Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chronic inflammation in multiple sclerosis — seeing what was always there

Abstract

Activation of innate immune cells and other compartmentalized inflammatory cells in the brains and spinal cords of people with relapsing–remitting multiple sclerosis (MS) and progressive MS has been well described histopathologically. However, conventional clinical MRI is largely insensitive to this inflammatory activity. The past two decades have seen the introduction of quantitative dynamic MRI scanning with contrast agents that are sensitive to the reduction in blood–brain barrier integrity associated with inflammation and to the trafficking of inflammatory myeloid cells. New MRI imaging sequences provide improved contrast for better detection of grey matter lesions. Quantitative lesion volume measures and magnetic resonance susceptibility imaging are sensitive to the activity of macrophages in the rims of white matter lesions. PET and magnetic resonance spectroscopy methods can also be used to detect contributions from innate immune activation in the brain and spinal cord. Some of these advanced research imaging methods for visualization of chronic inflammation are practical for relatively routine clinical applications. Observations made with the use of these techniques suggest ways of stratifying patients with MS to improve their care. The imaging methods also provide new tools to support the development of therapies for chronic inflammation in MS.

Key points

  • Advanced MRI and PET methods enable visualization of features related to chronic inflammation in progressive and relapsing–remitting forms of multiple sclerosis (MS).

  • Quantitative analysis of uptake of gadolinium contrast agent and ultra-small paramagnetic particles provide in vivo evidence of chronic, low-grade inflammation in people with progressive or relapsing–remitting MS (RRMS).

  • Lesions associated with activated macrophages/microglia (slowly expanding T2 hyperintense lesions and lesions with high susceptibility-weighted MRI signals at their rims) are more common in progressive MS than in RRMS.

  • Persistent focal leptomeningeal inflammation, detectable with gadolinium contrast-enhanced T2 fluid attenuation inversion recovery MRI in many people with MS (particularly progressive MS), is associated with cortical lesions and accelerated cortical atrophy.

  • Translocator protein PET can detect increased innate immune activation in brains of people with MS; typically, activation is greater in secondary progressive MS than in RRMS.

  • Indirect evidence suggests that magnetic resonance spectroscopy measures of myo-inositol and some recently introduced PET measures can reflect contributions of astrocyte activation to brain innate immune responses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Leptomeningeal inflammation in multiple sclerosis.
Fig. 2: Macrophages in a mixed active–inactive multiple sclerosis lesion.
Fig. 3: A slowly expanding multiple sclerosis lesion.
Fig. 4: PET imaging of microglial activation in secondary progressive multiple sclerosis.

References

  1. 1.

    Baecher-Allan, C., Kaskow, B. J. & Weiner, H. L. Multiple sclerosis: mechanisms and immunotherapy. Neuron 97, 742–768 (2018).

    CAS  PubMed  Google Scholar 

  2. 2.

    Young, I. R. et al. Nuclear magnetic resonance imaging of the brain in multiple sclerosis. Lancet 2, 1063–1066 (1981).

    CAS  PubMed  Google Scholar 

  3. 3.

    Miller, D. H., Grossman, R. I., Reingold, S. C. & McFarland, H. F. The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 121 (Pt 1), 3–24 (1998).

    PubMed  Google Scholar 

  4. 4.

    Igra, M. S., Paling, D., Wattjes, M. P., Connolly, D. J. A. & Hoggard, N. Multiple sclerosis update: use of MRI for early diagnosis, disease monitoring and assessment of treatment related complications. Br. J. Radiol. 90, 20160721 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Rio, J., Comabella, M. & Montalban, X. Predicting responders to therapies for multiple sclerosis. Nat. Rev. Neurol. 5, 553–560 (2009).

    CAS  PubMed  Google Scholar 

  6. 6.

    Bermel, R. A., Fisher, E. & Cohen, J. A. The use of MR imaging as an outcome measure in multiple sclerosis clinical trials. Neuroimaging Clin. N. Am. 18, 687–701.xi (2008).

    PubMed  Google Scholar 

  7. 7.

    Mayo, L., Quintana, F. J. & Weiner, H. L. The innate immune system in demyelinating disease. Immunol. Rev. 248, 170–187 (2012).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E. & Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 14, 164–174 (2004).

    PubMed  Google Scholar 

  9. 9.

    Howell, O. W. et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134, 2755–2771 (2011).

    PubMed  Google Scholar 

  10. 10.

    Machado-Santos, J. et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 141, 2066–2082 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Campbell, G. R., Worrall, J. T. & Mahad, D. J. The central role of mitochondria in axonal degeneration in multiple sclerosis. Mult. Scler. 20, 1806–1813 (2014).

    CAS  PubMed  Google Scholar 

  12. 12.

    Mahad, D. H., Trapp, B. D. & Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 14, 183–193 (2015).

    CAS  PubMed  Google Scholar 

  13. 13.

    Bruck, W. Inflammatory demyelination is not central to the pathogenesis of multiple sclerosis. J. Neurol. 252 (Suppl. 5), v10–v15 (2005).

    PubMed  Google Scholar 

  14. 14.

    Lassmann, H., van Horssen, J. & Mahad, D. Progressive multiple sclerosis: pathology and pathogenesis. Nat. Rev. Neurol. 8, 647–656 (2012).

    CAS  PubMed  Google Scholar 

  15. 15.

    Matthews, P. M. et al. A practical review of the neuropathology and neuroimaging of multiple sclerosis. Pract. Neurol. 16, 279–287 (2016).

    PubMed  Google Scholar 

  16. 16.

    Kutzelnigg, A. & Lassmann, H. Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handb. Clin. Neurol. 122, 15–58 (2014).

    PubMed  Google Scholar 

  17. 17.

    Stadelmann, C. Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications. Curr. Opin. Neurol. 24, 224–229 (2011).

    CAS  PubMed  Google Scholar 

  18. 18.

    Peterson, J. W., Bo, L., Mork, S., Chang, A. & Trapp, B. D. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50, 389–400 (2001).

    CAS  PubMed  Google Scholar 

  19. 19.

    Lucchinetti, C. F. et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365, 2188–2197 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Kutzelnigg, A. & Lassmann, H. Cortical lesions and brain atrophy in MS. J. Neurol. Sci. 233, 55–59 (2005).

    PubMed  Google Scholar 

  21. 21.

    Trapp, B. D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).

    CAS  PubMed  Google Scholar 

  22. 22.

    Cifelli, A. et al. Thalamic neurodegeneration in multiple sclerosis. Ann. Neurol. 52, 650–653 (2002).

    PubMed  Google Scholar 

  23. 23.

    Evangelou, N. et al. Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain 123 (Pt 9), 1845–1849 (2000).

    PubMed  Google Scholar 

  24. 24.

    Tietz, S. & Engelhardt, B. Brain barriers: crosstalk between complex tight junctions and adherens junctions. J. Cell Biol. 209, 493–506 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hawley, R. J. et al. Neurochemical correlates of sympathetic activation during severe alcohol withdrawal. Alcohol Clin. Exp. Res. 18, 1312–1316 (1994).

    CAS  PubMed  Google Scholar 

  26. 26.

    Meyer, C., Martin-Blondel, G. & Liblau, R. S. Endothelial cells and lymphatics at the interface between the immune and central nervous systems: implications for multiple sclerosis. Curr. Opin. Neurol. 30, 222–230 (2017).

    PubMed  Google Scholar 

  27. 27.

    Man, S., Ubogu, E. E. & Ransohoff, R. M. Inflammatory cell migration into the central nervous system: a few new twists on an old tale. Brain Pathol. 17, 243–250 (2007).

    CAS  PubMed  Google Scholar 

  28. 28.

    Vercellino, M. et al. Involvement of the choroid plexus in multiple sclerosis autoimmune inflammation: a neuropathological study. J. Neuroimmunol. 199, 133–141 (2008).

    CAS  PubMed  Google Scholar 

  29. 29.

    McDonnell, G. V., McMillan, S. A., Douglas, J. P., Droogan, A. G. & Hawkins, S. A. Serum soluble adhesion molecules in multiple sclerosis: raised sVCAM-1, sICAM-1 and sE-selectin in primary progressive disease. J. Neurol. 246, 87–92 (1999).

    CAS  PubMed  Google Scholar 

  30. 30.

    Kirk, J., Plumb, J., Mirakhur, M. & McQuaid, S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J. Pathol. 201, 319–327 (2003).

    PubMed  Google Scholar 

  31. 31.

    Alvarez, J. I., Cayrol, R. & Prat, A. Disruption of central nervous system barriers in multiple sclerosis. Biochim. Biophys. Acta 1812, 252–264 (2011).

    CAS  PubMed  Google Scholar 

  32. 32.

    Leech, S., Kirk, J., Plumb, J. & McQuaid, S. Persistent endothelial abnormalities and blood-brain barrier leak in primary and secondary progressive multiple sclerosis. Neuropathol. Appl. Neurobiol. 33, 86–98 (2007).

    CAS  PubMed  Google Scholar 

  33. 33.

    Kwon, E. E. & Prineas, J. W. Blood-brain barrier abnormalities in longstanding multiple sclerosis lesions. An immunohistochemical study. J. Neuropathol. Exp. Neurol. 53, 625–636 (1994).

    CAS  PubMed  Google Scholar 

  34. 34.

    Lee, N. J. et al. Spatiotemporal distribution of fibrinogen in marmoset and human inflammatory demyelination. Brain 141, 1637–1649 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Louveau, A. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21, 1380–1391 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Rasmussen, M. K., Mestre, H. & Nedergaard, M. The glymphatic pathway in neurological disorders. Lancet Neurol. 17, 1016–1024 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Simon, M. J. & Iliff, J. J. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim. Biophys. Acta 1862, 442–451 (2016).

    CAS  PubMed  Google Scholar 

  39. 39.

    Wicken, C., Nguyen, J., Karna, R. & Bhargava, P. Leptomeningeal inflammation in multiple sclerosis: insights from animal and human studies. Mult. Scler. Relat. Disord. 26, 173–182 (2018).

    PubMed  Google Scholar 

  40. 40.

    Magliozzi, R., Columba-Cabezas, S., Serafini, B. & Aloisi, F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol. 148, 11–23 (2004).

    CAS  PubMed  Google Scholar 

  41. 41.

    Sellebjerg, F. et al. Increased cerebrospinal fluid concentrations of the chemokine CXCL13 in active MS. Neurology 73, 2003–2010 (2009).

    CAS  PubMed  Google Scholar 

  42. 42.

    Festa, E. D. et al. Serum levels of CXCL13 are elevated in active multiple sclerosis. Mult. Scler. 15, 1271–1279 (2009).

    CAS  PubMed  Google Scholar 

  43. 43.

    Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).

    PubMed  Google Scholar 

  44. 44.

    Carassiti, D. et al. Neuronal loss, demyelination and volume change in the multiple sclerosis neocortex. Neuropathol. Appl. Neurobiol. 44, 377–390 (2018).

    CAS  PubMed  Google Scholar 

  45. 45.

    Wegner, C. & Matthews, P. M. A new view of the cortex, new insights into multiple sclerosis. Brain 126, 1719–1721 (2003).

    CAS  PubMed  Google Scholar 

  46. 46.

    Wegner, C., Esiri, M. M., Chance, S. A., Palace, J. & Matthews, P. M. Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67, 960–967 (2006).

    CAS  PubMed  Google Scholar 

  47. 47.

    Nylander, A. & Hafler, D. A. Multiple sclerosis. J. Clin. Invest. 122, 1180–1188 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Correale, J., Gaitan, M. I., Ysrraelit, M. C. & Fiol, M. P. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain 140, 527–546 (2017).

    PubMed  Google Scholar 

  49. 49.

    Smyth, L. J., Kirby, J. A. & Cunningham, A. C. Role of the mucosal integrin alpha(E)(CD103)beta(7) in tissue-restricted cytotoxicity. Clin. Exp. Immunol. 149, 162–170 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Kuhlmann, T. et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24 (2017).

    CAS  PubMed  Google Scholar 

  51. 51.

    Stangel, M., Kuhlmann, T., Matthews, P. M. & Kilpatrick, T. J. Achievements and obstacles of remyelinating therapies in multiple sclerosis. Nat. Rev. Neurol. 13, 742–754 (2017).

    PubMed  Google Scholar 

  52. 52.

    Frischer, J. M. et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132, 1175–1189 (2009).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Reynolds, R. et al. The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathol. 122, 155–170 (2011).

    PubMed  Google Scholar 

  54. 54.

    Hametner, S. et al. Iron and neurodegeneration in the multiple sclerosis brain. Ann. Neurol. 74, 848–861 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Zrzavy, T. et al. Loss of 'homeostatic' microglia and patterns of their activation in active multiple sclerosis. Brain 140, 1900–1913 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Savarin, C. et al. Astrocyte response to IFN-gamma limits IL-6-mediated microglia activation and progressive autoimmune encephalomyelitis. J. Neuroinflammation 12, 79 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Metz, I. et al. Pathologic heterogeneity persists in early active multiple sclerosis lesions. Ann. Neurol. 75, 728–738 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Frischer, J. M. et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 78, 710–721 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Luchetti, S. et al. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 135, 511–528 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007).

    CAS  PubMed  Google Scholar 

  62. 62.

    van der Valk, P. & Amor, S. Preactive lesions in multiple sclerosis. Curr. Opin. Neurol. 22, 207–213 (2009).

    PubMed  Google Scholar 

  63. 63.

    Ingram, G. et al. Complement activation in multiple sclerosis plaques: an immunohistochemical analysis. Acta Neuropathol. Commun. 2, 53 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Singh, S. et al. Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol. 125, 595–608 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Prineas, J. W. et al. Immunopathology of secondary-progressive multiple sclerosis. Ann. Neurol. 50, 646–657 (2001).

    CAS  PubMed  Google Scholar 

  66. 66.

    Costantini, E., D'Angelo, C. & Reale, M. The role of immunosenescence in neurodegenerative diseases. Mediators Inflamm. 2018, 6039171 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Khademi, M. et al. Intense inflammation and nerve damage in early multiple sclerosis subsides at older age: a reflection by cerebrospinal fluid biomarkers. PLOS ONE 8, e63172 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Djikic, J. et al. Age-associated changes in rat immune system: lessons learned from experimental autoimmune encephalomyelitis. Exp. Gerontol. 58, 179–197 (2014).

    CAS  PubMed  Google Scholar 

  69. 69.

    Zrzavy, T. et al. Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathol. 28, 791–805 (2018).

    CAS  PubMed  Google Scholar 

  70. 70.

    Bar-Or, A. & Antel, J. P. Central nervous system inflammation across the age span. Curr. Opin. Neurol. 29, 381–387 (2016).

    CAS  PubMed  Google Scholar 

  71. 71.

    Mundt, S. et al. Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Sci. Immunol. 4, eaau8380 (2019).

    CAS  PubMed  Google Scholar 

  72. 72.

    Duszczyszyn, D. A. et al. Thymic involution and proliferative T-cell responses in multiple sclerosis. J. Neuroimmunol. 221, 73–80 (2010).

    CAS  PubMed  Google Scholar 

  73. 73.

    Raz, L., Knoefel, J. & Bhaskar, K. The neuropathology and cerebrovascular mechanisms of dementia. J. Cereb. Blood Flow Metab. 36, 172–186 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Geraldes, R., Esiri, M. M., DeLuca, G. C. & Palace, J. Age-related small vessel disease: a potential contributor to neurodegeneration in multiple sclerosis. Brain Pathol. 27, 707–722 (2017).

    CAS  PubMed  Google Scholar 

  75. 75.

    Perry, V. H., Cunningham, C. & Holmes, C. Systemic infections and inflammation affect chronic neurodegeneration. Nat. Rev. Immunol. 7, 161–167 (2007).

    CAS  PubMed  Google Scholar 

  76. 76.

    Conde, J. R. & Streit, W. J. Microglia in the aging brain. J. Neuropathol. Exp. Neurol. 65, 199–203 (2006).

    PubMed  Google Scholar 

  77. 77.

    Ohrfelt, A. et al. Soluble TREM-2 in cerebrospinal fluid from patients with multiple sclerosis treated with natalizumab or mitoxantrone. Mult. Scler. 22, 1587–1595 (2016).

    PubMed  Google Scholar 

  78. 78.

    Zrzavy, T. et al. Pro-inflammatory activation of microglia in the brain of patients with sepsis. Neuropathol. Appl. Neurobiol. 45, 278–290 (2019).

    CAS  PubMed  Google Scholar 

  79. 79.

    Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Rao, V. T. et al. MicroRNA expression patterns in human astrocytes in relation to anatomical location and age. J. Neuropathol. Exp. Neurol. 75, 156–166 (2016).

    CAS  PubMed  Google Scholar 

  81. 81.

    Thompson, A. J. et al. Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann. Neurol. 29, 53–62 (1991). A highly important, pioneering study that still deserves reading for its clear demonstration that substantial inflammatory activity can be found in patients with chronic MS.

    CAS  PubMed  Google Scholar 

  82. 82.

    Sormani, M. P. et al. Clinical trials of multiple sclerosis monitored with enhanced MRI: new sample size calculations based on large data sets. J. Neurol. Neurosurg. Psychiatry 70, 494–499 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Geurts, J. J. et al. Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236, 254–260 (2005).

    PubMed  Google Scholar 

  84. 84.

    Kober, T. et al. MP2RAGE multiple sclerosis magnetic resonance imaging at 3 T. Invest. Radiol. 47, 346–352 (2012).

    PubMed  Google Scholar 

  85. 85.

    Harel, A. et al. Phase-sensitive inversion-recovery MRI improves longitudinal cortical lesion detection in progressive MS. PLOS ONE 11, e0152180 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Tofts, P. S. & Kermode, A. G. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn. Reson. Med. 17, 357–367 (1991). An elegant framework for the quantitative interpretation of dynamic gadolinium contrast MRI that has informed all efforts to assess chronic blood–brain barrier breakdown with MRI that have come since.

    CAS  PubMed  Google Scholar 

  87. 87.

    Soon, D., Tozer, D., Altmann, D., Tofts, P. & Miller, D. Quantification of subtle blood-brain barrier disruption in non-enhancing lesions in multiple sclerosis: a study of disease and lesion subtypes. Mult. Scler. 13, 884–894 (2007).

    CAS  PubMed  Google Scholar 

  88. 88.

    Cramer, S. P., Simonsen, H., Frederiksen, J. L., Rostrup, E. & Larsson, H. B. Abnormal blood-brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. Neuroimage Clin. 4, 182–189 (2014).

    CAS  PubMed  Google Scholar 

  89. 89.

    Pasquini, L. et al. Gadolinium-based contrast agent-related toxicities. CNS Drugs 32, 229–240 (2018).

    CAS  PubMed  Google Scholar 

  90. 90.

    Marti-Bonmati, L. & Marti-Bonmati, E. Retention of gadolinium compounds used in magnetic resonance imaging: a critical review and the recommendations of regulatory agencies. Radiologia 59, 469–477 (2017).

    CAS  PubMed  Google Scholar 

  91. 91.

    Elliott, C. et al. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult. Scler. https://doi.org/10.1177/1352458518814117 (2018). This article describes convincing evidence for the slow expansion of some chronic T2 hyperintense lesions and makes the powerful inference that this relates to neuropathologically chronic active lesions.

  92. 92.

    Truyen, L. et al. Accumulation of hypointense lesions ("black holes") on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 47, 1469–1476 (1996).

    CAS  PubMed  Google Scholar 

  93. 93.

    Harrison, D. M. et al. Lesion heterogeneity on high-field susceptibility MRI is associated with multiple sclerosis severity. AJNR Am. J. Neuroradiol. 37, 1447–1453 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Dal-Bianco, A. et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol. 133, 25–42 (2017). Extending the work of Elliott et al. (2018), this report provides additional evidence that slowly expanding MRI lesions represent the neuropathologically chronic active plaques by demonstrating that the rims of these MRI lesions show evidence for pathological iron accumulation, corresponding to iron-rich macrophages/microglia in these plaques.

    CAS  PubMed  Google Scholar 

  95. 95.

    Absinta, M. et al. Identification of chronic active multiple sclerosis lesions on 3T MRI. AJNR Am. J. Neuroradiol. 39, 1233–1238 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Hametner, S. et al. The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation — a biochemical and histological validation study. Neuroimage 179, 117–133 (2018).

    CAS  PubMed  Google Scholar 

  97. 97.

    Corot, C. et al. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest. Radiol. 39, 619–625 (2004).

    CAS  PubMed  Google Scholar 

  98. 98.

    Tourdias, T. et al. Assessment of disease activity in multiple sclerosis phenotypes with combined gadolinium- and superparamagnetic iron oxide-enhanced MR imaging. Radiology 264, 225–233 (2012). A pioneering demonstration of the potential utility of superparamagnetic iron oxide particle contrast for the assessment of cell trafficking into inflammatory lesions in MS. This remains the single robust approach for direct assessment of inflammatory cell trafficking into the brains of humans.

    PubMed  Google Scholar 

  99. 99.

    Vellinga, M. M. et al. Use of ultrasmall superparamagnetic particles of iron oxide (USPIO)-enhanced MRI to demonstrate diffuse inflammation in the normal-appearing white matter (NAWM) of multiple sclerosis (MS) patients: an exploratory study. J. Magn. Reson. Imaging 29, 774–779 (2009).

    PubMed  Google Scholar 

  100. 100.

    Neuwelt, A. et al. Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. AJR Am. J. Roentgenol. 204, W302–W313 (2015).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Lu, M., Cohen, M. H., Rieves, D. & Pazdur, R. FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am. J. Hematol. 85, 315–319 (2010).

    CAS  PubMed  Google Scholar 

  102. 102.

    Bailie, G. R. Comparison of rates of reported adverse events associated with i.v. iron products in the United States. Am. J. Health Syst. Pharm. 69, 310–320 (2012).

    CAS  PubMed  Google Scholar 

  103. 103.

    Daldrup-Link, H. E. Ten things you might not know about iron oxide nanoparticles. Radiology 284, 616–629 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Zarghami, N. et al. Optimization of molecularly targeted MRI in the brain: empirical comparison of sequences and particles. Int. J. Nanomedicine 13, 4345–4359 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Geurts, J. J. et al. Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology. AJNR Am. J. Neuroradiol. 26, 572–577 (2005). An important study validating the MRI detection of cortical lesions using postmortem brains. Conceptually even more important, however, was the demonstration of limited sensitivity to these lesions, suggesting that in vivo imaging may capture only the ‘tip of the iceberg’ of cortical demyelination with MS.

    PubMed  Google Scholar 

  106. 106.

    Geurts, J. J. et al. Does high-field MR imaging improve cortical lesion detection in multiple sclerosis? J. Neurol. 255, 183–191 (2008).

    PubMed  Google Scholar 

  107. 107.

    Wiggermann, V., Hernandez-Torres, E., Traboulsee, A., Li, D. K. & Rauscher, A. FLAIR2: a combination of FLAIR and T2 for improved MS lesion detection. AJNR Am. J. Neuroradiol. 37, 259–265 (2016).

    CAS  PubMed  Google Scholar 

  108. 108.

    Kilsdonk, I. D. et al. Multicontrast MR imaging at 7T in multiple sclerosis: highest lesion detection in cortical gray matter with 3D-FLAIR. AJNR Am. J. Neuroradiol. 34, 791–796 (2013).

    CAS  PubMed  Google Scholar 

  109. 109.

    Calabrese, M. et al. Regional distribution and evolution of gray matter damage in different populations of multiple sclerosis patients. PLOS ONE 10, e0135428 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Calabrese, M. et al. Imaging distribution and frequency of cortical lesions in patients with multiple sclerosis. Neurology 75, 1234–1240 (2010).

    CAS  PubMed  Google Scholar 

  111. 111.

    Puthenparampil, M. et al. Cortical relapses in multiple sclerosis. Mult. Scler. 22, 1184–1191 (2016).

    PubMed  Google Scholar 

  112. 112.

    Calabrese, M. et al. Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Arch. Neurol. 64, 1416–1422 (2007).

    PubMed  Google Scholar 

  113. 113.

    Scalfari, A. et al. The cortical damage, early relapses, and onset of the progressive phase in multiple sclerosis. Neurology 90, e2107–e2118 (2018).

    PubMed  Google Scholar 

  114. 114.

    Papadopoulou, A. et al. Contribution of cortical and white matter lesions to cognitive impairment in multiple sclerosis. Mult. Scler. 19, 1290–1296 (2013).

    PubMed  Google Scholar 

  115. 115.

    Calabrese, M. et al. Morphology and evolution of cortical lesions in multiple sclerosis. A longitudinal MRI study. Neuroimage 42, 1324–1328 (2008). An important characterization of cortical lesions in vivo with demonstration of the frequency of their appearance, emphasizing that cortical lesions are associated with all stages of MS.

    PubMed  Google Scholar 

  116. 116.

    Calabrese, M. et al. Cortical lesions in primary progressive multiple sclerosis: a 2-year longitudinal MR study. Neurology 72, 1330–1336 (2009).

    CAS  PubMed  Google Scholar 

  117. 117.

    Zurawski, J., Lassmann, H. & Bakshi, R. Use of magnetic resonance imaging to visualize leptomeningeal inflammation in patients with multiple sclerosis: a review. JAMA Neurol. 74, 100–109 (2017).

    PubMed  Google Scholar 

  118. 118.

    Bergsland, N. et al. Leptomeningeal contrast enhancement is related to focal cortical thinning in relapsing-remitting multiple sclerosis: a cross-sectional MRI study. AJNR Am. J. Neuroradiol. 40, 620–625 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Absinta, M. et al. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 85, 18–28 (2015). This important paper both introduces the concept of leptomeningeal enhancement for assessment of chronic inflammation in MS and validates it with an autopsy case study.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Zivadinov, R. et al. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: a retrospective, pilot, observational longitudinal study. Mult. Scler. 23, 1336–1345 (2017).

    PubMed  Google Scholar 

  121. 121.

    Zivadinov, R. et al. Evaluation of leptomeningeal contrast enhancement using pre- and postcontrast subtraction 3D-FLAIR imaging in multiple sclerosis. AJNR Am. J. Neuroradiol. 39, 642–647 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Magliozzi, R., Reynolds, R. & Calabrese, M. MRI of cortical lesions and its use in studying their role in MS pathogenesis and disease course. Brain Pathol. 28, 735–742 (2018).

    CAS  PubMed  Google Scholar 

  123. 123.

    Owen, D. R. et al. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J. Cereb. Blood Flow Metab. 37, 2679–2690 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Cosenza-Nashat, M. et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol. Appl. Neurobiol. 35, 306–328 (2009).

    CAS  PubMed  Google Scholar 

  125. 125.

    Vowinckel, E. et al. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neurosci. Res. 50, 345–353 (1997).

    CAS  PubMed  Google Scholar 

  126. 126.

    Banati, R. B. et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123 (Pt 11), 2321–2337 (2000). While not the first report, this is the most influential early TSPO PET report. It includes a first effort to validate the signal using postmortem autoradiography and highlights both the heterogeneity in tracer uptake across lesions and the involvement of grey matter. While the significance of all of the observations was not fully appreciated at the time, it describes the full range of phenomena that have been explored since.

    PubMed  Google Scholar 

  127. 127.

    Datta, G. et al. Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis. Brain 140, 2927–2938 (2017).

    PubMed  Google Scholar 

  128. 128.

    Datta, G. et al. 11C-PBR28 and 18F-PBR111 detect white matter inflammatory heterogeneity in multiple sclerosis. J. Nucl. Med. 58, 1477–1482 (2017). This paper represents the first effort to consolidate observations in the TSPO PET ‘subfield’ by showing the quantitative correspondence between observations conducted over similar patient populations using the same analytical methodology. It also describes lesion heterogeneity in detail for the first time, proposing correspondences with neuropathological classifications of potential clinical significance.

    CAS  PubMed  Google Scholar 

  129. 129.

    Rissanen, E. et al. In vivo detection of diffuse inflammation in secondary progressive multiple sclerosis using PET imaging and the radioligand 11C-PK11195. J. Nucl. Med. 55, 939–944 (2014).

    CAS  PubMed  Google Scholar 

  130. 130.

    Colasanti, A. et al. In vivo assessment of brain white matter inflammation in multiple sclerosis with 18F-PBR111 PET. J. Nucl. Med. 55, 1112–1118 (2014).

    CAS  PubMed  Google Scholar 

  131. 131.

    Herranz, E. et al. Neuroinflammatory component of gray matter pathology in multiple sclerosis. Ann. Neurol. 80, 776–790 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Betlazar, C., Harrison-Brown, M., Middleton, R. J., Banati, R. & Liu, G. J. Cellular sources and regional variations in the expression of the neuroinflammatory marker translocator protein (TSPO) in the normal brain. Int. J. Mol. Sci. 19, E2707 (2018).

    PubMed  Google Scholar 

  133. 133.

    Horti, A. G. et al. PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc. Natl Acad. Sci. USA 116, 1686–1691 (2019).

    CAS  PubMed  Google Scholar 

  134. 134.

    Kolb, H. et al. Preclinical evaluation and non-human primate receptor occupancy study of 18F-JNJ-64413739, a novel PET radioligand for P2X7 receptors. J. Nucl. Med. https://doi.org/10.2967/jnumed.118.212696 (2019).

  135. 135.

    Kim, M. J. et al. Evaluation of two potent and selective PET radioligands to image COX-1 and COX-2 in rhesus monkeys. J. Nucl. Med. 59, 1907–1912 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Spinelli, F., Mu, L. & Ametamey, S. M. Radioligands for positron emission tomography imaging of cannabinoid type 2 receptor. J. Labelled Comp. Radiopharm. 61, 299–308 (2018).

    CAS  PubMed  Google Scholar 

  137. 137.

    Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Takata, K. et al. 11C-acetate PET imaging in patients with multiple sclerosis. PLOS ONE 9, e111598 (2014). An underappreciated paper that provides an interesting proof-of-principle for imaging astrocyte activation in neurodegenerative disease.

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Engler, H. et al. Imaging astrocytosis with PET in Creutzfeldt-Jakob disease: case report with histopathological findings. Int. J. Clin. Exp. Med. 5, 201–207 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Carter, S. F. et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J. Nucl. Med. 53, 37–46 (2012).

    CAS  PubMed  Google Scholar 

  141. 141.

    Tyacke, R. J. et al. Evaluation of 11C-BU99008, a PET ligand for the imidazoline2 binding site in human brain. J. Nucl. Med. 59, 1597–1602 (2018).

    CAS  PubMed  Google Scholar 

  142. 142.

    Chang, L., Munsaka, S. M., Kraft-Terry, S. & Ernst, T. Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. J. Neuroimmune Pharmacol. 8, 576–593 (2013).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Vrenken, H. et al. MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn. Reson. Med. 53, 256–266 (2005).

    CAS  PubMed  Google Scholar 

  144. 144.

    Bitsch, A. et al. Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am. J. Neuroradiol. 20, 1619–1627 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Datta, G. et al. Translocator positron-emission tomography and magnetic resonance spectroscopic imaging of brain glial cell activation in multiple sclerosis. Mult. Scler. 23, 1469–1478 (2017).

    PubMed  Google Scholar 

  146. 146.

    Rae, C. D. A guide to the metabolic pathways and function of metabolites observed in human brain 1H magnetic resonance spectra. Neurochem. Res. 39, 1–36 (2014).

    CAS  PubMed  Google Scholar 

  147. 147.

    Wattjes, M. P., Steenwijk, M. D. & Stangel, M. MRI in the diagnosis and monitoring of multiple sclerosis: an update. Clin. Neuroradiol. 25 (Suppl. 2), 157–165 (2015).

    PubMed  Google Scholar 

  148. 148.

    Vagberg, M. et al. Guidelines for the use of magnetic resonance imaging in diagnosing and monitoring the treatment of multiple sclerosis: recommendations of the Swedish Multiple Sclerosis Association and the Swedish Neuroradiological Society. Acta Neurol. Scand. 135, 17–24 (2017).

    CAS  PubMed  Google Scholar 

  149. 149.

    Suthiphosuwan, S., Kim, D., Bharatha, A. & Oh, J. Imaging markers for monitoring disease activity in multiple sclerosis. Curr. Treat. Options Neurol. 19, 18 (2017).

    PubMed  Google Scholar 

  150. 150.

    Oreja-Guevara, C. & Paradig, M. S. G. Overview of magnetic resonance imaging for management of relapsing-remitting multiple sclerosis in everyday practice. Eur. J. Neurol. 22 (Suppl. 2), 22–27 (2015).

    PubMed  Google Scholar 

  151. 151.

    Magliozzi, R. et al. A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 68, 477–493 (2010).

    CAS  PubMed  Google Scholar 

  152. 152.

    Sormani, M. P. & Pardini, M. Assessing repair in multiple sclerosis: outcomes for phase II clinical trials. Neurotherapeutics 14, 924–933 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Ontaneda, D. & Fox, R. J. Imaging as an outcome measure in multiple sclerosis. Neurotherapeutics 14, 24–34 (2017).

    CAS  PubMed  Google Scholar 

  154. 154.

    Bodini, B., Louapre, C. & Stankoff, B. Advanced imaging tools to investigate multiple sclerosis pathology. Presse Med. 44, e159–e167 (2015).

    PubMed  Google Scholar 

  155. 155.

    Filippi, M. MRI measures of neurodegeneration in multiple sclerosis: implications for disability, disease monitoring, and treatment. J. Neurol. 262, 1–6 (2015).

    CAS  PubMed  Google Scholar 

  156. 156.

    Tur, C. & Montalban, X. Progressive MS trials: lessons learned. Mult. Scler. 23, 1583–1592 (2017).

    PubMed  Google Scholar 

  157. 157.

    Ontaneda, D., Fox, R. J. & Chataway, J. Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. Lancet Neurol. 14, 208–223 (2015).

    PubMed  PubMed Central  Google Scholar 

  158. 158.

    Ciotti, J. R. & Cross, A. H. Disease-modifying treatment in progressive multiple sclerosis. Curr. Treat. Options Neurol. 20, 12 (2018).

    PubMed  Google Scholar 

  159. 159.

    Alam, M. M., Lee, J. & Lee, S. Y. Recent progress in the development of TSPO PET ligands for neuroinflammation imaging in neurological diseases. Nucl. Med. Mol. Imaging 51, 283–296 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Owen, D. R. et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J. Cereb. Blood Flow Metab. 32, 1–5 (2012).

    CAS  PubMed  Google Scholar 

  161. 161.

    Kobayashi, M. et al. 11C-DPA-713 has much greater specific binding to translocator protein 18 kDa (TSPO) in human brain than 11C-(R)-PK11195. J. Cereb. Blood Flow Metab. 38, 393–403 (2018).

    CAS  PubMed  Google Scholar 

  162. 162.

    Owen, D. R. et al. Determination of [11C]PBR28 binding potential in vivo: a first human TSPO blocking study. J. Cereb. Blood Flow Metab. 34, 989–994 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Feeney, C. et al. Kinetic analysis of the translocator protein positron emission tomography ligand [18F]GE-180 in the human brain. Eur. J. Nucl. Med. Mol. Imaging 43, 2201–2210 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Vomacka, L. et al. TSPO imaging using the novel PET ligand [18F]GE-180: quantification approaches in patients with multiple sclerosis. EJNMMI Res. 7, 89 (2017).

    PubMed  PubMed Central  Google Scholar 

  165. 165.

    Unterrainer, M. et al. TSPO PET with [18F]GE-180 sensitively detects focal neuroinflammation in patients with relapsing-remitting multiple sclerosis. Eur. J. Nucl. Med. Mol. Imaging 45, 1423–1431 (2018).

    PubMed  Google Scholar 

  166. 166.

    Hagens, M. H. J. et al. In vivo assessment of neuroinflammation in progressive multiple sclerosis: a proof of concept study with [18F]DPA714 PET. J. Neuroinflammation 15, 314 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.M.M. acknowledges the early input of ideas from L. Steinman and H. Lassmann, who emphasized the potential importance of long-lived B cells in the brain parenchyma of people with MS. This and related work has been supported by the Imperial College Healthcare Trust – National Institute for Health Research (NIHR) Biomedical Research Centre. P.M.M. has also been in receipt of generous personal and research support from the Edmond J. Safra Foundation and Lily Safra, an NIHR Senior Investigator’s Award, the Medical Research Council and the UK Dementia Research Institute, which is supported by the Medical Research Council, The Alzheimer’s Society and Alzheimer’s Research UK.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul M. Matthews.

Ethics declarations

Competing interests

P.M.M. acknowledges consultancy fees from Adelphi Communications, Biogen, Celgene and Roche. He has received honoraria or speakers’ honoraria from Biogen, Novartis and Roche, and has received research or educational funds from Biogen, GlaxoSmithKline, Nodthera and Novartis. He is a paid member of the Scientific Advisory Board for Ipsen Pharmaceuticals.

Additional information

Peer review information

Nature Reviews Neurology thanks J. Geurts and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matthews, P.M. Chronic inflammation in multiple sclerosis — seeing what was always there. Nat Rev Neurol 15, 582–593 (2019). https://doi.org/10.1038/s41582-019-0240-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing