogenic mechanism for migraine? Headache 47, 1436–1442 (2007).

  84. 84.

    Rainero, I., Govone, F., Gai, A., Vacca, A. & Rubino, E. Is migraine primarily a metaboloendocrine disorder? Curr. Pain Headache Rep. 22, 36 (2018).

  85. 85.

    Sacco, S. et al. Insulin resistance in migraineurs: results from a case-control study. Cephalalgia 34, 349–356 (2014).

  86. 86.

    Kokavec, A. Effect of sucrose consumption on serum insulin, serum cortisol and insulin sensitivity in migraine: evidence of sex differences. Physiol. Behav. 142, 170–178 (2015).

  87. 87.

    Siva, Z. O. et al. Determinants of glucose metabolism and the role of NPY in the progression of insulin resistance in chronic migraine. Cephalalgia 38, 1773–1781 (2018).

  88. 88.

    Brand-Miller, J. C., Griffin, H. J. & Colagiuri, S. The carnivore connection hypothesis: revisited. J. Obes. 2012, 258624 (2012).

  89. 89.

    Issad, T. et al. Effects of fasting on tissue glucose utilization in conscious resting rats. Major glucose-sparing effect in working muscles. Biochem. J. 246, 241–244 (1987).

  90. 90.

    Stepien, M. et al. Increasing protein at the expense of carbohydrate in the diet down-regulates glucose utilization as glucose sparing effect in rats. PLOS ONE 6, e14664 (2011).

  91. 91.

    Wang, X. et al. Are glucose and insulin metabolism and diabetes associated with migraine? A community-based, case-control study. J. Oral Facial Pain Headache 31, 240–250 (2017).

  92. 92.

    Antonazzo, I. C. et al. Diabetes is associated with decreased migraine risk: a nationwide cohort study. Cephalalgia 38, 1759–1764 (2018).

  93. 93.

    Streel, S. et al. Screening for the metabolic syndrome in subjects with migraine. Cephalalgia 37, 1180–1188 (2017).

  94. 94.

    He, Z. et al. Metabolic syndrome in female migraine patients is associated with medication overuse headache: a clinic-based study in China. Eur. J. Neurol. 22, 1228–1234 (2015).

  95. 95.

    Bigal, M. E., Liberman, J. N. & Lipton, R. B. Obesity and migraine: a population study. Neurology 66, 545–550 (2006). A population study that revealed an association between obesity and chronic migraine.

  96. 96.

    Ziegler, D. K., Hassanein, R. S., Kodanaz, A. & Meek, J. C. Circadian rhythms of plasma cortisol in migraine. J. Neurol. Neurosurg. Psychiatry 42, 741–748 (1979).

  97. 97.

    Peres, M. F. et al. Hypothalamic involvement in chronic migraine. J. Neurol. Neurosurg. Psychiatry 71, 747–751 (2001).

  98. 98.

    Lippi, G. & Mattiuzzi, C. Cortisol and migraine: a systematic literature review. Agri 29, 95–99 (2017).

  99. 99.

    Hsu, L. K. et al. Early morning migraine. Nocturnal plasma levels of catecholamines, tryptophan, glucose, and free fatty acids and sleep encephalographs. Lancet 1, 447–451 (1977).

  100. 100.

    Coggan, J. S. et al. Norepinephrine stimulates glycogenolysis in astrocytes to fuel neurons with lactate. PLOS Comput. Biol. 14, e1006392 (2018).

  101. 101.

    Jacome, D. E. Hypoglycemia rebound migraine. Headache 41, 895–898 (2001).

  102. 102.

    De Silva, K. L., Ron, M. A. & Pearce, J. Blood sugar response to glucagon in migraine. J. Neurol. Neurosurg. Psychiatry 37, 105–107 (1974).

  103. 103.

    Peterlin, B. L., Sacco, S., Bernecker, C. & Scher, A. I. Adipokines and migraine: a systematic review. Headache 56, 622–644 (2016).

  104. 104.

    Guldiken, B., Guldiken, S., Demir, M., Turgut, N. & Tugrul, A. Low leptin levels in migraine: a case control study. Headache 48, 1103–1107 (2008).

  105. 105.

    Domínguez, C. et al. Role of adipocytokines in the pathophysiology of migraine: a cross-sectional study. Cephalalgia 38, 904–911 (2018).

  106. 106.

    Van Houten, B., Hunter, S. E. & Meyer, J. N. Mitochondrial DNA damage induced autophagy, cell death, and disease. Front. Biosci. Landmark Ed. 21, 42–54 (2016).

  107. 107.

    Yang, J.-L., Weissman, L., Bohr, V. A. & Mattson, M. P. Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair 7, 1110–1120 (2008).

  108. 108.

    Roos-Araujo, D., Stuart, S., Lea, R. A., Haupt, L. M. & Griffiths, L. R. Epigenetics and migraine; complex mitochondrial interactions contributing to disease susceptibility. Gene 543, 1–7 (2014).

  109. 109.

    MacGregor, E. A. Oestrogen and attacks of migraine with and without aura. Lancet Neurol. 3, 354–361 (2004).

  110. 110.

    Lemos, C. et al. Assessing risk factors for migraine: differences in gender transmission. PLOS ONE 7, e50626 (2012).

  111. 111.

    Kraya, T., Deschauer, M., Joshi, P. R., Zierz, S. & Gaul, C. Prevalence of headache in patients with mitochondrial disease: a cross-sectional study. Headache 58, 45–52 (2018).

  112. 112.

    Vollono, C., Primiano, G., Della Marca, G., Losurdo, A. & Servidei, S. Migraine in mitochondrial disorders: prevalence and characteristics. Cephalalgia 38, 1093–1106 (2018).

  113. 113.

    Montagna, P. et al. MELAS syndrome: characteristic migrainous and epileptic features and maternal transmission. Neurology 38, 751–754 (1988).

  114. 114.

    Guo, S. et al. Prevalence of migraine in persons with the 3243A>G mutation in mitochondrial DNA. Eur. J. Neurol. 23, 175–181 (2016).

  115. 115.

    Altmann, J. et al. Expanded phenotypic spectrum of the m.8344A>G “MERRF” mutation: data from the German mitoNET registry. J. Neurol. 263, 961–972 (2016).

  116. 116.

    Buzzi, M. G. et al. mtDNA A3243G MELAS mutation is not associated with multigenerational female migraine. Neurology 54, 1005–1007 (2000).

  117. 117.

    Cevoli, S. et al. High frequency of migraine-only patients negative for the 3243 A>G tRNALeu mtDNA mutation in two MELAS families. Cephalalgia 30, 919–927 (2010).

  118. 118.

    Fachal, L. et al. No evidence of association between common European mitochondrial DNA variants in Alzheimer, Parkinson, and migraine in the Spanish population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168B, 54–65 (2015).

  119. 119.

    Haan, J. et al. Search for mitochondrial DNA mutations in migraine subgroups. Cephalalgia 19, 20–22 (1999).

  120. 120.

    Klopstock, T. et al. Mitochondrial DNA in migraine with aura. Neurology 46, 1735–1738 (1996). A negative search for mtDNA mutations associated with migraine with aura.

  121. 121.

    Rozen, T. D. et al. Study of mitochondrial DNA mutations in patients with migraine with prolonged aura. Headache 44, 674–677 (2004).

  122. 122.

    Russell, M. B., Diamant, M. & Nørby, S. Genetic heterogeneity of migraine with and without aura in Danes cannot be explained by mutation in mtDNA nucleotide pair 11084. Acta Neurol. Scand. 96, 171–173 (1997).

  123. 123.

    Ojaimi, J., Katsabanis, S., Bower, S., Quigley, A. & Byrne, E. Mitochondrial DNA in stroke and migraine with aura. Cerebrovasc. Dis. 8, 102–106 (1998).

  124. 124.

    Larsen, S. et al. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H. Biochim. Biophys. Acta 1837, 226–231 (2014).

  125. 125.

    Martínez-Redondo, D. et al. Human mitochondrial haplogroup H: the highest VO2max consumer–is it a paradox? Mitochondrion 10, 102–107 (2010).

  126. 126.

    Di Lorenzo, C. et al. Mitochondrial DNA haplogroups influence the therapeutic response to riboflavin in migraineurs. Neurology 72, 1588–1594 (2009). A pharmacogenic study that showed that patients with migraine who have non-H mtDNA haplogroups respond better to high-dose riboflavin than those with the H haplogroup.

  127. 127.

    Majamaa, K., Finnilä, S., Turkka, J. & Hassinen, I. E. Mitochondrial DNA haplogroup U as a risk factor for occipital stroke in migraine. Lancet 352, 455–456 (1998).

  128. 128.

    Wang, Q. et al. Mitochondrial DNA control region sequence variation in migraine headache and cyclic vomiting syndrome. Am. J. Med. Genet. A. 131, 50–58 (2004).

  129. 129.

    Zaki, E. et al. Two common mitochondrial dna polymorphisms are highly associated with migraine headache and cyclic vomiting syndrome. Cephalalgia 29, 719–728 (2009). A study that showed that childhood migraine and cyclic vomiting are associated with a high prevalence of two mtDNA polymorphisms.

  130. 130.

    Boles, R. G. et al. Increased prevalence of two mitochondrial DNA polymorphisms in functional disease: are we describing different parts of an energy-depleted elephant? Mitochondrion 23, 1–6 (2015).

  131. 131.

    Stuart, S. & Griffiths, L. R. A possible role for mitochondrial dysfunction in migraine. Mol. Genet. Genomics 287, 837–844 (2012).

  132. 132.

    Stuart, S. et al. Gene-centric analysis implicates nuclear encoded mitochondrial protein gene variants in migraine susceptibility. Mol. Genet. Genomic Med. 5, 157–163 (2017). The first evidence that polymorphisms in genes that encode nuclear-encoded mitochondrial proteins might play a role in migraine.

  133. 133.

    Palmirotta, R. et al. Is SOD2 Ala16Val polymorphism associated with migraine with aura phenotype? Antioxid. Redox Signal. 22, 275–279 (2015).

  134. 134.

    Saygi, S. et al. Superoxide dismutase and catalase genotypes in pediatric migraine patients. J. Child Neurol. 30, 1586–1590 (2015).

  135. 135.

    Kowa, H. et al. The homozygous C677T mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for migraine. Am. J. Med. Genet. 96, 762–764 (2000).

  136. 136.

    Lea, R. A., Ovcaric, M., Sundholm, J., MacMillan, J. & Griffiths, L. R. The methylenetetrahydrofolate reductase gene variant C677T influences susceptibility to migraine with aura. BMC Med. 2, 3 (2004).

  137. 137.

    Bhattacharjee, N. & Borah, A. Oxidative stress and mitochondrial dysfunction are the underlying events of dopaminergic neurodegeneration in homocysteine rat model of Parkinson’s disease. Neurochem. Int. 101, 48–55 (2016).

  138. 138.

    Kaunisto, M. et al. Testing of variants of the MTHFR and ESR1 genes in 1798 Finnish individuals fails to confirm the association with migraine with aura. Cephalalgia 26, 1462–1472 (2006).

  139. 139.

    Lee, J., Wong, S. A., Li, B. U. K. & Boles, R. G. NextGen nuclear DNA sequencing in cyclic vomiting syndrome reveals a significant association with the stress-induced calcium channel (RYR2). Neurogastroenterol. Motil. 27, 990–996 (2015).

  140. 140.

    Curtain, R., Tajouri, L., Lea, R., MacMillan, J. & Griffiths, L. No mutations detected in the INSR gene in a chromosome 19p13 linked migraine pedigree. Eur. J. Med. Genet. 49, 57–62 (2006).

  141. 141.

    Kaunisto, M. A. et al. Chromosome 19p13 loci in Finnish migraine with aura families. Am. J. Med. Genet. B Neuropsychiatr. Genet. 132B, 85–89 (2005).

  142. 142.

    McCarthy, L. C. et al. Single-nucleotide polymorphism alleles in the insulin receptor gene are associated with typical migraine. Genomics 78, 135–149 (2001).

  143. 143.

    Netzer, C. et al. Replication study of the insulin receptor gene in migraine with aura. Genomics 91, 503–507 (2008).

  144. 144.

    Mohammad, S. S., Coman, D. & Calvert, S. Glucose transporter 1 deficiency syndrome and hemiplegic migraines as a dominant presenting clinical feature. J. Paediatr. Child Health 50, 1025–1026 (2014).

  145. 145.

    Gormley, P. et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat. Genet. 48, 856–866 (2016). A large meta-analysis of genome-wide association studies, which showed that a great number of loci are each responsible for a very small proportion of the genetic risk of migraine.

  146. 146.

    Eising, E. et al. Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology: a GWAS-based study using the Allen Human Brain Atlas. Hum. Genet. 135, 425–439 (2016).

  147. 147.

    Hershey, A., Horn, P., Kabbouche, M., O’Brien, H. & Powers, S. Genomic expression patterns in menstrual-related migraine in adolescents. Headache 52, 68–79 (2012).

  148. 148.

    Woldeamanuel, Y., Rapoport, A. & Cowan, R. The place of corticosteroids in migraine attack management: a 65-year systematic review with pooled analysis and critical appraisal. Cephalalgia 35, 996–1024 (2015).

  149. 149.

    Derry, C. J., Derry, S. & Moore, R. A. Caffeine as an analgesic adjuvant for acute pain in adults. Cochrane Database Syst. Rev. 11, CD009281 (2014).

  150. 150.

    Nagatomo, K. & Kubo, Y. Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels. Proc. Natl Acad. Sci. USA 105, 17373–17378 (2008).

  151. 151.

    Lovallo, W. R. et al. Caffeine stimulation of cortisol secretion across the waking hours in relation to caffeine intake levels. Psychosom. Med. 67, 734–739 (2005).

  152. 152.

    Wu, B. H. Dose effects of caffeine ingestion on acute hormonal responses to resistance exercise. J. Sports Med. Phys. Fit. 55, 1242–1251 (2015).

  153. 153.

    Khani, S. & Tayek, J. A. Cortisol increases gluconeogenesis in humans: its role in the metabolic syndrome. Clin. Sci. 101, 739–747 (2001).

  154. 154.

    Pagano, G. et al. An in vivo and in vitro study of the mechanism of prednisone-induced insulin resistance in healthy subjects. J. Clin. Invest. 72, 1814–1820 (1983).

  155. 155.

    Bigal, M. E. & Lipton, R. B. Concepts and mechanisms of migraine chronification. Headache 48, 7–15 (2008).

  156. 156.

    Lee, M. J., Choi, H. A., Choi, H. & Chung, C.-S. Caffeine discontinuation improves acute migraine treatment: a prospective clinic-based study. J. Headache Pain 17, 71 (2016).

  157. 157.

    Kalra, E. K. Nutraceutical–definition and introduction. AAPS PharmSci 5, 27–28 (2003).

  158. 158.

    Rajapakse, T. & Pringsheim, T. Nutraceuticals in migraine: a summary of existing guidelines for use. Headache 56, 808–816 (2016).

  159. 159.

    Shaik, M. M. & Gan, S. H. Vitamin supplementation as possible prophylactic treatment against migraine with aura and menstrual migraine. Biomed Res. Int. 2015, 469529 (2015).

  160. 160.

    Barile, M., Giancaspero, T. A., Leone, P., Galluccio, M. & Indiveri, C. Riboflavin transport and metabolism in humans. J. Inherit. Metab. Dis. 39, 545–557 (2016).

  161. 161.

    Bütün, A., Nazıroğlu, M., Demirci, S., Çelik, Ö. & Uğuz, A. C. Riboflavin and vitamin E increase brain calcium and antioxidants, and microsomal calcium-ATP-ase values in rat headache models induced by glyceryl trinitrate. J. Membr. Biol. 248, 205–213 (2015).

  162. 162.

    Marashly, E. T. & Bohlega, S. A. Riboflavin has neuroprotective potential: focus on Parkinson’s disease and migraine. Front. Neurol. 8, 333 (2017).

  163. 163.

    Boehnke, C. et al. High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre. Eur. J. Neurol. 11, 475–477 (2004).

  164. 164.

    Condò, M., Posar, A., Arbizzani, A. & Parmeggiani, A. Riboflavin prophylaxis in pediatric and adolescent migraine. J. Headache Pain 10, 361–365 (2009).

  165. 165.

    Gaul, C., Diener, H.-C. & Danesch, U., Migravent® Study Group. Improvement of migraine symptoms with a proprietary supplement containing riboflavin, magnesium and Q10: a randomized, placebo-controlled, double-blind, multicenter trial. J. Headache Pain 16, 516 (2015).

  166. 166.

    Schoenen, J., Jacquy, J. & Lenaerts, M. Effectiveness of high-dose riboflavin in migraine prophylaxis. A randomized controlled trial. Neurology 50, 466–470 (1998). A placebo-controlled trial that showed that 400 mg riboflavin daily is effective for migraine prevention.

  167. 167.

    Bruijn, J. et al. Medium-dose riboflavin as a prophylactic agent in children with migraine: a preliminary placebo-controlled, randomised, double-blind, cross-over trial. Cephalalgia 30, 1426–1434 (2010).

  168. 168.

    Rahimdel, A., Mellat, A., Zeinali, A., Jafari, E. & Ayatollahi, P. Comparison between intravenous sodium valproate and subcutaneous sumatriptan for treatment of acute migraine attacks; double-blind randomized clinical trial. Iran. J. Med. Sci. 39, 171–177 (2014).

  169. 169.

    Thompson, D. F. & Saluja, H. S. Prophylaxis of migraine headaches with riboflavin: a systematic review. J. Clin. Pharm. Ther. 42, 394–403 (2017).

  170. 170.

    Prangthip, P., Kettawan, A., Posuwan, J., Okuno, M. & Okamoto, T. An improvement of oxidative stress in diabetic rats by ubiquinone-10 and ubiquinol-10 and bioavailability after short- and long-term coenzyme Q10 supplementation. J. Diet. Suppl. 13, 647–659 (2016).

  171. 171.

    Yang, X. et al. Neuroprotection of coenzyme Q10 in neurodegenerative diseases. Curr. Top. Med. Chem. 16, 858–866 (2016).

  172. 172.

    Dahri, M., Hashemilar, M., Asghari-Jafarabadi, M. & Tarighat-Esfanjani, A. Efficacy of coenzyme Q10 for the prevention of migraine in women: a randomized, double-blind, placebo-controlled study. Eur. J. Integr. Med. 16, 8–14 (2017).

  173. 173.

    Dahri, M., Tarighat-Esfanjani, A., Asghari-Jafarabadi, M. & Hashemilar, M. Oral coenzyme Q10 supplementation in patients with migraine: effects on clinical features and inflammatory markers. Nutr. Neurosci. 22, 607–615 (2019).

  174. 174.

    Sándor, P. S. et al. Efficacy of coenzyme Q10 in migraine prophylaxis: a randomized controlled trial. Neurology 64, 713–715 (2005).

  175. 175.

    Hajihashemi, P., Askari, G., Khorvash, F., Reza Maracy, M. & Nourian, M. The effects of concurrent coenzyme Q10, l-carnitine supplementation in migraine prophylaxis: a randomized, placebo-controlled, double-blind trial. Cephalalgia 39, 648–654 (2019).

  176. 176.

    Slater, S. K. et al. A randomized, double-blinded, placebo-controlled, crossover, add-on study of coenzyme Q10 in the prevention of pediatric and adolescent migraine. Cephalalgia 31, 897–905 (2011).

  177. 177.

    Hershey, A. D. et al. Coenzyme Q10 deficiency and response to supplementation in pediatric and adolescent migraine. Headache 47, 73–80 (2007).

  178. 178.

    Müller, U. & Krieglstein, J. Prolonged pretreatment with α-lipoic acid protects cultured neurons against hypoxic, glutamate-, or iron-induced injury. J. Cereb. Blood Flow Metab. 15, 624–630 (1995).

  179. 179.

    Packer, L., Witt, E. H. & Tritschler, H. J. alpha-Lipoic acid as a biological antioxidant. Free. Radic. Biol. Med. 19, 227–250 (1995).

  180. 180.

    Magis, D. et al. A randomized double-blind placebo-controlled trial of thioctic acid in migraine prophylaxis. Headache 47, 52–57 (2007).

  181. 181.

    Cavestro, C. et al. Alpha-lipoic acid shows promise to improve migraine in patients with insulin resistance: a 6-month exploratory study. J. Med. Food 21, 269–273 (2018).

  182. 182.

    Ali, A. M., Awad, T. G. & Al-Adl, N. M. Efficacy of combined topiramate/thioctic acid therapy in migraine prophylaxis. Saudi Pharm. J. 18, 239–243 (2010).

  183. 183.

    Lea, R., Colson, N., Quinlan, S., Macmillan, J. & Griffiths, L. The effects of vitamin supplementation and MTHFR (C677T) genotype on homocysteine-lowering and migraine disability. Pharmacogenet. Genomics 19, 422–428 (2009).

  184. 184.

    Menon, S. et al. Genotypes of the MTHFR C677T and MTRR A66G genes act independently to reduce migraine disability in response to vitamin supplementation. Pharmacogenet. Genomics 22, 741–749 (2012).

  185. 185.

    Menon, S. et al. The effect of 1 mg folic acid supplementation on clinical outcomes in female migraine with aura patients. J. Headache Pain 17, 60 (2016).

  186. 186.

    Prousky, J. & Seely, D. The treatment of migraines and tension-type headaches with intravenous and oral niacin (nicotinic acid): systematic review of the literature. Nutr. J. 4, 3 (2005).

  187. 187.

    Facchinetti, F., Sances, G., Borella, P., Genazzani, A. R. & Nappi, G. Magnesium prophylaxis of menstrual migraine: effects on intracellular magnesium. Headache 31, 298–301 (1991).

  188. 188.

    Chiu, H.-Y., Yeh, T.-H., Huang, Y.-C. & Chen, P.-Y. Effects of intravenous and oral magnesium on reducing migraine: a meta-analysis of randomized controlled trials. Pain Physician 19, E97–E112 (2016).

  189. 189.

    Karimi, N., Razian, A. & Heidari, M. The efficacy of magnesium oxide and sodium valproate in prevention of migraine headache: a randomized, controlled, double-blind, crossover study. Acta Neurol. Belg. https://doi.org/10.1007/s13760-019-01101-x (2019).

  190. 190.

    Tarighat Esfanjani, A. et al. The effects of magnesium, L-carnitine, and concurrent magnesium-L-carnitine supplementation in migraine prophylaxis. Biol. Trace Elem. Res. 150, 42–48 (2012).

  191. 191.

    Hagen, K. et al. Acetyl-l-carnitine versus placebo for migraine prophylaxis: a randomized, triple-blind, crossover study. Cephalalgia 35, 987–995 (2015).

  192. 192.

    Yang, H., Shan, W., Zhu, F., Wu, J. & Wang, Q. Ketone bodies in neurological diseases: focus on neuroprotection and underlying mechanisms. Front. Neurol. 10, 585 (2019).

  193. 193.

    Gross, E. C., Klement, R. J., Schoenen, J., D’Agostino, D. P. & Fischer, D. Potential protective mechanisms of ketone bodies in migraine prevention. Nutrients 11, 811 (2019). A comprehensive review of the various potential mechanisms by which ketone bodies might protect against migraine.

  194. 194.

    Al-Karagholi, M. A.-M., Hansen, J. M., Guo, S., Olesen, J. & Ashina, M. Opening of ATP-sensitive potassium channels causes migraine attacks: a new target for the treatment of migraine. Brain J. Neurol. awz199 (2019). A demonstration that a K ATP channel opener induces migraine headache in patients with migraine.

  195. 195.

    Strahlman, R. S. Can ketosis help migraine sufferers? A case report. Headache 46, 182 (2006).

  196. 196.

    Di Lorenzo, C. et al. Diet transiently improves migraine in two twin sisters: possible role of ketogenesis? Funct. Neurol. 28, 305–308 (2013). The first clinical indication that a ketogenic diet can improve migraine.

  197. 197.

    Maggioni, F., Margoni, M. & Zanchin, G. Ketogenic diet in migraine treatment: a brief but ancient history. Cephalalgia 31, 1150–1151 (2011).

  198. 198.

    SCHNABEL, T. G. An experience with a ketogenic dietary in migraine. Ann. Intern. Med. 2, 341 (1928).

  199. 199.

    Di Lorenzo, C. et al. Migraine improvement during short lasting ketogenesis: a proof-of-concept study. Eur. J. Neurol. 22, 170–177 (2015).

  200. 200.

    Di Lorenzo, C. et al. Cortical functional correlates of responsiveness to short-lasting preventive intervention with ketogenic diet in migraine: a multimodal evoked potentials study. J. Headache Pain 17, 58 (2016).

  201. 201.

    Di Lorenzo, C. et al. A randomized double-blind, cross-over trial of very low-calorie diet in overweight migraine patients: a possible role for ketones? Nutrients 11, 1742 (2019).

  202. 202.

    Gross, E. et al. Efficacy and safety of exogenous ketone bodies for preventive treatment of migraine: a study protocol for a single-centred, randomised, placebo-controlled, double-blind crossover trial. Trials 20, 61 (2019).

  203. 203.

    Varkey, E., Cider, A., Carlsson, J. & Linde, M. Exercise as migraine prophylaxis: a randomized study using relaxation and topiramate as controls. Cephalalgia 31, 1428–1438 (2011).

  204. 204.

    Ding, Q., Vaynman, S., Souda, P., Whitelegge, J. P. & Gomez-Pinilla, F. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur. J. Neurosci. 24, 1265–1276 (2006).

  205. 205.

    Steiner, J. L., Murphy, E. A., McClellan, J. L., Carmichael, M. D. & Davis, J. M. Exercise training increases mitochondrial biogenesis in the brain. J. Appl. Physiol. (1985) 111, 1066–1071 (2011).

  206. 206.

    Silberstein, S. D., Latsko, M. & Schoenen, J. in Multidisciplinary Management of Migraine: Pharmacological, Manual, and Other Therapies (eds Fernandez-de-las-Penas, C., Chaitow, L., & Schoenen, J.) 91–102 (Jones & Bartlett Learning, 2013).

  207. 207.

    Motaghinejad, M., Motevalian, M. & Shabab, B. Neuroprotective effects of various doses of topiramate against methylphenidate induced oxidative stress and inflammation in rat isolated hippocampus. Clin. Exp. Pharmacol. Physiol. 43, 360–371 (2016).

  208. 208.

    Kudin, A. P., Debska-Vielhaber, G., Vielhaber, S., Elger, C. E. & Kunz, W. S. The mechanism of neuroprotection by topiramate in an animal model of epilepsy. Epilepsia 45, 1478–1487 (2004).

  209. 209.

    Franzoni, E. et al. Topiramate: effects on serum lipids and lipoproteins levels in children. Eur. J. Neurol. 14, 1334–1337 (2007).

  210. 210.

    Wilkes, J. J., Nelson, E., Osborne, M., Demarest, K. T. & Olefsky, J. M. Topiramate is an insulin-sensitizing compound in vivo with direct effects on adipocytes in female ZDF rats. Am. J. Physiol. Endocrinol. Metab. 288, E617–E624 (2005).

  211. 211.

    Li, R. et al. Valproate attenuates nitroglycerin-induced trigeminovascular activation by preserving mitochondrial function in a rat model of migraine. Med. Sci. Monit. 22, 3229–3237 (2016).

  212. 212.

    Sitarz, K. S. et al. Valproic acid triggers increased mitochondrial biogenesis in POLG-deficient fibroblasts. Mol. Genet. Metab. 112, 57–63 (2014).

  213. 213.

    Berilgen, M. S. et al. Comparison of the effects of amitriptyline and flunarizine on weight gain and serum leptin, C peptide and insulin levels when used as migraine preventive treatment. Cephalalgia 25, 1048–1053 (2005).

  214. 214.

    Maggioni, F., Ruffatti, S., Dainese, F., Mainardi, F. & Zanchin, G. Weight variations in the prophylactic therapy of primary headaches: 6-month follow-up. J. Headache Pain 6, 322–324 (2005).

  215. 215.

    Lamont, L. S. Beta-blockers and their effects on protein metabolism and resting energy expenditure. J. Cardiopulm. Rehabil. 15, 183–185 (1995).

  216. 216.

    Lipton, R. B. et al. Reduction in perceived stress as a migraine trigger: testing the “let-down headache” hypothesis. Neurology 82, 1395–1401 (2014).

  217. 217.

    Neubauer, J. A. & Sunderram, J. Oxygen-sensing neurons in the central nervous system. J. Appl. Physiol. (1985) 96, 367–374 (2004).

  218. 218.

    Lin, L.-C., Lewis, D. A. & Sibille, E. A human-mouse conserved sex bias in amygdala gene expression related to circadian clock and energy metabolism. Mol. Brain 4, 18 (2011).

  219. 219.

    Hoffmann, U., Sukhotinsky, I., Eikermann-Haerter, K. & Ayata, C. Glucose modulation of spreading depression susceptibility. J. Cereb. Blood Flow Metab. 33, 191–195 (2013).

  220. 220.

    Kilic, K. et al. Inadequate brain glycogen or sleep increases spreading depression susceptibility. Ann. Neurol. 83, 61–73 (2018). A pivotal study that showed that in rodents, glucose shortage and sleep deprivation increase susceptibility to cortical spreading depression and open pannexin-1 megachannels, enabling activation of the trigeminovascular system.

  221. 221.

    de Almeida Rabello Oliveira, M. et al. Effects of short-term and long-term treatment with medium- and long-chain triglycerides ketogenic diet on cortical spreading depression in young rats. Neurosci. Lett. 434, 66–70 (2008).

  222. 222.

    Gerich, F. J., Hepp, S., Probst, I. & Müller, M. Mitochondrial inhibition prior to oxygen-withdrawal facilitates the occurrence of hypoxia-induced spreading depression in rat hippocampal slices. J. Neurophysiol. 96, 492–504 (2006).

  223. 223.

    Takano, T. et al. Cortical spreading depression causes and coincides with tissue hypoxia. Nat. Neurosci. 10, 754–762 (2007).

  224. 224.

    Angelova, P. R. et al. Functional oxygen sensitivity of astrocytes. J. Neurosci. 35, 10460–10473 (2015).

  225. 225.

    Chen, S.-P. et al. Inhibition of the P2X7-PANX1 complex suppresses spreading depolarization and neuroinflammation. Brain 140, 1643–1656 (2017).

  226. 226.

    Bolay, H. et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med. 8, 136–142 (2002). The first study to show that CSD in rats can activate the trigeminovascular system.

  227. 227.

    Karatas, H. et al. Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339, 1092–1095 (2013). This study showed that CSD-induced trigeminovascular activation is mediated by the opening of neuronal pannexin-1 channels.

  228. 228.

    Feuerstein, D. et al. Regulation of cerebral metabolism during cortical spreading depression. J. Cereb. Blood Flow Metab. 36, 1965–1977 (2016).

  229. 229.

    Yuzawa, I. et al. Cortical spreading depression impairs oxygen delivery and metabolism in mice. J. Cereb. Blood Flow Metab. 32, 376–386 (2012).

  230. 230.

    Viggiano, E. et al. Cortical spreading depression produces a neuroprotective effect activating mitochondrial uncoupling protein-5. Neuropsychiatr. Dis. Treat. 12, 1705–1710 (2016).

  231. 231.

    Shatillo, A. et al. Cortical spreading depression induces oxidative stress in the trigeminal nociceptive system. Neuroscience 253, 341–349 (2013).

  232. 232.

    Diener, H.-C. et al. CGRP as a new target in prevention and treatment of migraine. Lancet Neurol. 13, 1065–1067 (2014).

  233. 233.

    Durham, P. L. Calcitonin gene-related peptide (CGRP) and migraine. Headache 46 (Suppl. 1), S3–S8 (2006).

  234. 234.

    Holland, P. R. et al. Acid-sensing ion channel 1: a novel therapeutic target for migraine with aura. Ann. Neurol. 72, 559–563 (2012).

  235. 235.

    Benemei, S., Fusi, C., Trevisan, G. & Geppetti, P. The TRPA1 channel in migraine mechanism and treatment. Br. J. Pharmacol. 171, 2552–2567 (2014).

  236. 236.

    Kozai, D., Ogawa, N. & Mori, Y. Redox regulation of transient receptor potential channels. Antioxid. Redox Signal. 21, 971–986 (2014).

  237. 237.

    Martins-Oliveira, M. et al. Neuroendocrine signaling modulates specific neural networks relevant to migraine. Neurobiol. Dis. 101, 16–26 (2017). An experimental study that showed that systemic metabolic changes can modulate firing of nociceptors in the spinal trigeminal nucleus.

  238. 238.

    Ma, W., Berg, J. & Yellen, G. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. J. Neurosci. 27, 3618–3625 (2007).

  239. 239.

    Kawamura, M., Ruskin, D. N. & Masino, S. A. Metabolic autocrine regulation of neurons involves cooperation among pannexin hemichannels, adenosine receptors, and KATP channels. J. Neurosci. 30, 3886–3895 (2010).

  240. 240.

    Ghasemi, M., Mayasi, Y., Hannoun, A., Eslami, S. M. & Carandang, R. Nitric oxide and mitochondrial function in neurological diseases. Neuroscience 376, 48–71 (2018).

  241. 241.

    Kruuse, C., Thomsen, L. L., Birk, S. & Olesen, J. Migraine can be induced by sildenafil without changes in middle cerebral artery diameter. Brain J. Neurol. 126, 241–247 (2003).

  242. 242.

    Bolaños, J. P., Peuchen, S., Heales, S. J., Land, J. M. & Clark, J. B. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J. Neurochem. 63, 910–916 (1994).

  243. 243.

    Abad, N. et al. Metabolic assessment of a migraine model using relaxation-enhanced 1H spectroscopy at ultrahigh field. Magn. Reson. Med. 79, 1266–1275 (2018).

  244. 244.

    Dong, X. et al. Abnormal mitochondrial dynamics and impaired mitochondrial biogenesis in trigeminal ganglion neurons in a rat model of migraine. Neurosci. Lett. 636, 127–133 (2017).

  245. 245.

    Fried, N. T., Moffat, C., Seifert, E. L. & Oshinsky, M. L. Functional mitochondrial analysis in acute brain sections from adult rats reveals mitochondrial dysfunction in a rat model of migraine. Am. J. Physiol. Cell Physiol. 307, C1017–C1030 (2014).

  246. 246.

    Goadsby, P. J., Edvinsson, L. & Ekman, R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann. Neurol. 28, 183–187 (1990). By showing that CGRP levels in the blood in the jugular vein are increased during migraine attacks, this study paved the way for the novel migraine therapies that block CGRP neurotransmission.

  247. 247.

    Lassen, L. H. et al. CGRP may play a causative role in migraine. Cephalalgia 22, 54–61 (2002).

  248. 248.

    Khan, S., Olesen, A. & Ashina, M. CGRP, a target for preventive therapy in migraine and cluster headache: systematic review of clinical data. Cephalalgia 39, 374–389 (2019).

  249. 249.

    Hansen, J. M., Hauge, A. W., Olesen, J. & Ashina, M. Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia 30, 1179–1186 (2010).

  250. 250.

    Bai, Y.-X., Fang, F., Jiang, J.-L. & Xu, F. Extrinsic calcitonin gene-related peptide inhibits hyperoxia-induced alveolar epithelial type II cells apoptosis, oxidative stress, and reactive oxygen species (ROS) production by enhancing notch 1 and homocysteine-induced endoplasmic reticulum protein (HERP) expression. Med. Sci. Monit. 23, 5774–5782 (2017).

  251. 251.

    Dang, H.-X. et al. CGRP attenuates hyperoxia-induced oxidative stress-related injury to alveolar epithelial type II cells via the activation of the Sonic hedgehog pathway. Int. J. Mol. Med. 40, 209–216 (2017).

  252. 252.

    Holzmann, B. Antiinflammatory activities of CGRP modulating innate immune responses in health and disease. Curr. Protein Pept. Sci. 14, 268–274 (2013).

  253. 253.

    Smillie, S.-J. et al. An ongoing role of α-calcitonin gene-related peptide as part of a protective network against hypertension, vascular hypertrophy, and oxidative stress. Hypertension 63, 1056–1062 (2014).

  254. 254.

    Hothersall, J. S., Muirhead, R. P. & Wimalawansa, S. The effect of amylin and calcitonin gene-related peptide on insulin-stimulated glucose transport in the diaphragm. Biochem. Biophys. Res. Commun. 169, 451–454 (1990).

  255. 255.

    Morishita, T. et al. Effects of islet amyloid polypeptide (amylin) and calcitonin gene-related peptide (CGRP) on glucose metabolism in the rat. Diabetes Res. Clin. Pract. 15, 63–69 (1992).

  256. 256.

    Leighton, B. & Foot, E. A. The role of the sensory peptide calcitonin-gene-related peptide(s) in skeletal muscle carbohydrate metabolism: effects of capsaicin and resiniferatoxin. Biochem. J. 307, 707–712 (1995).

  257. 257.

    Holland, P. R., Saengjaroentham, C. & Vila-Pueyo, M. The role of the brainstem in migraine: potential brainstem effects of CGRP and CGRP receptor activation in animal models. Cephalalgia 39, 390–402 (2019).

  258. 258.

    Yi, C.-X. et al. Pituitary adenylate cyclase-activating polypeptide stimulates glucose production via the hepatic sympathetic innervation in rats. Diabetes 59, 1591–1600 (2010).

  259. 259.

    Lisicki, M. et al. Age related metabolic modifications in the migraine brain. Cephalalgia 39, 978–987 (2019).

  260. 260.

    Liveing, E. On Megrim, Sick-headache, and Some Allied Disorders: A Contribution to the Pathology of Nerve-storms. (Churchill, 1873). The formulation of the concept that the migraine attack results from a disruption of brain homeostasis that the attack itself resolves.

  261. 261.

    Loder, E. What is the evolutionary advantage of migraine? Cephalalgia 22, 624–632 (2002).

  262. 262.

    de Tommaso, M. et al. Altered processing of sensory stimuli in patients with migraine. Nat. Rev. Neurol. 10, 144–155 (2014).

  263. 263.

    Noseda, R. et al. Migraine photophobia originating in cone-driven retinal pathways. Brain J. Neurol. 139, 1971–1986 (2016).

  264. 264.

    Evers, S. et al. EFNS guideline on the drug treatment of migraine – revised report of an EFNS task force. Eur. J. Neurol. 16, 968–981 (2009).

  265. 265.

    Holland, S. et al. Evidence-based guideline update: NSAIDS and other complementary treatments for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology 78, 1346–1353 (2012).

  266. 266.

    Marmura, M. J., Silberstein, S. D. & Schwedt, T. J. The acute treatment of migraine in adults: the American Headache Society evidence assessment of migraine pharmacotherapies. Headache 55, 3–20 (2015).

  267. 267.

    Silberstein, S. D. et al. Evidence-based guideline update: pharmacologic treatment for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology 78, 1337–1345 (2012).

  268. 268.

    Tfelt-Hansen, P. C. Evidence-based guideline update: pharmacologic treatment for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology 80, 869–870; correction 871 (2013).

  269. 269.

    Pringsheim, T. et al. Canadian Headache Society guideline for migraine prophylaxis. Can. J. Neurol. Sci. 39, S1–S59 (2012).

Download references

Author information

E.C.G. was responsible for the literature search and the main composition of the manuscript, including the majority of display items. M.L. edited the manuscript and provided additional text and display items. D.F. and P.S.S. edited the manuscript. J.S. was responsible for the design of the manuscript, edited in depth the manuscript and display items and provided additional text and citations. All authors proofread the final manuscript prior to submission.

Correspondence to Jean Schoenen.

Ethics declarations

Competing interests

E.C.G. is the founder of KetoSwiss. E.C.G. and D.F. are the inventors of patent WO/2018/115158 held by the University Children’s Hospital Basel (UKBB) and the University of Basel for the use of β-hydroxybutyrate in migraine prevention. M.L., P.S.S. and J.S. declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks A. Carolei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gross, E.C., Lisicki, M., Fischer, D. et al. The metabolic face of migraine — from pathophysiology to treatment. Nat Rev Neurol 15, 627–643 (2019) doi:10.1038/s41582-019-0255-4

Download citation