Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of sensory information in the pathophysiology of focal dystonias

Abstract

Over the past few decades, abnormalities in sensory functions, such as tactile, proprioceptive and nociceptive processing, have been increasingly recognized in patients with focal dystonias. In this Review, we ask whether sensory system abnormalities are specific to particular types of dystonia, whether a causal link exists between sensory alterations and dystonic motor activity and how mechanisms underlying the sensory abnormalities fit in with the proposed ‘network model’ of dystonia. We suggest that alterations in the various sensory modalities participate at three different levels in the pathophysiological cascade that leads to dystonia: a background level that predisposes individuals to dystonia, a disease-related level that is evident only when dystonia becomes manifest and a causative level that triggers dystonia. We conclude that it is crucial to study sensory as well as motor pathophysiology to fully understand focal dystonias.

Key points

  • Patients with different forms of focal dystonia, including blepharospasm, cervical dystonia and focal hand dystonia (FHD), share similar sensory abnormalities.

  • The mechanisms that underlie somatosensory temporal discrimination abnormalities make individuals susceptible to various forms of focal dystonia but are not directly linked to the emergence of motor symptoms.

  • Alterations in spatial discrimination reflect the remodelling of receptive fields in the cortex, which might result from dystonic motor manifestations.

  • Changes in proprioceptive afferent processing might have a direct causal role in FHD.

  • To fully understand focal dystonias, it is crucial to study both sensory and motor pathophysiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The network model of dystonia.
Fig. 2: Tactile and sensorimotor processing.

Similar content being viewed by others

References

  1. Defazio, G., Berardelli, A. & Hallett, M. Do primary adult-onset focal dystonias share aetiological factors? Brain 130, 1183–1193 (2007).

    PubMed  Google Scholar 

  2. Albanese, A. How many dystonias? Clinical evidence. Front. Neurol. 8, 18 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. Albanese, A. et al. Phenomenology and classification of dystonia: a consensus update. Mov. Disord. 28, 863–873 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. Jinnah, H. A. et al. The focal dystonias: current views and challenges for future research. Mov. Disord. 28, 926–943 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Colosimo, C. & Berardelli, A. Clinical phenomenology of dystonia. Int. Rev. Neurobiol. 98, 509–524 (2011).

    PubMed  Google Scholar 

  6. Berardelli, A. New advances in the pathophysiology of focal dystonias. Brain 129, 6–7 (2006).

    PubMed  Google Scholar 

  7. Jinnah, H. A. & Hess, E. J. Evolving concepts in the pathogenesis of dystonia. Parkinsonism Relat. Disord. 46 (Suppl. 1), S62–S65 (2018).

    PubMed  Google Scholar 

  8. Tinazzi, M., Fiorio, M., Fiaschi, A., Rothwell, J. C. & Bhatia, K. P. Sensory functions in dystonia: insights from behavioral studies. Mov. Disord. 24, 1427–1436 (2009).

    PubMed  Google Scholar 

  9. Jinnah, H. A., Neychev, V. & Hess, E. J. The anatomical basis for dystonia: the motor network model. Tremor Other Hyperkinet. Mov. (N. Y.) 7, 506 (2017).

    CAS  Google Scholar 

  10. Quartarone, A. & Hallett, M. Emerging concepts in the physiological basis of dystonia. Mov. Disord. 28, 958–967 (2013).

    PubMed  PubMed Central  Google Scholar 

  11. Tinazzi, M., Rosso, T. & Fiaschi, A. Role of the somatosensory system in primary dystonia. Mov. Disord. 18, 605–612 (2003).

    PubMed  Google Scholar 

  12. Ghika, J., Regli, F. & Growdon, J. H. Sensory symptoms in cranial dystonia: a potential role in the etiology? J. Neurol. Sci. 116, 142–147 (1993).

    CAS  PubMed  Google Scholar 

  13. Martino, D. et al. Relationship between eye symptoms and blepharospasm: a multicenter case–control study. Mov. Disord. 20, 1564–1570 (2005).

    PubMed  Google Scholar 

  14. Defazio, G., Hallett, M., Jinnah, H. A., Conte, A. & Berardelli, A. Blepharospasm 40 years later. Mov. Disord. 32, 498–509 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. Conte, A. et al. Non-motor symptoms in patients with adult-onset focal dystonia: sensory and psychiatric disturbances. Parkinsonism Relat. Disord. 22 (Suppl. 1), S111–S114 (2016).

    PubMed  Google Scholar 

  16. Williams, L. et al. Epidemiological, clinical and genetic aspects of adult onset isolated focal dystonia in Ireland. Eur. J. Neurol. 24, 73–81 (2017).

    CAS  PubMed  Google Scholar 

  17. Relja, M. & Miletić, V. When movement disorders hurt: addressing pain in hyperkinetic disorders. Parkinsonism Relat. Disord. 44, 110–113 (2017).

    PubMed  Google Scholar 

  18. Pekmezovic, T. et al. Quality of life in patients with focal dystonia. Clin. Neurol. Neurosurg. 111, 161–164 (2009).

    PubMed  Google Scholar 

  19. Suttrup, I. et al. Loss of sensory function in patients with idiopathic hand dystonia. Mov. Disord. 26, 107–113 (2011).

    PubMed  Google Scholar 

  20. Paracka, L. et al. Sensory alterations in patients with isolated idiopathic dystonia: an exploratory quantitative sensory testing analysis. Front. Neurol. 8, 553 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Patel, N. et al. Alleviating manoeuvres (sensory tricks) in cervical dystonia. J. Neurol. Neurosurg. Psychiatry 85, 882–884 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Ramos, V. F., Karp, B. I. & Hallett, M. Tricks in dystonia: ordering the complexity. J. Neurol. Neurosurg. Psychiatry 85, 987–993 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Johnson, K. O. The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11, 455–461 (2001).

    CAS  PubMed  Google Scholar 

  24. Hicks, T. P. & Dykes, R. W. Receptive field size for certain neurons in primary somatosensory cortex is determined by GABA-mediated intracortical inhibition. Brain Res. 274, 160–164 (1983).

    CAS  PubMed  Google Scholar 

  25. Molloy, M., Carr, T. D., Zeuner, K. E., Dambrosia, J. M. & Hallett, M. Abnormalities of spatial discrimination in focal and generalized dystonia. Brain 126, 2175–2182 (2003).

    CAS  PubMed  Google Scholar 

  26. Walsh, R. et al. Sporadic adult onset dystonia: sensory abnormalities as an endophenotype in unaffected relatives. J. Neurol. Neurosurg. Psychiatry 78, 980–983 (2007).

    PubMed  PubMed Central  Google Scholar 

  27. Walsh, R. A. et al. Striatal morphology correlates with sensory abnormalities in unaffected relatives of cervical dystonia patients. J. Neurol. 256, 1307–1313 (2009).

    PubMed  Google Scholar 

  28. Ganos, C. et al. Cortical inhibitory function in cervical dystonia. Clin. Neurophysiol. 129, 466–472 (2017).

    PubMed  Google Scholar 

  29. Walsh, R. & Hutchinson, M. Molding the sensory cortex: spatial acuity improves after botulinum toxin treatment for cervical dystonia. Mov. Disord. 22, 2443–2446 (2007).

    PubMed  Google Scholar 

  30. Bara-Jimenez, W., Shelton, P. & Hallett, M. Spatial discrimination is abnormal in focal hand dystonia. Neurology 55, 1869–1873 (2000).

    CAS  PubMed  Google Scholar 

  31. Sanger, T. D., Tarsy, D. & Pascual-Leone, A. Abnormalities of spatial and temporal sensory discrimination in writer’s cramp. Mov. Disord. 16, 94–99 (2001).

    CAS  PubMed  Google Scholar 

  32. Zeuner, K. E. & Hallett, M. Sensory training as treatment for focal hand dystonia: a 1-year follow-up. Mov. Disord. 18, 1044–1047 (2003).

    PubMed  Google Scholar 

  33. Artieda, J., Pastor, M. A., Lacruz, F. & Obeso, J. A. Temporal discrimination is abnormal in Parkinson’s disease. Brain 115, 199–210 (1992).

    PubMed  Google Scholar 

  34. Conte, A. et al. Temporal discrimination: mechanisms and relevance to adult-onset dystonia. Front. Neurol. 8, 625 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Sadnicka, A. et al. Mind the gap: temporal discrimination and dystonia. Eur. J. Neurol. 24, 796–806 (2017).

    CAS  PubMed  Google Scholar 

  36. Rocchi, L., Casula, E., Tocco, P., Berardelli, A. & Rothwell, J. Somatosensory temporal discrimination threshold involves inhibitory mechanisms in the primary somatosensory area. J. Neurosci. 36, 325–335 (2016).

    CAS  PubMed  Google Scholar 

  37. Ramos, V. F., Esquenazi, A., Villegas, M. A., Wu, T. & Hallett, M. Temporal discrimination threshold with healthy aging. Neurobiol. Aging 43, 174–179 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Mc Govern, E. M. et al. A comparison of stimulus presentation methods in temporal discrimination testing. Physiol. Meas. 38, N57–N64 (2017).

    Google Scholar 

  39. Bradley, D. et al. Temporal discrimination thresholds in adult-onset primary torsion dystonia: an analysis by task type and by dystonia phenotype. J. Neurol. 259, 77–82 (2012).

    CAS  PubMed  Google Scholar 

  40. Kimmich, O. et al. Sporadic adult onset primary torsion dystonia is a genetic disorder by the temporal discrimination test. Brain 134, 2656–2663 (2011).

    PubMed  Google Scholar 

  41. Fiorio, M. et al. Tactile temporal discrimination in patients with blepharospasm. J. Neurol. Neurosurg. Psychiatry 79, 796–798 (2008).

    CAS  PubMed  Google Scholar 

  42. Fiorio, M., Tinazzi, M., Bertolasi, L. & Aglioti, S. M. Temporal processing of visuotactile and tactile stimuli in writer’s cramp. Ann. Neurol. 53, 630–635 (2003).

    PubMed  Google Scholar 

  43. Tinazzi, M., Fiorio, M., Bertolasi, L. & Aglioti, S. M. Timing of tactile and visuo-tactile events is impaired in patients with cervical dystonia. J. Neurol. 251, 85–90 (2004).

    PubMed  Google Scholar 

  44. Caruso, G. et al. Sensory nerve findings by tactile stimulation of median and ulnar nerves in healthy subjects of different ages. Electroencephalogr. Clin. Neurophysiol. 89, 392–398 (1993).

    CAS  PubMed  Google Scholar 

  45. Krarup, C. & Trojaborg, W. Compound sensory action potentials evoked by tactile and by electrical stimulation in normal median and sural nerves. Muscle Nerve 17, 733–740 (1994).

    CAS  PubMed  Google Scholar 

  46. Conte, A. et al. Theta-burst stimulation-induced plasticity over primary somatosensory cortex changes somatosensory temporal discrimination in healthy humans. PLOS ONE 7, e32979 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Leodori, G. et al. The third-stimulus temporal discrimination threshold: focusing on the temporal processing of sensory input within primary somatosensory cortex. J. Neurophysiol. 118, 2311–2317 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Scontrini, A. et al. Somatosensory temporal discrimination in patients with primary focal dystonia. J. Neurol. Neurosurg. Psychiatry 80, 1315–1319 (2009).

    CAS  PubMed  Google Scholar 

  49. Conte, A. et al. Is increased blinking a form of blepharospasm? Neurology 80, 2236–2241 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Conte, A. et al. Increased blinking may be a precursor of blepharospasm: a longitudinal study. Mov. Disord. Clin. Pract. 4, 733–736 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. Sadnicka, A. et al. Pallidal stimulation for cervical dystonia does not correct abnormal temporal discrimination. Mov. Disord. 28, 1874–1877 (2013).

    PubMed  Google Scholar 

  52. Kägi, G. et al. Endophenotyping in idiopathic adult onset cervical dystonia. Clin. Neurophysiol. 128, 1142–1147 (2017).

    PubMed  Google Scholar 

  53. Antelmi, E. et al. Neurophysiological correlates of abnormal somatosensory temporal discrimination in dystonia. Mov. Disord. 32, 141–148 (2017).

    CAS  PubMed  Google Scholar 

  54. Fiorio, M. et al. Defective temporal processing of sensory stimuli in DYT1 mutation carriers: a new endophenotype of dystonia? Brain 130, 134–142 (2007).

    PubMed  Google Scholar 

  55. Bradley, D. et al. Temporal discrimination threshold: VBM evidence for an endophenotype in adult onset primary torsion dystonia. Brain 132, 2327–2335 (2009).

    CAS  PubMed  Google Scholar 

  56. Kimmich, O. et al. Temporal discrimination, a cervical dystonia endophenotype: penetrance and functional correlates. Mov. Disord. 29, 804–811 (2014).

    PubMed  Google Scholar 

  57. Scontrini, A. et al. Somatosensory temporal discrimination tested in patients receiving botulinum toxin injection for cervical dystonia. Mov. Disord. 26, 742–746 (2011).

    PubMed  Google Scholar 

  58. Conte, A. et al. Primary somatosensory cortical plasticity and tactile temporal discrimination in focal hand dystonia. Clin. Neurophysiol. 125, 537–543 (2014).

    PubMed  Google Scholar 

  59. Proske, U. & Gandevia, S. C. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012).

    CAS  PubMed  Google Scholar 

  60. Grünewald, R. A., Yoneda, Y., Shipman, J. M. & Sagar, H. J. Idiopathic focal dystonia: a disorder of muscle spindle afferent processing? Brain 120, 2179–2185 (1997).

    PubMed  Google Scholar 

  61. Yoneda, Y., Rome, S., Sagar, H. J. & Grünewald, R. A. Abnormal perception of the tonic vibration reflex in idiopathic focal dystonia. Eur. J. Neurol. 7, 529–533 (2000).

    CAS  PubMed  Google Scholar 

  62. Lekhel, H. et al. Postural responses to vibration of neck muscles in patients with idiopathic torticollis. Brain 120, 583–591 (1997).

    PubMed  Google Scholar 

  63. Karnath, H. O., Konczak, J. & Dichgans, J. Effect of prolonged neck muscle vibration on lateral head tilt in severe spasmodic torticollis. J. Neurol. Neurosurg. Psychiatry 69, 658–660 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pelosin, E., Bove, M., Marinelli, L., Abbruzzese, G. & Ghilardi, M. F. Cervical dystonia affects aimed movements of nondystonic segments. Mov. Disord. 24, 1955–1961 (2009).

    PubMed  Google Scholar 

  65. Marinelli, L. et al. In idiopathic cervical dystonia movement direction is inaccurate when reaching in unusual workspaces. Parkinsonism Relat. Disord. 17, 470–472 (2011).

    PubMed  Google Scholar 

  66. Tinazzi, M. et al. Temporal discrimination in patients with dystonia and tremor and patients with essential tremor. Neurology 80, 76–84 (2013).

    PubMed  Google Scholar 

  67. Martino, D. et al. Temporal processing of perceived body movement in cervical dystonia. Mov. Disord. 30, 1005–1007 (2015).

    PubMed  Google Scholar 

  68. Filip, P., Lungu, O. V., Shaw, D. J., Kasparek, T. & Bareš, M. The mechanisms of movement control and time estimation in cervical dystonia patients. Neural Plast. 2013, 908741 (2013).

    PubMed  PubMed Central  Google Scholar 

  69. Kaji, R. et al. Tonic vibration reflex and muscle afferent block in writer’s cramp. Ann. Neurol. 38, 155–162 (1995).

    CAS  PubMed  Google Scholar 

  70. Putzki, N. et al. Kinesthesia is impaired in focal dystonia. Mov. Disord. 21, 754–760 (2006).

    PubMed  Google Scholar 

  71. Tinazzi, M. et al. Temporal discrimination of two passive movements in writer’s cramp. Mov. Disord. 21, 1131–1135 (2006).

    PubMed  Google Scholar 

  72. Tinazzi, M. et al. Nociceptive pathway function is normal in cervical dystonia: a study using laser-evoked potentials. J. Neurol. 259, 2060–2066 (2012).

    PubMed  Google Scholar 

  73. Hutchinson, M. et al. The endophenotype and the phenotype: temporal discrimination and adult-onset dystonia. Mov. Disord. 28, 1766–1774 (2013).

    PubMed  Google Scholar 

  74. Conte, A. et al. Does the somatosensory temporal discrimination threshold change over time in focal dystonia? Neural Plast. 2017, 9848070 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Aglioti, S. M., Fiorio, M., Forster, B. & Tinazzi, M. Temporal discrimination of cross-modal and unimodal stimuli in generalized dystonia. Neurology 60, 782–785 (2000).

    Google Scholar 

  76. Zeuner, K. E. et al. Sensory training for patients with focal hand dystonia. Ann. Neurol. 51, 593–598 (2002).

    PubMed  Google Scholar 

  77. Dresel, C. et al. Botulinum toxin modulates basal ganglia but not deficient somatosensory activation in orofacial dystonia. Mov. Disord. 26, 1496–1502 (2011).

    PubMed  Google Scholar 

  78. Delnooz, C. C., Pasman, J. W. & van de Warrenburg, B. P. Dynamic cortical gray matter volume changes after botulinum toxin in cervical dystonia. Neurobiol. Dis. 73, 327–333 (2015).

    PubMed  Google Scholar 

  79. Butterworth, S. et al. Abnormal cortical sensory activation in dystonia: an fMRI study. Mov. Disord. 18, 673–682 (2003).

    PubMed  Google Scholar 

  80. Peller, M. et al. The basal ganglia are hyperactive during the discrimination of tactile stimuli in writer’s cramp. Brain 129, 2697–2708 (2006).

    CAS  PubMed  Google Scholar 

  81. Bhatia, K. P. & Marsden, C. D. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117, 859–876 (1994).

    PubMed  Google Scholar 

  82. Conte, A. et al. Understanding the link between somatosensory temporal discrimination and movement execution in healthy subjects. Physiol. Rep. 4, e12899 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. Tamura, Y. et al. Impaired intracortical inhibition in the primary somatosensory cortex in focal hand dystonia. Mov. Disord. 23, 558–565 (2008).

    PubMed  Google Scholar 

  84. Ozaki, I. & Hashimoto, I. Exploring the physiology and function of high-frequency oscillations (HFOs) from the somatosensory cortex. Clin. Neurophysiol. 122, 1908–1923 (2011).

    PubMed  Google Scholar 

  85. Kägi, G. et al. Sensory tricks in primary cervical dystonia depend on visuotactile temporal discrimination. Mov. Disord. 28, 356–361 (2013).

    CAS  PubMed  Google Scholar 

  86. Kimura, A. Robust interactions between the effects of auditory and cutaneous electrical stimulations on cell activities in the thalamic reticular nucleus. Brain Res. 1661, 49–66 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Hintzen, A., Pelzer, E. A. & Tittgemeyer, M. Thalamic interactions of cerebellum and basal ganglia. Brain Struct. Funct. 223, 569–587 (2018).

    PubMed  Google Scholar 

  88. Nelson, A. J., Blake, D. T. & Chen, R. Digit-specific aberrations in the primary somatosensory cortex in writer’s cramp. Ann. Neurol. 66, 146–154 (2009).

    PubMed  Google Scholar 

  89. Quartarone, A. et al. Abnormal associative plasticity of the human motor cortex in writer’s cramp. Brain 126, 2586–2596 (2003).

    PubMed  Google Scholar 

  90. Quartarone, A. et al. Abnormal plasticity of sensorimotor circuits extends beyond the affected body part in focal dystonia. J. Neurol. Neurosurg. Psychiatry 79, 985–990 (2008).

    CAS  PubMed  Google Scholar 

  91. Kojovic, M. et al. Botulinum toxin injections reduce associative plasticity in patients with primary dystonia. Mov. Disord. 26, 1282–1289 (2011).

    PubMed  PubMed Central  Google Scholar 

  92. Kojovic, M. et al. Secondary and primary dystonia: pathophysiological differences. Brain 136, 2038–2049 (2013).

    PubMed  Google Scholar 

  93. Gallea, C., Horovitz, S. G., Najee-Ullah, M. & Hallett, M. Impairment of a parieto-premotor network specialized for handwriting in writer’s cramp. Hum. Brain Mapp. 37, 4363–4375 (2016).

    PubMed  PubMed Central  Google Scholar 

  94. Avanzino, L. et al. Adaptation of feedforward movement control is abnormal in patients with cervical dystonia and tremor. Clin. Neurophysiol. 129, 319–326 (2018).

    PubMed  Google Scholar 

  95. Conte, A. et al. Somatosensory temporal discrimination threshold in Parkinson’s disease parallels disease severity and duration. Clin. Neurophysiol. 127, 2985–2989 (2016).

    PubMed  Google Scholar 

  96. Conte, A., Khan, N., Defazio, G., Rothwell, J. C. & Berardelli, A. Pathophysiology of somatosensory abnormalities in Parkinson disease. Nat. Rev. Neurol. 9, 687–697 (2013).

    CAS  PubMed  Google Scholar 

  97. Rocchi, L. et al. Somatosensory temporal discrimination threshold may help to differentiate patients with multiple system atrophy from patients with Parkinson’s disease. Eur. J. Neurol. 20, 714–719 (2013).

    CAS  PubMed  Google Scholar 

  98. Conte, A. et al. Subthalamic nucleus stimulation and somatosensory temporal discrimination in Parkinson’s disease. Brain 133, 2656–2663 (2010).

    PubMed  Google Scholar 

  99. Lee, M. S. et al. Impaired finger dexterity in patients with Parkinson’s disease correlates with discriminative cutaneous sensory dysfunction. Mov. Disord. 25, 2531–2535 (2010).

    PubMed  Google Scholar 

  100. Lyoo, C. H., Ryu, Y. H., Lee, M. J. & Lee, M. S. Striatal dopamine loss and discriminative sensory dysfunction in Parkinson’s disease. Acta Neurol. Scand. 126, 344–349 (2012).

    CAS  PubMed  Google Scholar 

  101. Lee, M. S., Lee, M. J., Conte, A. & Berardelli, A. Abnormal somatosensory temporal discrimination in Parkinson’s disease: pathophysiological correlates and role in motor control deficits. Clin. Neurophysiol. 129, 442–447 (2017).

    PubMed  Google Scholar 

  102. Conte, A. et al. Abnormal temporal coupling of tactile perception and motor action in Parkinson’s disease. Front. Neurol. 8, 249 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. Trompetto, C. et al. Botulinum toxin changes intrafusal feedback in dystonia: a study with the tonic vibration reflex. Mov. Disord. 21, 777–782 (2006).

    PubMed  Google Scholar 

Download references

Review criteria

PubMed was searched for full-text papers (original studies, randomized controlled trials and reviews) published in English from January 1990 to June 2018. The search terms used to perform the query were “sensory abnormalities and focal dystonia”, “somatosensory and focal dystonia”, “proprioceptive and focal dystonia”, “temporal discrimination, dystonia”, “spatial discrimination, dystonia”, “non-motor symptoms and dystonia”, “pain and focal dystonia” and “thermal abnormalities and focal dystonia”, individually and in combination. The search disclosed 216 articles. We then excluded case reports, meta-analyses and studies dealing with dystonia as a part of other movement disorders. Reference lists of identified articles were also searched for relevant papers.

Reviewer information

Nature Reviews Neurology thanks M. Fiorio, A. Sadnicka and another anonymous reviewer for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

A.C. researched data for the article, and all authors made substantial contributions to discussions of the content. A.B., A.C. and M.H. wrote the article. A.B., G.D., G.F. and M.H. reviewed the manuscript before submission.

Corresponding author

Correspondence to Alfredo Berardelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Homotopic and associative cerebral plasticity

A time-dependent form of plasticity in humans that relies on associative stimulation of two neural substrates in a temporally coordinated manner.

Thermal sensory limen test

A test for thermal sensation that belongs to the quantitative sensory testing battery. This test identifies the difference threshold for alternating cool and warm stimuli.

N2–P2 LEP complex

A cortical evoked potential recorded from the scalp at the vertex after laser-induced stimulation of the nociceptive fibres.

Centre-surround inhibition

The suppression of activity of neighbouring cells by a central group of neurons.

N20 somatosensory evoked potential component

The N20 component of the evoked potential recorded from the parietal cortex after median nerve electrical stimulation at the wrist.

Cross-modal temporal discrimination

The temporal discrimination of two consecutive stimuli of different sensory modalities.

Aristotle’s illusion

A tactile illusion that is created when two fingers of one hand are crossed and a small object is pressed into the cleft between the tips of the crossed fingers. The sensation is that of touching two objects rather than one.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conte, A., Defazio, G., Hallett, M. et al. The role of sensory information in the pathophysiology of focal dystonias. Nat Rev Neurol 15, 224–233 (2019). https://doi.org/10.1038/s41582-019-0137-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-019-0137-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing