Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Post-traumatic headache: epidemiology and pathophysiological insights

Abstract

Post-traumatic headache (PTH) is a highly disabling secondary headache disorder and one of the most common sequelae of mild traumatic brain injury, also known as concussion. Considerable overlap exists between PTH and common primary headache disorders. The most common PTH phenotypes are migraine-like headache and tension-type-like headache. A better understanding of the pathophysiological similarities and differences between primary headache disorders and PTH could uncover unique treatment targets for PTH. Although possible underlying mechanisms of PTH have been elucidated, a substantial void remains in our understanding, and further research is needed. In this Review, we describe the evidence from animal and human studies that indicates involvement of several potential mechanisms in the development and persistence of PTH. These mechanisms include impaired descending modulation, neurometabolic changes, neuroinflammation and activation of the trigeminal sensory system. Furthermore, we outline future research directions to establish biomarkers involved in progression from acute to persistent PTH, and we identify potential drug targets to prevent and treat persistent PTH.

Key points

  • Post-traumatic headache (PTH) is one of the most common sequelae of traumatic brain injury; the most common headache phenotypes in PTH are migraine-like headache and tension-type-like headache.

  • PTH is associated with somatic symptoms, including nausea, vomiting, photophobia and phonophobia, and cognitive and psychological symptoms.

  • Possible disease mechanisms of PTH include impaired descending modulation, neurometabolic changes and activation of the trigeminal sensory system.

  • The emphasis of future studies of PTH should be on establishing biomarkers of progression from acute PTH to persistent PTH.

  • Identification of potential treatment targets, such as calcitonin gene-related peptide, should enable randomized controlled trials to be conducted in patients with PTH.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Classification of headache attributed to trauma or injury to the head.
Fig. 2: Possible mechanisms underlying the pathophysiology of PTH.

References

  1. Seifert, T. D. & Evans, R. W. Posttraumatic headache: a review. Curr. Pain Headache Rep. 14, 292–298 (2010).

    PubMed  Google Scholar 

  2. Nampiaparampil, D. E. Prevalence of chronic pain after traumatic brain injury: a systematic review. JAMA. 300, 711–719 (2008).

    CAS  PubMed  Google Scholar 

  3. Mullally, W. J. Concussion. Am. J. Med. 130, 885–892 (2017).

    PubMed  Google Scholar 

  4. Dewan, M. C. et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 27, 1–18 (2018).

    Google Scholar 

  5. Minen, M. T., Boubour, A., Walia, H. & Barr, W. Post-concussive syndrome: a focus on post-traumatic headache and related cognitive, psychiatric, and sleep issues. Curr. Neurol. Neurosci. Rep. 16, 100 (2016). A review that details the clinical characteristics and associated comorbidities of PTH.

    PubMed  Google Scholar 

  6. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 388, 1545–1602 (2016).

    Google Scholar 

  7. Lucas, S. Posttraumatic headache: clinical characterization and management. Curr. Pain Headache Rep. 19, 48 (2015).

    PubMed  Google Scholar 

  8. Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 38, 1–211 (2018). The newest headache classification.

    Google Scholar 

  9. Baandrup, L. & Jensen, R. Chronic post-traumatic headache–a clinical analysis in relation to the International Headache Classification 2nd edition. Cephalalgia. 25, 132–138 (2005).

    CAS  PubMed  Google Scholar 

  10. Theeler, B., Lucas, S., Riechers, R. G. 2nd & Ruff, R. L. Post-traumatic headaches in civilians and military personnel: a comparative, clinical review. Headache. 53, 881–900 (2013).

    PubMed  Google Scholar 

  11. Headache Classification Committee of the International Headache Society. Classification and diagnostic criteria for headache disorders, cranial neuralgias, and facial pain. Cephalalgia. 8, 1–96 (1988).

    Google Scholar 

  12. Management of Concussion/mTBI Working Group. VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. J. Rehabil Res. Dev. 46, CP1–CP68 (2009).

    Google Scholar 

  13. Aaseth, K. et al. Prevalence of secondary chronic headaches in a population-based sample of 30–44-year-old persons. The Akershus study of chronic headache. Cephalalgia. 28, 705–713 (2008).

    CAS  PubMed  Google Scholar 

  14. Rasmussen, B. K. & Olesen, J. Symptomatic and nonsymptomatic headaches in a general population. Neurology. 42, 1225–1231 (1992).

    CAS  PubMed  Google Scholar 

  15. Zeeberg, P., Olesen, J. & Jensen, R. Efficacy of multidisciplinary treatment in a tertiary referral headache centre. Cephalalgia. 25, 1159–1167 (2005).

    CAS  PubMed  Google Scholar 

  16. Lucas, S., Hoffman, J. M., Bell, K. R. & Dikmen, S. A prospective study of prevalence and characterization of headache following mild traumatic brain injury. Cephalalgia. 34, 93–102 (2014).

    PubMed  Google Scholar 

  17. Hoffman, J. M. et al. Natural history of headache after traumatic brain injury. J. Neurotrauma. 28, 1719–1725 (2011).

    PubMed  PubMed Central  Google Scholar 

  18. Yilmaz, T. et al. Risk factors and outcomes associated with post-traumatic headache after mild traumatic brain injury. Emerg. Med. J. 34, 800–805 (2017).

    PubMed  Google Scholar 

  19. Jensen, O. K. & Thulstrup, A. M. Gender differences of post-traumatic headache and other post-commotio symptoms. A follow-up study after a period of 9–12 months. Ugeskr Laeger. 163, 5029–5033 (2001).

    CAS  PubMed  Google Scholar 

  20. Kontos, A. P. et al. Posttraumatic migraine as a predictor of recovery and cognitive impairment after sport-related concussion. Am. J. Sports Med. 41, 1497–1504 (2013).

    PubMed  Google Scholar 

  21. Langlois, J. A. 1, Rutland-Brown, W. & Wald, M. M. The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 31, 375–378 (2006).

    Google Scholar 

  22. Kjeldgaard, D., Forchhammer, H., Teasdale, T. & Jensen, R. H. Chronic post-traumatic headache after mild head injury: a descriptive study. Cephalalgia. 34, 191–200 (2014).

    PubMed  Google Scholar 

  23. Feigin, V. L. et al. Incidence of traumatic brain injury in New Zealand: a population-based study. Lancet Neurol. 12, 53–64 (2013).

    PubMed  Google Scholar 

  24. Lew, H. L. et al. Characteristics and treatment of headache after traumatic brain injury: a focused review. Am. J. Phys. Med. Rehabil. 85, 619–627 (2006).

    PubMed  Google Scholar 

  25. Stacey, A. et al. Natural history of headache five years after traumatic brain injury. J. Neurotrauma. 34, 1558–1564 (2017). A prospective, longitudinal study that details the clinical characteristics and risk factors for self-reported headache attributed to moderate to severe TBI.

    PubMed  Google Scholar 

  26. Lucas, S., Hoffman, J. M., Bell, K. R., Walker, W. & Dikmen, S. Characterization of headache after traumatic brain injury. Cephalalgia. 32, 600–606 (2012).

    PubMed  Google Scholar 

  27. Chibnall, J. T. & Duckro, P. N. Post-traumatic stress disorder in chronic post-traumatic headache patients. Headache. 34, 357–361 (1994).

    CAS  PubMed  Google Scholar 

  28. Lieba-Samal, D. et al. Characteristics of acute posttraumatic headache following mild head injury. Cephalalgia. 31, 1618–1626 (2011).

    PubMed  Google Scholar 

  29. Schwedt, T. J., Chong, C. D., Peplinski, J., Ross, K. & Berisha, V. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure. J. Headache Pain. 18, 87 (2017). This MRI study provides evidence for cortical differences between patients with PTH and patients with migraine.

    PubMed  PubMed Central  Google Scholar 

  30. Sufrinko, A. M. et al. Using acute performance on a comprehensive neurocognitive, vestibular, and ocular motor assessment battery to predict recovery duration after sport-related concussions. Am. J. Sports Med. 45, 1187–1194 (2017).

    PubMed  Google Scholar 

  31. Barros, J. et al. Cerebellar ataxia, hemiplegic migraine, and related phenotypes due to a CACNA1A missense mutation: 12-year follow-up of a large Portuguese family. JAMA Neurol. 70, 235–240 (2013).

    PubMed  Google Scholar 

  32. Kors, E. E. et al. Delayed cerebral edema and fatal coma after minor head trauma: role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann. Neurol. 49, 753–760 (2001).

    CAS  PubMed  Google Scholar 

  33. Tottene, A. et al. Specific kinetic alterations of human CaV2.1 calcium channels produced by mutation S218L causing familial hemiplegic migraine and delayed cerebral edema and coma after minor head trauma. J. Biol. Chem. 280, 17678–17686 (2005).

    CAS  PubMed  Google Scholar 

  34. Seifert, T. et al. Comprehensive headache experience in collegiate student-athletes: an initial report from the NCAA Headache Task Force. Headache. 57, 877–886 (2017).

    PubMed  Google Scholar 

  35. You, H. J. et al. Endogenous descending modulation: spatiotemporal effect of dynamic imbalance between descending facilitation and inhibition of nociception. J. Physiol. 588, 4177–4188 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vanegas, H. & Schaible, H. G. Descending control of persistent pain: inhibitory or facilitatory? Brain Res. Rev. 46, 295–309 (2004).

    PubMed  Google Scholar 

  37. Kwon, M., Altin, M., Duenas, H. & Alev, L. The role of descending inhibitory pathways on chronic pain modulation and clinical implications. Pain Pract. 14, 656–667 (2014).

    PubMed  Google Scholar 

  38. Ossipov, M. H., Morimura, K. & Porreca, F. Descending pain modulation and chronification of pain. Curr. Opin. Support Palliat Care. 8, 143–151 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Dodick, D. W. Migraine. Lancet. 391, 1315–1330 (2018).

    PubMed  Google Scholar 

  40. Kurca, E., Sivák, S. & Kucera, P. Impaired cognitive functions in mild traumatic brain injury patients with normal and pathologic magnetic resonance imaging. Neuroradiology. 48, 661–669 (2006).

    CAS  PubMed  Google Scholar 

  41. Chong, C. D. & Schwedt, T. J. Research imaging of brain structure and function after concussion. Headache. 58, 827–835 (2018).

    PubMed  Google Scholar 

  42. Rau, J. C., Dumkrieger, G. M., Chong, C. D. & Schwedt, T. J. Imaging post-traumatic headache. Curr. Pain Headache Rep. 22, 64 (2018).

    PubMed  Google Scholar 

  43. Hulkower, M. B., Poliak, D. B., Rosenbaum, S. B., Zimmerman, M. E. & Lipton, M. L. A decade of DTI in traumatic brain injury: 10 years and 100 articles later. Radiology. 267, 231–239 (2013).

    Google Scholar 

  44. Rutgers, D. R. et al. White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study. AJNR Am. J. Neuroradiol. 29, 514–519 (2008).

    CAS  PubMed  Google Scholar 

  45. Mayer, A. R. et al. A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology. 7, 643–650 (2010).

    Google Scholar 

  46. Miller, D. R., Hayes, J. P., Lafleche, G., Salat, D. H. & Verfaellie, M. White matter abnormalities are associated with chronic postconcussion symptoms in blast-related mild traumatic brain injury. Hum. Brain Mapp. 37, 220–229 (2016).

    PubMed  Google Scholar 

  47. Wada, T., Asano, Y. & Shinoda, J. Decreased fractional anisotropy evaluated using tract-based spatial statistics and correlated with cognitive dysfunction in patients with mild traumatic brain injury in the chronic stage. AJNR Am. J. Neuroradiol. 33, 2117–2122 (2012).

    CAS  PubMed  Google Scholar 

  48. Morey, R. A. et al. Effects of chronic mild traumatic brain injury on white matter integrity in Iraq and Afghanistan war veterans. Hum. Brain Mapp. 34, 2986–2999 (2013).

    PubMed  Google Scholar 

  49. Mac Donald, C. L. et al. Detection of blast-related traumatic brain injury in U.S. military personnel. N. Engl. J. Med. 364, 2091–2100 (2011).

    Google Scholar 

  50. Alhilali, L. M., Delic, J. & Fakhran, S. Differences in callosal and forniceal diffusion between patients with and without postconcussive migraine. AJNR Am. J. Neuroradiol. 38, 691–695 (2017). The first MRI study to investigate changes in white matter integrity between patients with PTH and a migraine-like phenotype and patients with mTBI and either a non-migraine-like phenotype or no headache.

    CAS  PubMed  Google Scholar 

  51. Li, X. L. et al. A diffusion tensor magnetic resonance imaging study of corpus callosum from adult patients with migraine complicated with depressive/anxious disorder. Headache. 51, 237–245 (2011).

    PubMed  Google Scholar 

  52. Lamm, C., Decety, J. & Singer, T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage 54, 2492–2502 (2011).

    PubMed  Google Scholar 

  53. Moulton, E. A., Pendse, G., Becerra, L. R. & Borsook, D. BOLD responses in somatosensory cortices better reflect heat sensation than pain. J. Neurosci 32, 6024–6031 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schwedt, T. J. & Chong, C. D. Correlations between brain cortical thickness and cutaneous pain thresholds are atypical in adults with migraine. PLoS One 9, e99791 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Becker, S., Gandhi, W. & Schweinhardt, P. Cerebral interactions of pain and reward and their relevance for chronic pain. Neurosci Lett. 520, 182–187 (2012).

    CAS  PubMed  Google Scholar 

  56. Kong, J. et al. Using fMRI to dissociate sensory encoding from cognitive evaluation of heat pain intensity. Hum. Brain Mapp. 27, 715–721 (2006).

    PubMed  Google Scholar 

  57. Chong, C. D., Berisha, V., Chiang, C. C., Ross, K. & Schwedt, T. J. Less cortical thickness in patients with persistent post-traumatic headache compared with healthy controls: an MRI study. Headache. 58, 53–61 (2018). This MRI study investigated differences in cortical thickness between patients with PTH and healthy controls.

    PubMed  Google Scholar 

  58. Obermann, M. et al. Gray matter changes related to chronic posttraumatic headache. Neurology. 73, 978–983 (2009). The first MRI study of PTH; the study revealed cortical changes in pain processing structures in patients with PTH.

    PubMed  Google Scholar 

  59. Bashir, A., Lipton, R. B., Ashina, S. & Ashina, M. Migraine and structural changes in the brain: a systematic review and meta-analysis. Neurology. 81, 1260–1268 (2013).

    PubMed  PubMed Central  Google Scholar 

  60. Amen, D. G. et al. Impact of playing American professional football on long-term brain function. J. Neuropsychiatry Clin. Neurosci. 23, 98–106 (2011).

    PubMed  Google Scholar 

  61. Abdel-Dayem et al. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury. Clin. Nucl. Med. 23, 309–317 (1998).

    CAS  PubMed  Google Scholar 

  62. Goldenberg, G., Oder, W., Spatt, J. & Podreka, I. Cerebral correlates of disturbed executive function and memory in survivors of severe closed head injury: a SPECT study. J. Neurol. Neurosurg. Psychiatry. 55, 362–368 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Maugans, T. A., Farley, C., Altaye, M., Leach, J. & Cecil, K. M. Pediatric sports-related concussion produces cerebral blood flow alterations. Pediatrics. 129, 28–37 (2012).

    PubMed  PubMed Central  Google Scholar 

  64. Wang, Y. et al. Decreased cerebral blood flow in chronic pediatric mild TBI: an MRI perfusion study. Dev. Neuropsychol. 40, 40–44 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. Stephens, J. A., Liu, P., Lu, H. & Suskauer, S. J. Cerebral blood flow after mild traumatic brain injury: associations between symptoms and post-injury perfusion. J. Neurotrauma. 35, 241–248 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Barlow, K. M. et al. Cerebral perfusion changes in post-concussion syndrome: a prospective controlled cohort study. J. Neurotrauma. 34, 996–1004 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Shumskaya, E., Andriessen, T. M., Norris, D. G. & Vos, P. E. Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury. Neurology. 79, 175–182 (2012).

    PubMed  Google Scholar 

  68. Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C. & Yeo, R. A. Functional connectivity in mild traumatic brain injury. Hum. Brain Mapp. 32, 1825–1835 (2011).

    PubMed  PubMed Central  Google Scholar 

  69. Sharp, D. J. Default mode network functional and structural connectivity after traumatic brain injury. Brain. 134, 2233–2247 (2011).

    PubMed  Google Scholar 

  70. McAllister, T. W. et al. Effect of head impacts on diffusivity measures in a cohort of collegiate contact sport athletes. Neurology. 82, 63–69 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. Zhou, Y. et al. Default-mode network disruption in mild traumatic brain injury. Radiology. 265, 882–892 (2012).

    PubMed  PubMed Central  Google Scholar 

  72. Johnson, B. et al. Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. Neuroimage. 59, 511–518 (2012).

    PubMed  Google Scholar 

  73. Messe et al. Specific and evolving resting-state network alterations in post-concussion syndrome following mild traumatic brain injury. PLoS One. 8, e65470 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Katayama, Y., Becker, D. P., Tamura, T. & Hovda, D. A. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J. Neurosurg. 73, 889–900 (1990).

    CAS  PubMed  Google Scholar 

  75. Choe, M. C. The pathophysiology of concussion. Curr. Pain Headache Rep. 20, 42 (2016).

    PubMed  Google Scholar 

  76. Yoshino, A., Hovda, D. A., Kawamata, T., Katayama, Y. & Becker, D. P. Dynamic changes in local cerebral glucose utilization following cerebral concussion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Res. 561, 106–119 (1991).

    CAS  PubMed  Google Scholar 

  77. Barkhoudarian, G., Hovda, D. A. & Giza, C. C. The molecular pathophysiology of concussive brain injury – an update. Phys. Med. Rehabil Clin. N. Am. 27, 373–393 (2016).

    PubMed  Google Scholar 

  78. Hill, C. S., Coleman, M. P. & Menon, D. K. Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci. 39, 311–324 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pettus, E. H. & Povlishock, J. T. Characterization of a distinct set of intra-axonal ultrastructural changes associated with traumatically induced alteration in axolemmal permeability. Brain Res. 722, 1–11 (1996).

    CAS  PubMed  Google Scholar 

  80. Povlishock, J. T. Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol. 2, 1–12 (1992).

    CAS  PubMed  Google Scholar 

  81. Burtscher, I. M. & Holtås, S. Proton MR spectroscopy in clinical routine. J. Magn. Reson. Imaging. 13, 560–567 (2001).

    CAS  PubMed  Google Scholar 

  82. Kirov, I. I., Whitlow, C. T. & Zamora, C. Susceptibility-weighted imaging and magnetic resonance spectroscopy in concussion. Neuroimaging Clin. N. Am. 28, 91–105 (2018).

    PubMed  Google Scholar 

  83. Gasparovic, C. et al. Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-magnetic resonance spectroscopy study. J. Neurotrauma. 26, 1635–1643 (2009).

    PubMed  PubMed Central  Google Scholar 

  84. Manning, K. Y. et al. Multiparametric MRI changes persist beyond recovery in concussed adolescent hockey players. Neurology. 89, 2157–2166 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Al-Karagholi, M. M., Hansen, J. M., Guo, S., Olesen, J. & Ashina M. Opening of ATP sensitive channels causes migraine attacks: a new target for the treatment of migraine. Brain https://doi.org/10.1093/brain/awz199 (2019).

  86. Borkum, J. M. Migraine triggers and oxidative stress: a narrative review and synthesis. Headache. 56, 12–35 (2016).

    PubMed  Google Scholar 

  87. Aytaç, B. et al. Decreased antioxidant status in migraine patients with brain white matter hyperintensities. Neurol. Sci. 35, 1925–1929 (2014).

    PubMed  Google Scholar 

  88. Dalkara, T., Nozari, A. & Moskowitz, M. A. Migraine aura pathophysiology: the role of blood vessels and microembolisation. Lancet Neurol. 9, 309–317 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sanchez-Del-Rio, M., Reuter, U. & Moskowitz, M. A. New insights into migraine pathophysiology. Curr. Opin. Neurol. 19, 294–298 (2006).

    CAS  PubMed  Google Scholar 

  90. Bolay, H. et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med. 8, 136–142 (2002).

    CAS  PubMed  Google Scholar 

  91. Schock, S. C. et al. Cortical spreading depression releases ATP into the extracellular space and purinergic receptor activation contributes to the induction of ischemic tolerance. Brain Res. 1168, 129–138 (2007).

    CAS  PubMed  Google Scholar 

  92. Strong, A. J. Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke. 33, 2738–2743 (2002).

    PubMed  Google Scholar 

  93. Elliott, M. B., Oshinsky, M. L., Amenta, P. S., Awe, O. O. & Jallo, J. I. Nociceptive neuropeptide increases and periorbital allodynia in a model of traumatic brain injury. Headache. 52, 966–984 (2012).

    PubMed  PubMed Central  Google Scholar 

  94. Feliciano, D. P. et al. Nociceptive sensitization and BDNF up-regulation in a rat model of traumatic brain injury. Neurosci Lett. 583, 55–59 (2014).

    CAS  PubMed  Google Scholar 

  95. Rogatsky, G. G., Sonn, J., Kamenir, Y., Zarchin, N. & Mayevsky, A. Relationship between intracranial pressure and cortical spreading depression following fluid percussion brain injury in rats. J. Neurotrauma. 20, 1315–1325 (2003).

    CAS  PubMed  Google Scholar 

  96. Kane, M. J. et al. A mouse model of human repetitive mild traumatic brain injury. J. Neurosci. Methods. 203, 41–49 (2012).

    PubMed  Google Scholar 

  97. Goddeyne, C., Nichols, J., Wu, C. & Anderson, T. Repetitive mild traumatic brain injury induces ventriculomegaly and cortical thinning in juvenile rats. J. Neurophysiol. 113, 3268–3280 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. Packard, R. C. The relationship of neck injury and post-traumatic headache. Curr. Pain Headache Rep. 6, 301–307 (2002).

    PubMed  Google Scholar 

  99. Mayer, C. L., Huber, B. R. & Peskind, E. Traumatic brain injury, neuroinflammation, and post-traumatic headaches. Headache. 53, 1523–1530 (2013).

    PubMed  PubMed Central  Google Scholar 

  100. Charles, A. Migraine: a brain state. Curr. Opin. Neurol. 26, 235–239 (2013).

    PubMed  Google Scholar 

  101. Loane, D. J. & Byrnes, K. R. Role of microglia in neurotrauma. Neurotherapeutics. 7, 366–377 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Frugier, T., Morganti-Kossmann, M. C., O’Reilly, D. & McLean, C. A. In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J. Neurotrauma. 27, 497–507 (2010).

    PubMed  Google Scholar 

  103. Hains, B. C. & Waxman, S. G. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J. Neurosci. 26, 4308–4317 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Waxman, S. G. & Hains, B. C. Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends Neurosci. 29, 207–215 (2006).

    CAS  PubMed  Google Scholar 

  105. Gursoy-Ozdemir, Y. et al. Cortical spreading depression activates and upregulates MMP-9. J. Clin. Invest. 113, 1447–1455 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Vilalta, A. et al. Brain contusions induce a strong local overexpression of MMP-9. Results of a pilot study. Acta Neurochir Suppl. 102, 415–419 (2008).

    CAS  PubMed  Google Scholar 

  107. Imamura, K., Takeshima, T., Fusayasu, E. & Nakashima, K. Increased plasma matrix metalloproteinase-9 levels in migraineurs. Headache. 48, 135–139 (2008).

    PubMed  Google Scholar 

  108. Martins-Oliveira, A. et al. Specific matrix metalloproteinase 9 (MMP-9) haplotype affect the circulating MMP-9 levels in women with migraine. J. Neuroimmunol. 252, 89–94 (2012).

    CAS  PubMed  Google Scholar 

  109. Ashina, M. et al. Matrix metalloproteinases during and outside of migraine attacks without aura. Cephalalgia. 30, 303–310 (2010).

    CAS  PubMed  Google Scholar 

  110. Zhang, X. et al. Activation of central trigeminovascular neurons by cortical spreading depression. Ann. Neurol. 69, 855–865 (2011).

    PubMed  PubMed Central  Google Scholar 

  111. Karatas, H. et al. Spreading depression triggers headache by activating neuronal Panx1 channels. Science. 339, 1092–1095 (2013).

    CAS  PubMed  Google Scholar 

  112. Schain, A. J. et al. Activation of pial and dural macrophages and dendritic cells by cortical spreading depression. Ann. Neurol. 83, 508–521 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Levy, D. et al. Responses of dural mast cells in concussive and blast models of mild traumatic brain injury in mice: potential implications for post-traumatic headache. Cephalalgia. 36, 915–923 (2016).

    PubMed  Google Scholar 

  114. Benromano, T. et al. Mild closed head injury promotes a selective trigeminal hypernociception: implications for the acute emergence of post-traumatic headache. Eur. J. Pain. 19, 621–628 (2015).

    CAS  PubMed  Google Scholar 

  115. Defrin, R., Gruener, H., Schreiber, S. & Pick, C. G. Quantitative somatosensory testing of subjects with chronic post-traumatic headache: implications on its mechanisms. Eur. J. Pain. 14, 924–931 (2010).

    PubMed  Google Scholar 

  116. Burstein, R., Yarnitsky, D., Goor-Aryeh, I., Ransil, B. J. & Bajwa, Z. H. An association between migraine and cutaneous allodynia. Ann. Neurol. 47, 614–624 (2000).

    CAS  PubMed  Google Scholar 

  117. Gracely, R. H., Lynch, S. A. & Bennett, G. J. Painful neuropathy: altered central processing maintained dynamically by peripheral input. Pain. 51, 175–194 (1992).

    CAS  PubMed  Google Scholar 

  118. Burstein, R. Deconstructing migraine headache into peripheral and central sensitization. Pain. 89, 107–110 (2001).

    CAS  PubMed  Google Scholar 

  119. Roth, T. L. et al. Transcranial amelioration of inflammation and cell death after brain injury. Nature. 505, 223–228 (2014).

    CAS  PubMed  Google Scholar 

  120. Chen, G., Shi, J., Hu, Z. & Hang, C. Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm. 2008, 716458 (2008).

    Google Scholar 

  121. Ellis, E. F., Dodson, L. Y. & Police, R. J. Restoration of cerebrovascular responsiveness to hyperventilation by the oxygen radical scavenger n-acetylcysteine following experimental traumatic brain injury. J. Neurosurg. 75, 774–779 (1991).

    CAS  PubMed  Google Scholar 

  122. Eakin, K. et al. Efficacy of N-acetyl cysteine in traumatic brain injury. PLoS One. 9, e90617 (2014).

    PubMed  PubMed Central  Google Scholar 

  123. Hoffer, M. E., Balaban, C., Slade, M. D., Tsao, J. W. & Hoffer, B. Amelioration of acute sequelae of blast induced mild traumatic brain injury by N-acetyl cysteine: a double-blind, placebo controlled study. PLoS One. 8, e54163 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ashina, H., Schytz, H. W. & Ashina M. CGRP in human models of migraine. Handb. Exp. Pharmacol. https://doi.org/10.1007/164_2018_128 (2018).

  125. Asghar, M. S. et al. Evidence for a vascular factor in migraine. Ann. Neurol. 69, 635–645 (2011).

    PubMed  Google Scholar 

  126. Daiutolo, B. V., Tyburski, A., Clark, S. W. & Elliott, M. B. Trigeminal pain molecules, allodynia, and photosensitivity are pharmacologically and genetically modulated in a model of traumatic brain injury. J. Neurotrauma. 15, 748–760 (2016).

    Google Scholar 

  127. Khan, S., Olesen, A. & Ashina, M. CGRP, a target for preventive therapy in migraine and cluster headache: systematic review of clinical data. Cephalalgia 39, 374–389 (2017).

    PubMed  Google Scholar 

  128. Lennerz, J. K. et al. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. J. Comp. Neurol. 507, 1277–1299 (2008).

    CAS  PubMed  Google Scholar 

  129. McCulloch, J., Uddman, R., Kingman, T. A. & Edvinsson, L. Calcitonin gene-related peptide: functional role in cerebrovascular regulation. Proc. Natl Acad. Sci. U.S.A. 83, 5731–5735 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Goadsby, P. J., Edvinsson, L. & Ekman, R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann. Neurol. 23, 193–196 (1988).

    CAS  PubMed  Google Scholar 

  131. Bree, D. & Levy, D. Development of CGRP-dependent pain and headache related behaviours in a rat model of concussion: implications for mechanisms of post-traumatic headache. Cephalalgia. 38, 246–258 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03347188 (2019).

  133. Hilz, M. J. Valsalva maneuver unveils central baroreflex dysfunction with altered blood pressure control in persons with a history of mild traumatic brain injury. BMC Neurol. 16, 61 (2016).

    PubMed  PubMed Central  Google Scholar 

  134. Wei, X. et al. Meningeal norepinephrine produces headache behaviors in rats via actions both on dural afferents and fibroblasts. Cephalalgia. 35, 1054–1064 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. Lindholt, M. et al. Lack of effect of norepinephrine on cranial haemodynamics and headache in healthy volunteers. Cephalalgia. 29, 384–387 (2009).

    CAS  PubMed  Google Scholar 

  136. Ray, B. S. & Wolff, H. G. Experimental studies on headache; pain-sensitive structures of the head and their significance in headache. Arch. Surg. 41, 813 (1940).

    Google Scholar 

  137. Olesen, J., Burstein, R., Ashina, M. & Tfelt-Hansen, P. Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol. 8, 679–690 (2009).

    PubMed  Google Scholar 

  138. Schueler, M., Messlinger, K., Dux, M., Neuhuber, W. L. & De Col, R. Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache. Pain. 154, 1622–1631 (2013).

    PubMed  Google Scholar 

  139. Kosaras, B., Jakubowski, M., Kainz, V. & Burstein, R. Sensory innervation of the calvarial bones of the mouse. J. Comp. Neurol. 515, 331–348 (2009).

    PubMed  PubMed Central  Google Scholar 

  140. Ashina, S. et al. Prevalence of neck pain in migraine and tension-type headache: a population study. Cephalalgia. 35, 211–219 (2015).

    PubMed  Google Scholar 

  141. Ropper, A. H. & Gorson, K. C. Clinical practice. Concussion. N. Engl. J. Med. 356, 166–172 (2007).

    CAS  PubMed  Google Scholar 

  142. Johnston, M. M., Jordan, S. E. & Charles, A. C. Pain referral patterns of the C1 to C3 nerves: implications for headache disorders. Ann. Neurol. 74, 145–148 (2013).

    PubMed  Google Scholar 

  143. Bartsch, T. & Goadsby, P. J. Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain. 125, 1496–1509 (2002).

    PubMed  Google Scholar 

  144. Le Doaré, K. et al. Occipital afferent activation of second order neurons in the trigeminocervical complex in rat. Neurosci. Lett. 403, 73–77 (2006).

    PubMed  Google Scholar 

  145. Bree, D. & Levy, D. Strides toward better understanding of post-traumatic headache pathophysiology using animal models. Curr. Pain Headache Rep. 22, 67 (2018). An up-to-date review of animal models of PTH.

    PubMed  Google Scholar 

  146. Andreou A. P., Oshinsky M. L. Animal models of migraine. Ashina M., Geppetti P., editors. Pathophysiology of Headaches From Molecule to Man. Switzerland: Springer International Publishing. pp. 31–66 (2015).

  147. Stovner, L. J., Schrader, H., Mickeviciene, D., Surkiene, D. & Sand, T. Headache after concussion. Eur. J. Neurol. 16, 112–120 (2009).

    CAS  PubMed  Google Scholar 

  148. Olesen, J. et al. The economic cost of brain disorders in Europe. Eur. J. Neurol. 19, 155–162 (2012).

    CAS  PubMed  Google Scholar 

  149. Bhattacharjee, Y. Neuroscience. Shell shock revisited: solving the puzzle of blast trauma. Science. 319, 406–408 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank PhD student T. P. Do, University of Copenhagen, for drawing a preliminary sketch of figure 2. No compensation was received for this contribution.

Authors contributions

All authors researched data for the article, discussed the content, wrote the text, and reviewed and edited the manuscript before submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Dodick.

Ethics declarations

Competing interests

F.M.A. is a lecturer or scientific adviser for Novartis and Teva. M.A. is a consultant, speaker or scientific adviser for Alder, Allergan, Amgen, Eli Lilly, Novartis and Teva. H.W.S. is a lecturer for Novartis. D.W.D. reports the following competing interests: personal fees from Alder, Allergan, Amgen, Association of Translational Medicine, Autonomic Technologies, Aural Analytics, Biohaven, Charleston Laboratories, Daniel Edelman, Axsome, Dr Reddy’s Laboratories/Promius, Electrocore, Eli Lilly, eNeura, Foresite Capital, Impel, Ipsen, Neurolief, Nocira, Novartis, Oppenheimer, PSL Group Services, Satsuma, Sun Pharma (India), Supernus, Teva, Theranica, University of British Columbia, University Health Network, Vedanta, WL Gore, XoC, Zosano and ZP Opco; CME fees or royalty payments from Academy for Continued Healthcare Learning, Cambridge University Press, Chameleon, Global Access Meetings, Global Life Sciences, Global Scientific Communications, Haymarket, Healthlogix, Medicom Worldwide, Medlogix Communications, Mednet, Miller Medical, Oxford University Press, PeerView, Universal Meeting Management, UpToDate (Elsevier), WebMD Health/Medscape and Wolters Kluwer Health; stock options with Aural Analytics, Epien, GBS/Nocira, Healint, King-Devick Technologies, Matterhorn/Ontologics, Second Opinon/Mobile Health and Theranica; consulting without fee for Aural Analytics, Epien, Healint and Second Opinion/Mobile Health; position on the board of directors for Epien, King-Devick Technologies and Matterhorn/Ontologics; patent 17189376.1-1466: vTitle: Botulinum Toxin Dosage Regimen for Chronic Migraine Prophylaxis without fee; research funding from American Migraine Foundation, Henry Jackson Foundation, Patient-Centered Outcomes Research Institute and US Department of Defence; professional society fees or reimbursement for travel from American Academy of Neurology, American Brain Foundation, American Headache Society, American Migraine Foundation, Canadian Headache Society and International Headache Society; and use agreement through employer for Myndshft. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

Articles discussed in this Review were identified by PubMed searches performed between 1 May 2018 and 1 September 2018 with no restrictions on the date of publication. The search terms used were ‘post-traumatic headache’, ‘PTH’, ‘concussion’, ‘traumatic brain injury’, ‘pathophysiology’ and ‘imaging’. The reference lists of identified papers were searched for further relevant articles, and related citations for identified papers as listed on the PubMed site were evaluated. The final references included were chosen based on the relevance to the scope of this Review.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ashina, H., Porreca, F., Anderson, T. et al. Post-traumatic headache: epidemiology and pathophysiological insights. Nat Rev Neurol 15, 607–617 (2019). https://doi.org/10.1038/s41582-019-0243-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-019-0243-8

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing