Dementia in Down syndrome: unique insights for Alzheimer disease research

Abstract

Virtually all adults with Down syndrome (DS) show the neuropathological changes of Alzheimer disease (AD) by the age of 40 years. This association is partially due to overexpression of amyloid precursor protein, encoded by APP, as a result of the location of this gene on chromosome 21. Amyloid-β accumulates in the brain across the lifespan of people with DS, which provides a unique opportunity to understand the temporal progression of AD and the epigenetic factors that contribute to the age of dementia onset. This age dependency in the development of AD in DS can inform research into the presentation of AD in the general population, in whom a longitudinal perspective of the disease is not often available. Comparison of the risk profiles, biomarker profiles and genetic profiles of adults with DS with those of individuals with AD in the general population can help to determine common and distinct pathways as well as mechanisms underlying increased risk of dementia. This Review evaluates the similarities and differences between the pathological cascades and genetics underpinning DS and AD with the aim of providing a platform for common exploration of these disorders.

Key points

  • Virtually all people with Down syndrome (DS) have Alzheimer disease (AD) pathology by 40 years of age; this association facilitates an increased understanding of the temporal progression of AD pathogenesis and provides unique insights for AD in the general population.

  • Understanding the role of amyloid precursor protein in DS might lead to a greater understanding of its role in both sporadic AD and familial AD in the general population.

  • The study of neuroinflammation in DS might provide unique insights into AD in the general population and highlight key pathways that might be amenable to therapeutic intervention.

  • Investigation of cerebrovascular pathology and its role in dementia might be simplified by the study of DS cohorts and lead to novel hypotheses regarding the causes and consequences of cerebral amyloid angiopathy.

  • Comorbidities in DS, such as sleep disturbances, seizures and psychiatric conditions, overlap with those conditions seen in AD in the general population.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Amyloid plaques in Down syndrome.
Fig. 2: Brain structural changes in Down syndrome.
Fig. 3: Amyloid PET in Down syndrome.
Fig. 4: Cerebrovascular pathology in Down syndrome.
Fig. 5: Hypothetical model of biomarker and clinical outcomes.
Fig. 6: Hypothetical progression of Alzheimer disease neuropathology in Down syndrome.

References

  1. 1.

    Jervis, G. A. Early senile dementia in mongoloid idiocy. Am. J. Psychiatry 105, 102–106 (1948).

    CAS  Google Scholar 

  2. 2.

    Struwe, F. Histopathologische Untersuchungen uber Entstehung und Wesen der senilen Plaques. Z. Ges. Neurol. Psychiat. 122, 291–307 (1929).

    Google Scholar 

  3. 3.

    Bertrand, I. & Koffas, D. Cas d’idioti mongolienne adulte avec nombreuses plaques senile et concretions calcaires pallidales. Rev. Neurol. 78, 338 (1946).

    Google Scholar 

  4. 4.

    Mann, D. M. A. The pathological association between Down syndrome and Alzheimer disease. Mech. Ageing Dev. 43, 99–136 (1988).

    CAS  Google Scholar 

  5. 5.

    Hardy, J. The discovery of Alzheimer-causing mutations in the APP gene and the formulation of the “amyloid cascade hypothesis”. FEBS J. 284, 1040–1044 (2017).

    CAS  Google Scholar 

  6. 6.

    Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  7. 7.

    Head, E., Helman, A. M., Powell, D. & Schmitt, F. A. Down syndrome, beta-amyloid and neuroimaging. Free Radic. Biol. Med. 114, 102–109 (2018).

    CAS  Google Scholar 

  8. 8.

    Glenner, G. G. & Wong, C. W. Alzheimer’s disease and Down’s syndrome sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    CAS  Google Scholar 

  9. 9.

    Holler, C. J. et al. BACE2 expression increases in human neurodegenerative disease. Am. J. Pathol. 180, 337–350 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  10. 10.

    Reiss, A. B., Arain, H. A., Stecker, M. M., Siegart, N. M. & Kasselman, L. J. Amyloid toxicity in Alzheimer’s disease. Rev. Neurosci. 29, 613–627 (2018).

    CAS  Google Scholar 

  11. 11.

    Di Domenico, F. et al. Impairment of proteostasis network in Down syndrome prior to the development of Alzheimer’s disease neuropathology: redox proteomics analysis of human brain. Biochim. Biophys. Acta 1832, 1249–1259 (2013).

    PubMed Central  PubMed  Google Scholar 

  12. 12.

    Hartley, D. et al. Down syndrome and Alzheimer’s disease: common pathways, common goals. Alzheimers Dement. 11, 700–709 (2015).

    Google Scholar 

  13. 13.

    Ballard, C., Mobley, W., Hardy, J., Williams, G. & Corbett, A. Dementia in Down’s syndrome. Lancet Neurol. 15, 622–636 (2016).

    Google Scholar 

  14. 14.

    Prasher, V. P. & Filer, A. Behavioural disturbance in people with Down’s syndrome and dementia. J. Intellect. Disabil. Res. 39, 432–436 (1995).

    Google Scholar 

  15. 15.

    Holland, A. J., Hon, J., Huppert, F. A. & Stevens, F. Incidence and course of dementia in people with Down’s syndrome: findings from a population-based study. J. Intellect. Disabil. Res. 44, 138–146 (2000).

    Google Scholar 

  16. 16.

    Zigman, W. B., Schupf, N., Sersen, E. & Silverman, W. Prevalence of dementia in adults with and without Down syndrome. Am. J. Ment. Retard. 100, 403–412 (1996).

    CAS  Google Scholar 

  17. 17.

    McCarron, M. et al. A prospective 20-year longitudinal follow-up of dementia in persons with Down syndrome. J. Intellect. Disabil. Res. 61, 843–852 (2017).

    CAS  Google Scholar 

  18. 18.

    Jarrett, S. The meaning of ‘community’ in the lives of people with intellectual disabilities: an historical perspective. Int. J. Dev. Disabil. 61, 107–112 (2015).

    PubMed Central  PubMed  Google Scholar 

  19. 19.

    Devenny, D. A. et al. Normal ageing in adults with Down’s syndrome: a longitudinal study. J. Intellect. Disabil. Res. 40, 208–221 (1996).

    Google Scholar 

  20. 20.

    Margallo-Lana, M. L. et al. Cognitive decline in Down syndrome. Arch. Neurol. 60, 1024 (2003).

    Google Scholar 

  21. 21.

    Rohn, T. T., McCarty, K. L., Love, J. E. & Head, E. Is apolipoprotein E4 an important risk factor for dementia in persons with Down syndrome? J. Parkinsons Dis. Alzheimers Dis. 1, 7 (2014).

    PubMed Central  PubMed  Google Scholar 

  22. 22.

    Zigman, W. B., Jenkins, E. C., Tycko, B., Schupf, N. & Silverman, W. Mortality is associated with apolipoprotein E epsilon4 in nondemented adults with Down syndrome. Neurosci. Lett. 390, 93–97 (2005).

    CAS  Google Scholar 

  23. 23.

    Prasher, V. P. et al. Significant effect of APOE epsilon 4 genotype on the risk of dementia in Alzheimer’s disease and mortality in persons with Down syndrome. Int. J. Geriatr. Psychiatry 23, 1134–1140 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  24. 24.

    Schupf, N. et al. Onset of dementia is associated with apolipoprotein E epsilon4 in Down’s syndrome. Ann. Neurol. 40, 799–801 (1996).

    CAS  Google Scholar 

  25. 25.

    Eisenstein, M. Genetics: finding risk factors. Nature 475, S20–S22 (2011).

    CAS  Google Scholar 

  26. 26.

    Huynh, T. V., Davis, A. A., Ulrich, J. D. & Holtzman, D. M. Apolipoprotein E and Alzheimer’s disease: the influence of apolipoprotein E on amyloid-beta and other amyloidogenic proteins. J. Lipid Res. 58, 824–836 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. 27.

    Grimm, M. O. W., Michaelson, D. M. & Hartmann, T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer’s disease: a rationale for multi-nutrient dementia prevention. J. Lipid Res. 58, 2083–2101 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  28. 28.

    Rohn, T. T. Proteolytic cleavage of apolipoprotein E4 as the keystone for the heightened risk associated with Alzheimer’s disease. Int. J. Mol. Sci. 14, 14908–14922 (2013).

    PubMed Central  PubMed  Google Scholar 

  29. 29.

    Day, R. J., McCarty, K. L., Ockerse, K. E., Head, E. & Rohn, T. T. Proteolytic cleavage of apolipoprotein E in the Down syndrome brain. Aging Dis. 7, 267–277 (2016).

    PubMed Central  PubMed  Google Scholar 

  30. 30.

    Rohn, T. T., Catlin, L. W., Coonse, K. G. & Habig, J. W. Identification of an amino-terminal fragment of apolipoprotein E4 that localizes to neurofibrillary tangles of the Alzheimer’s disease brain. Brain Res. 1475, 106–115 (2012).

    CAS  Google Scholar 

  31. 31.

    Zhao, L., Woody, S. K. & Chhibber, A. Estrogen receptor beta in Alzheimer’s disease: from mechanisms to therapeutics. Ageing Res. Rev. 24, 178–190 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  32. 32.

    Yaffe, K., Haan, M., Byers, A., Tangen, C. & Kuller, L. Estrogen use, APOE, and cognitive decline: evidence of gene–environment interaction. Neurology 54, 1949–1954 (2000).

    CAS  Google Scholar 

  33. 33.

    Gleason, C. E. et al. Effects of hormone therapy on cognition and mood in recently postmenopausal women: findings from the randomized, controlled KEEPS-cognitive and affective study. PLOS Med. 12, e1001833 (2015).

    PubMed Central  PubMed  Google Scholar 

  34. 34.

    Henderson, V. W. Alzheimer’s disease: review of hormone therapy trials and implications for treatment and prevention after menopause. J. Steroid Biochem. Mol. Biol. 142, 99–106 (2014).

    CAS  Google Scholar 

  35. 35.

    Schupf, N. et al. Onset of dementia is associated with age at menopause in women with Down’s syndrome. Ann. Neurol. 54, 433–438 (2003).

    Google Scholar 

  36. 36.

    Patel, B. N., Seltzer, G. B., Wu, H. S. & Schupf, N. Effect of menopause on cognitive performance in women with Down syndrome. Neuroreport 12, 2659–2662 (2001).

    CAS  Google Scholar 

  37. 37.

    Mosconi, L. et al. Perimenopause and emergence of an Alzheimer’s bioenergetic phenotype in brain and periphery. PLOS ONE 12, e0185926 (2017).

    PubMed Central  PubMed  Google Scholar 

  38. 38.

    Papavassiliou, P., Charalsawadi, C., Rafferty, K. & Jackson-Cook, C. Mosaicism for trisomy 21: a review. Am. J. Med. Genet. 167A, 26–39 (2015).

    Google Scholar 

  39. 39.

    Ringman, J. M., Rao, P. N., Lu, P. H. & Cederbaum, S. Mosaicism for trisomy 21 in a patient with young-onset dementia: a case report and brief literature review. Arch. Neurol. 65, 412–415 (2008).

    Google Scholar 

  40. 40.

    Potter, H., Granic, A. & Caneus, J. Role of trisomy 21 mosaicism in sporadic and familial Alzheimer’s disease. Curr. Alzheimer Res. 13, 7–17 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. 41.

    Leija-Salazar, M., Piette, C. L. & Proukakis, C. Somatic mutations in neurodegeneration. Neuropathol. Appl. Neurobiol. 44, 267–285 (2018).

    CAS  Google Scholar 

  42. 42.

    Wiseman, F. K. et al. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat. Rev. Neurosci. 16, 564–574 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  43. 43.

    Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 38, 24–26 (2006).

    CAS  Google Scholar 

  44. 44.

    Cabrejo, L. et al. Phenotype associated with APP duplication in five families. Brain 129, 2966–2976 (2006).

    Google Scholar 

  45. 45.

    Wallon, D. et al. The French series of autosomal dominant early onset Alzheimer’s disease cases: mutation spectrum and cerebrospinal fluid biomarkers. J. Alzheimers Dis. 30, 847–856 (2012).

    CAS  Google Scholar 

  46. 46.

    Hooli, B. V. et al. Role of common and rare APP DNA sequence variants in Alzheimer disease. Neurology 78, 1250–1257 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  47. 47.

    Jones, E. L. et al. Evidence that PICALM affects age at onset of Alzheimer’s dementia in Down syndrome. Neurobiol. Aging 34, 2441.e1–2441.e5 (2013).

    CAS  Google Scholar 

  48. 48.

    Lee, J. H. et al. Candidate gene analysis for Alzheimer’s disease in adults with Down syndrome. Neurobiol. Aging 56, 150–158 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  49. 49.

    Schupf, N. et al. Candidate genes for Alzheimer’s disease are associated with individual differences in plasma levels of beta amyloid peptides in adults with Down syndrome. Neurobiol. Aging 36, 2907.e1–2907.e10 (2015).

    CAS  Google Scholar 

  50. 50.

    Do, C., Xing, Z., Yu, Y. E. & Tycko, B. Trans-acting epigenetic effects of chromosomal aneuploidies: lessons from Down syndrome and mouse models. Epigenomics 9, 189–207 (2017).

    CAS  Google Scholar 

  51. 51.

    Megarbane, A. et al. The intellectual disability of trisomy 21: differences in gene expression in a case series of patients with lower and higher IQ. Eur. J. Hum. Genet. 21, 1253–1259 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  52. 52.

    Weber, D. et al. Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes. J. Mol. Cell Cardiol. 79, 79–88 (2015).

    CAS  Google Scholar 

  53. 53.

    Bacalini, M. G. et al. Identification of a DNA methylation signature in blood cells from persons with Down Syndrome. Aging 7, 82–96 (2015).

    CAS  Google Scholar 

  54. 54.

    Horvath, S. et al. Accelerated epigenetic aging in Down syndrome. Aging Cell 14, 491–495 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  55. 55.

    Narayan, P. J., Lill, C., Faull, R., Curtis, M. A. & Dragunow, M. Increased acetyl and total histone levels in post-mortem Alzheimer’s disease brain. Neurobiol. Dis. 74, 281–294 (2015).

    CAS  Google Scholar 

  56. 56.

    Fyfe, I. Alzheimer disease: epigenetics links ageing with Alzheimer disease. Nat. Rev. Neurol. 14, 254 (2018).

    Google Scholar 

  57. 57.

    Edgin, J. O., Clark, C. A., Massand, E. & Karmiloff-Smith, A. Building an adaptive brain across development: targets for neurorehabilitation must begin in infancy. Front. Behav. Neurosci. 9, 232 (2015).

    PubMed Central  PubMed  Google Scholar 

  58. 58.

    Schmidt-Sidor, B., Wisniewski, K. E., Shepard, T. H. & Sersen, E. A. Brain growth in Down syndrome subjects 15 to 22 weeks of gestational age and birth to 60 months. Clin. Neuropathol. 9, 181–190 (1990).

    CAS  Google Scholar 

  59. 59.

    Guidi, S. et al. Neurogenesis impairment and increased cell death reduce total neuron number in the hippocampal region of fetuses with Down syndrome. Brain Pathol. 18, 180–197 (2008).

    Google Scholar 

  60. 60.

    Sosa, L. J. et al. Dosage of amyloid precursor protein affects axonal contact guidance in Down syndrome. FASEB J. 28, 195–205 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  61. 61.

    Dawkins, E. & Small, D. H. Insights into the physiological function of the beta-amyloid precursor protein: beyond Alzheimer’s disease. J. Neurochem. 129, 756–769 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  62. 62.

    Neale, N., Padilla, C., Fonseca, L. M., Holland, T. & Zaman, S. Neuroimaging and other modalities to assess Alzheimer’s disease in Down syndrome. Neuroimage Clin. 17, 263–271 (2018).

    Google Scholar 

  63. 63.

    Teipel, S. J. et al. Age-related cortical grey matter reductions in non-demented Down’s syndrome adults determined by MRI with voxel-based morphometry. Brain 127, 811–824 (2004).

    Google Scholar 

  64. 64.

    Teipel, S. J. & Hampel, H. Neuroanatomy of Down syndrome in vivo: a model of preclinical Alzheimer’s disease. Behav. Genet. 36, 405–415 (2006).

    Google Scholar 

  65. 65.

    Powell, D. et al. Frontal white matter integrity in adults with Down syndrome with and without dementia. Neurobiol. Aging 35, 1562–1569 (2014).

    PubMed Central  PubMed  Google Scholar 

  66. 66.

    Rumble, B. et al. Amyloid A4 and its precursor in Down’s syndrome and Alzheimer’s disease. N. Engl. J. Med. 320, 1446–1462 (1989).

    CAS  Google Scholar 

  67. 67.

    Head, E. & Lott, I. T. Down syndrome and beta-amyloid deposition. Curr. Opin. Neurol. 17, 95–100 (2004).

    CAS  Google Scholar 

  68. 68.

    Head, E., Powell, D., Gold, B. T. & Schmitt, F. A. Alzheimer’s disease in Down syndrome. Eur.  J. Neurodegener. Dis. 1, 353–364 (2012).

    Google Scholar 

  69. 69.

    Lemere, C. A. et al. Sequence of deposition of heterogeneous amyloid beta-peptides and APOE in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol. Dis. 3, 16–32 (1996).

    CAS  Google Scholar 

  70. 70.

    Fonseca, M. I., Head, E., Velazquez, P., Cotman, C. W. & Tenner, A. J. The presence of isoaspartic acid in beta-amyloid plaques indicates plaque age. Exp. Neurol. 157, 277–288 (1999).

    CAS  Google Scholar 

  71. 71.

    Azizeh, B. Y. et al. Molecular dating of senile plaques in the brains of individuals with Down syndrome and in aged dogs. Exp. Neurol. 163, 111–122 (2000).

    CAS  Google Scholar 

  72. 72.

    Leverenz, J. B. & Raskind, M. A. Early amyloid deposition in the medial temporal lobe of young Down syndrome patients: a regional quantitative analysis. Exp. Neurol. 150, 296–304 (1998).

    CAS  Google Scholar 

  73. 73.

    Stoltzner, S. E. et al. Temporal accrual of complement proteins in amyloid plaques in Down’s syndrome with Alzheimer’s disease. Am. J. Pathol. 156, 489–499 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  74. 74.

    Nistor, M. et al. Alpha- and beta-secretase activity as a function of age and beta-amyloid in Down syndrome and normal brain. Neurobiol. Aging 28, 1493–1506 (2007).

    CAS  Google Scholar 

  75. 75.

    Cenini, G. et al. Association between frontal cortex oxidative damage and beta-amyloid as a function of age in Down syndrome. Biochim. Biophys. Acta 1822, 130–138 (2012).

    CAS  Google Scholar 

  76. 76.

    Carmona-Iragui, M. et al. Cerebral amyloid angiopathy in Down syndrome and sporadic and autosomal-dominant Alzheimer’s disease. Alzheimers Dement. 13, 1251–1260 (2017).

    PubMed Central  PubMed  Google Scholar 

  77. 77.

    Prasher, V. P. et al. Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann. Neurol. 43, 380–383 (1998).

    CAS  Google Scholar 

  78. 78.

    Doran, E. et al. Down syndrome, partial trisomy 21, and absence of Alzheimer’s disease: the role of APP. J. Alzheimers Dis. 56, 459–470 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  79. 79.

    Sperling, R., Mormino, E. & Johnson, K. The evolution of preclinical Alzheimer’s disease: implications for prevention trials. Neuron 84, 608–622 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  80. 80.

    Cohen, A. D. & Klunk, W. E. Early detection of Alzheimer’s disease using PiB and FDG PET. Neurobiol. Dis. 72A, 117–122 (2014).

    Google Scholar 

  81. 81.

    Cohen Kadosh, K., Johnson, M. H., Dick, F., Cohen Kadosh, R. & Blakemore, S. J. Effects of age, task performance, and structural brain development on face processing. Cereb. Cortex 23, 1630–1642 (2013).

    Google Scholar 

  82. 82.

    Mintun, M. A. et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67, 446–452 (2006).

    CAS  Google Scholar 

  83. 83.

    Klunk, W. E. et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann. Neurol. 55, 306–319 (2004).

    CAS  Google Scholar 

  84. 84.

    Handen, B. L. et al. Imaging brain amyloid in nondemented young adults with Down syndrome using Pittsburgh compound B. Alzheimers Dement. 8, 496–501 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  85. 85.

    Annus, T. et al. The pattern of amyloid accumulation in the brains of adults with Down syndrome. Alzheimers Dement. 12, 538–545 (2016).

    PubMed Central  PubMed  Google Scholar 

  86. 86.

    Lao, P. J. et al. The effects of normal aging on amyloid-beta deposition in nondemented adults with Down syndrome as imaged by carbon 11-labeled Pittsburgh compound B. Alzheimers Dement. 12, 380–390 (2016).

    Google Scholar 

  87. 87.

    Klunk, W. E. et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J. Neurosci. 27, 6174–6184 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  88. 88.

    Villemagne, V. L. et al. High striatal amyloid beta-peptide deposition across different autosomal Alzheimer disease mutation types. Arch. Neurol. 66, 1537–1544 (2009).

    Google Scholar 

  89. 89.

    Koivunen, J. et al. PET amyloid ligand [11C]PIB uptake shows predominantly striatal increase in variant Alzheimer’s disease. Brain 131, 1845–1853 (2008).

    CAS  Google Scholar 

  90. 90.

    Mann, D. M. & Iwatsubo, T. Diffuse plaques in the cerebellum and corpus striatum in Down’s syndrome contain amyloid beta protein (A beta) only in the form of A beta 42(43). Neurodegeneration 5, 115–120 (1996).

    CAS  Google Scholar 

  91. 91.

    Hartley, S. L. et al. Cognitive functioning in relation to brain amyloid-beta in healthy adults with Down syndrome. Brain 137, 2556–2563 (2014).

    PubMed Central  PubMed  Google Scholar 

  92. 92.

    Landt, J. et al. Using positron emission tomography and carbon 11-labeled Pittsburgh compound B to image brain fibrillar beta-amyloid in adults with Down syndrome: safety, acceptability, and feasibility. Arch. Neurol. 68, 890–896 (2011).

    Google Scholar 

  93. 93.

    Hartley, S. L. et al. Cognitive decline and brain amyloid-beta accumulation across 3 years in adults with Down syndrome. Neurobiol. Aging 58, 68–76 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  94. 94.

    Lao, P. J. et al. Alzheimer-like pattern of hypometabolism emerges with elevated amyloid-beta burden in Down syndrome. J. Alzheimers Dis. 61, 631–644 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  95. 95.

    Sabbagh, M. N. et al. Florbetapir PET, FDG PET, and MRI in Down syndrome individuals with and without Alzheimer’s dementia. Alzheimers Dement. 11, 994–1004 (2015).

    PubMed Central  PubMed  Google Scholar 

  96. 96.

    Sabbagh, M. N. et al. Positron emission tomography and neuropathologic estimates of fibrillar amyloid-beta in a patient with Down syndrome and Alzheimer disease. Arch. Neurol. 68, 1461–1466 (2011).

    PubMed Central  PubMed  Google Scholar 

  97. 97.

    Rafii, M. S. et al. The Down syndrome biomarker initiative (DSBI) pilot: proof of concept for deep phenotyping of Alzheimer’s disease biomarkers in Down syndrome. Front. Behav. Neurosci. 9, 239 (2015).

    PubMed Central  PubMed  Google Scholar 

  98. 98.

    Nelson, L. D. et al. Positron emission tomography of brain beta-amyloid and tau levels in adults with Down syndrome. Arch. Neurol. 68, 768–774 (2011).

    PubMed Central  PubMed  Google Scholar 

  99. 99.

    Head, E. et al. Parallel compensatory and pathological events associated with tau pathology in middle aged individuals with Down syndrome. J. Neuropathol. Exp. Neurol. 62, 917–926 (2003).

    CAS  Google Scholar 

  100. 100.

    Hof, P. R. et al. Age-related distribution of neuropathologic changes in the cerebral cortex of patients with Down’s syndrome. Quantitative regional analysis and comparison with Alzheimer’s disease. Arch. Neurol. 52, 379–391 (1995).

    CAS  Google Scholar 

  101. 101.

    Hyman, B. T., West, H. L., Rebeck, G. W., Lai, F. & Mann, D. M. Neuropathological changes in Down’s syndrome hippocampal formation. Effect of age and apolipoprotein E genotype. Arch. Neurol. 52, 373–378 (1995).

    CAS  Google Scholar 

  102. 102.

    Mann, D. M. & Esiri, M. M. The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down’s syndrome. J. Neurol. Sci. 89, 169–179 (1989).

    CAS  Google Scholar 

  103. 103.

    Mann, D. M., Royston, M. C. & Ravindra, C. R. Some morphometric observations on the brains of patients with Down’s syndrome: their relationship to age and dementia. J. Neurol. Sci. 99, 153–164 (1990).

    CAS  Google Scholar 

  104. 104.

    Head, E., Lott, I. T., Wilcock, D. M. & Lemere, C. A. Aging in Down syndrome and the development of Alzheimer’s disease neuropathology. Curr. Alzheimer Res. 13, 18–29 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  105. 105.

    Dowjat, W. K. et al. Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neurosci. Lett. 413, 77–81 (2007).

    CAS  Google Scholar 

  106. 106.

    Kimura, R. et al. The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease. Hum. Mol. Genet. 16, 15–23 (2007).

    CAS  Google Scholar 

  107. 107.

    Liu, F. et al. Overexpression of Dyrk1A contributes to neurofibrillary degeneration in Down syndrome. FASEB J. 22, 3224–3233 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  108. 108.

    Ryoo, S. R. et al. DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease. J. Biol. Chem. 282, 34850–34857 (2007).

    CAS  Google Scholar 

  109. 109.

    Wegiel, J. et al. The role of overexpressed DYRK1A protein in the early onset of neurofibrillary degeneration in Down syndrome. Acta Neuropathol. 116, 391–407 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  110. 110.

    Wegiel, J. et al. Link between DYRK1A overexpression and several-fold enhancement of neurofibrillary degeneration with 3-repeat tau protein in Down syndrome. J. Neuropathol. Exp. Neurol. 70, 36–50 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  111. 111.

    Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).

    CAS  Google Scholar 

  112. 112.

    Klee, C. B., Ren, H. & Wang, X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J. Biol. Chem. 273, 13367–13370 (1998).

    CAS  Google Scholar 

  113. 113.

    Ermak, G., Harris, C. D., Battocchio, D. & Davies, K. J. RCAN1 (DSCR1 or Adapt78) stimulates expression of GSK-3beta. FEBS J. 273, 2100–2109 (2006).

    CAS  Google Scholar 

  114. 114.

    Dekker, A. D., Fortea, J., Blesa, R. & De Deyn, P. P. Cerebrospinal fluid biomarkers for Alzheimer’s disease in Down syndrome. Alzheimers Dement. 8, 1–10 (2017).

    Google Scholar 

  115. 115.

    Kasai, T. et al. Increased levels of plasma total tau in adult Down syndrome. PLOS ONE 12, e0188802 (2017).

    PubMed Central  PubMed  Google Scholar 

  116. 116.

    Lee, N. C. et al. Blood beta-amyloid and tau in Down syndrome: a comparison with Alzheimer’s disease. Front. Aging Neurosci. 8, 316 (2016).

    Google Scholar 

  117. 117.

    Hamlett, E. D. et al. Neuronal exosomes reveal Alzheimer’s disease biomarkers in Down syndrome. Alzheimers Dement. 13, 541–549 (2016).

    PubMed Central  PubMed  Google Scholar 

  118. 118.

    Rafii, M. S. et al. PET imaging of tau pathology and relationship to amyloid, longitudinal MRI, and cognitive change in Down syndrome: results from the Down Syndrome Biomarker Initiative (DSBI). J. Alzheimers Dis. 60, 439–450 (2017).

    CAS  Google Scholar 

  119. 119.

    Wilcock, D. M. Neuroinflammation in the aging Down syndrome brain; lessons from Alzheimer’s disease. Curr. Gerontol. Geriatr. Res. 2012, 170276 (2012).

    PubMed Central  PubMed  Google Scholar 

  120. 120.

    Wilcock, D. M. & Griffin, W. S. Down’s syndrome, neuroinflammation, and Alzheimer neuropathogenesis. J. Neuroinflammation 10, 84 (2013).

    CAS  Google Scholar 

  121. 121.

    Akiyama, H. et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383–421 (2000).

    CAS  PubMed Central  PubMed  Google Scholar 

  122. 122.

    Xue, Q. S. & Streit, W. J. Microglial pathology in Down syndrome. Acta Neuropathol. 122, 455–466 (2011).

    CAS  Google Scholar 

  123. 123.

    Di Bona, D. et al. Association between the interleukin-1beta polymorphisms and Alzheimer’s disease: a systematic review and meta-analysis. Brain Res. Rev. 59, 155–163 (2008).

    Google Scholar 

  124. 124.

    Karch, C. M. & Goate, A. M. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry 77, 43–51 (2015).

    CAS  Google Scholar 

  125. 125.

    Griffin, W. S. et al. Brain interleukin I and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer’s disease. Proc. Natl Acad. Sci. USA 86, 7611–7615 (1989).

    CAS  Google Scholar 

  126. 126.

    Head, E. et al. Complement association with neurons and beta-amyloid deposition in the brains of aged individuals with Down Syndrome. Neurobiol. Dis. 8, 252–265 (2001).

    CAS  Google Scholar 

  127. 127.

    Wilcock, D. M. et al. Down syndrome individuals with Alzheimer’s disease have a distinct neuroinflammatory phenotype compared to sporadic Alzheimer’s disease. Neurobiol. Aging 36, 2468–2474 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  128. 128.

    Kamer, A. R. et al. Periodontal disease’s contribution to Alzheimer’s disease progression in Down syndrome. Alzheimers Dement. 2, 49–57 (2016).

    Google Scholar 

  129. 129.

    Rodrigues, R. et al. Alterations of ectonucleotidases and acetylcholinesterase activities in lymphocytes of Down syndrome subjects: relation with inflammatory parameters. Clin. Chim. Acta 433, 105–110 (2014).

    CAS  Google Scholar 

  130. 130.

    Iulita, M. F. et al. An inflammatory and trophic disconnect biomarker profile revealed in Down syndrome plasma: relation to cognitive decline and longitudinal evaluation. Alzheimers Dement. 12, 1132–1148 (2016).

    Google Scholar 

  131. 131.

    Snyder, H. M. et al. Vascular contributions to cognitive impairment and dementia including Alzheimer’s disease. Alzheimers Dement. 11, 710–717 (2015).

    Google Scholar 

  132. 132.

    Jellinger, K. A. Pathology and pathogenesis of vascular cognitive impairment-a critical update. Front. Aging Neurosci. 5, 17 (2013).

    PubMed Central  PubMed  Google Scholar 

  133. 133.

    Provenzano, F. A. et al. White matter hyperintensities and cerebral amyloidosis: necessary and sufficient for clinical expression of Alzheimer disease? JAMA Neurol. 70, 455–461 (2013).

    PubMed Central  PubMed  Google Scholar 

  134. 134.

    Vinters, H. V. Cerebral amyloid angiopathy. A critical review. Stroke 18, 311–324 (1987).

    CAS  Google Scholar 

  135. 135.

    Ikeda, S. et al. Variability of beta-amyloid protein deposited lesions in Down’s syndrome brains. Tohoku J. Exp. Med. 174, 189–198 (1994).

    CAS  Google Scholar 

  136. 136.

    Lai, F. & Williams, M. D. A prospective study of Alzheimer disease in Down syndrome. Arch. Neurol. 46, 849–853 (1989).

    CAS  Google Scholar 

  137. 137.

    Belza, M. G. & Urich, H. Cerebral amyloid angiopathy in Down’s syndrome. Clin. Neuropathol. 5, 257–260 (1986).

    CAS  Google Scholar 

  138. 138.

    Head, E. et al. Cerebrovascular pathology in Down syndrome and Alzheimer disease. Acta Neuropathol. Commun. 5, 93 (2017).

    PubMed Central  PubMed  Google Scholar 

  139. 139.

    Murdoch, J. C., Rodger, J. C., Rao, S. S., Fletcher, C. D. & Dunnigan, M. G. Down’s syndrome: an atheroma-free model? BMJ 2, 226–228 (1977).

    CAS  Google Scholar 

  140. 140.

    Pucci, F. et al. Blood pressure levels and body mass index in Brazilian adults with Down syndrome. Sao Paulo Med. J. 134, 330–334 (2016).

    Google Scholar 

  141. 141.

    Matthews, D. C. et al. Dissociation of Down syndrome and Alzheimer’s disease effects with imaging. Alzheimers Dement. 2, 69–81 (2016).

    Google Scholar 

  142. 142.

    Haier, R. J., Head, K., Head, E. & Lott, I. T. Neuroimaging of individuals with Down’s syndrome at-risk for dementia: evidence for possible compensatory events. Neuroimage 39, 1324–1332 (2008).

    CAS  Google Scholar 

  143. 143.

    Garibotto, V. et al. Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol. Aging 52, 183–195 (2017).

    CAS  Google Scholar 

  144. 144.

    Barone, E., Arena, A., Head, E., Butterfield, D. A. & Perluigi, M. Disturbance of redox homeostasis in Down syndrome: role of iron dysmetabolism. Free Radic. Biol. Med. 114, 84–93 (2018).

    CAS  Google Scholar 

  145. 145.

    Di Domenico, F. et al. Redox proteomics analysis of HNE-modified proteins in Down syndrome brain: clues for understanding the development of Alzheimer disease. Free Radic. Biol. Med. 71, 270–280 (2014).

    PubMed Central  PubMed  Google Scholar 

  146. 146.

    Perluigi, M. & Butterfield, D. A. Oxidative stress and Down syndrome: a route toward Alzheimer-like dementia. Curr. Gerontol. Geriatr. Res. 2012, 724904 (2012).

    Google Scholar 

  147. 147.

    Perluigi, M. et al. Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochim. Biophys. Acta 1842, 1144–1153 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  148. 148.

    Colacurcio, D. J., Pensalfini, A., Jiang, Y. & Nixon, R. A. Dysfunction of autophagy and endosomal-lysosomal pathways: roles in pathogenesis of Down syndrome and Alzheimer’s Disease. Free Radic. Biol. Med. 114, 40–51 (2018).

    CAS  Google Scholar 

  149. 149.

    Phillips, C. et al. Noradrenergic system in Down syndrome and Alzheimer’s disease a target for therapy. Curr. Alzheimer Res. 13, 68–83 (2016).

    CAS  Google Scholar 

  150. 150.

    Lockrow, J. P., Fortress, A. M. & Granholm, A. C. Age-related neurodegeneration and memory loss in Down syndrome. Curr. Gerontol. Geriatr. Res. 2012, 463909 (2012).

    PubMed Central  PubMed  Google Scholar 

  151. 151.

    Martin, S. B. et al. Synaptophysin and synaptojanin-1 in Down syndrome are differentially affected by Alzheimer’s disease. J. Alzheimers Dis. 42, 767–775 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  152. 152.

    Head, E., Lott, I. T., Patterson, D., Doran, E. & Haier, R. J. Possible compensatory events in adult Down syndrome brain prior to the development of Alzheimer disease neuropathology: targets for nonpharmacological intervention. J. Alzheimers Dis. 11, 61–76 (2007).

    CAS  Google Scholar 

  153. 153.

    Jenkins, E. C. et al. Longitudinal telomere shortening and early Alzheimer’s disease progression in adults with Down syndrome. Am. J. Med. Genet. B 174, 772–778 (2017).

    CAS  Google Scholar 

  154. 154.

    Chen, X. Q., Sawa, M. & Mobley, W. C. Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in Down syndrome. Free Radic. Biol. Med. 114, 52–61 (2018).

    CAS  Google Scholar 

  155. 155.

    Iulita, M. F., Caraci, F. & Cuello, A. C. A. Link between nerve growth factor metabolic deregulation and amyloid-beta-driven inflammation in Down syndrome. CNS Neurol. Disord. Drug Targets 15, 434–447 (2016).

    CAS  Google Scholar 

  156. 156.

    Iulita, M. F. & Cuello, A. C. The NGF metabolic pathway in the CNS and its dysregulation in Down syndrome and Alzheimer’s disease. Curr. Alzheimer Res. 13, 53–67 (2016).

    CAS  Google Scholar 

  157. 157.

    Zigman, W. B. Atypical aging in Down syndrome. Dev. Disabil. Res. Rev. 18, 51–67 (2013).

    Google Scholar 

  158. 158.

    Cheignon, C. et al. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 14, 450–464 (2018).

    CAS  Google Scholar 

  159. 159.

    Helguera, P. et al. Adaptive downregulation of mitochondrial function in Down syndrome. Cell Metab. 17, 132–140 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  160. 160.

    Carfi, A. et al. Characteristics of adults with Down syndrome: prevalence of age-related conditions. Front. Med. 1, 51 (2014).

    Google Scholar 

  161. 161.

    Englund, A., Jonsson, B., Zander, C. S., Gustafsson, J. & Anneren, G. Changes in mortality and causes of death in the Swedish Down syndrome population. Am. J. Med. Genet. 161A, 642–649 (2013).

    Google Scholar 

  162. 162.

    Valenti, D. et al. Mitochondria as pharmacological targets in Down syndrome. Free Radic. Biol. Med. 114, 69–83 (2018).

    CAS  Google Scholar 

  163. 163.

    Hithersay, R., Hamburg, S., Knight, B. & Strydom, A. Cognitive decline and dementia in Down syndrome. Curr. Opin. Psychiatry 30, 102–107 (2017).

    Google Scholar 

  164. 164.

    McKhann, G. M. et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 263–269 (2011).

    PubMed Central  PubMed  Google Scholar 

  165. 165.

    Edgin, J. O. et al. Development and validation of the Arizona Cognitive Test Battery for Down syndrome. J. Neurodev. Disord. 2, 149–164 (2010).

    PubMed Central  PubMed  Google Scholar 

  166. 166.

    Edgin, J. O. et al. The Arizona Cognitive Test Battery for Down syndrome: test-retest reliability and practice effects. Am. J. Intellect. Dev. Disabil. 122, 215–234 (2017).

    Google Scholar 

  167. 167.

    Lautarescu, B. A., Holland, A. J. & Zaman, S. H. The early presentation of dementia in people with Down syndrome: a systematic review of longitudinal studies. Neuropsychol. Rev. 27, 31–45 (2017).

    PubMed Central  PubMed  Google Scholar 

  168. 168.

    Ball, S. L., Holland, A. J., Treppner, P., Watson, P. C. & Huppert, F. A. Executive dysfunction and its association with personality and behaviour changes in the development of Alzheimer’s disease in adults with Down syndrome and mild to moderate learning disabilities. Br. J. Clin. Psychol. 47, 1–29 (2008).

    Google Scholar 

  169. 169.

    Weintraub, S. et al. Version 3 of the Alzheimer Disease Centers’ Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Dis. Assoc. Disord. 32, 10–17 (2017).

    Google Scholar 

  170. 170.

    Belleville, S. et al. Neuropsychological measures that predict progression from mild cognitive impairment to Alzheimer’s type dementia in older adults: a systematic review and meta-analysis. Neuropsychol. Rev. 27, 328–353 (2017).

    PubMed Central  PubMed  Google Scholar 

  171. 171.

    Sinai, A., Hassiotis, A., Rantell, K. & Strydom, A. Assessing specific cognitive deficits associated with dementia in older adults with Down syndrome: use and validity of the Arizona Cognitive Test Battery (ACTB). PLOS ONE 11, e0153917 (2016).

    PubMed Central  PubMed  Google Scholar 

  172. 172.

    Krinsky-McHale, S. J. & Silverman, W. Dementia and mild cognitive impairment in adults with intellectual disability: issues of diagnosis. Dev. Disabil. Res. Rev. 18, 31–42 (2013).

    Google Scholar 

  173. 173.

    Lu, P. H. & Lee, G. J. The role of neuropsychology in the assessment of the cognitively impaired elderly. Neurol. Clin. 35, 191–206 (2017).

    Google Scholar 

  174. 174.

    Lanctot, K. L. et al. Neuropsychiatric signs and symptoms of Alzheimer’s disease: new treatment paradigms. Alzheimers Dement. 3, 440–449 (2017).

    Google Scholar 

  175. 175.

    Dekker, A. D. et al. Behavioural and psychological symptoms of dementia in Down syndrome: early indicators of clinical Alzheimer’s disease? Cortex 73, 36–61 (2015).

    Google Scholar 

  176. 176.

    Dick, M. B., Doran, E., Phelan, M. & Lott, I. T. Cognitive profiles on the Severe Impairment Battery are similar in Alzheimer disease and Down syndrome with dementia. Alzheimer Dis. Assoc. Disord. 30, 251–257 (2016).

    PubMed Central  PubMed  Google Scholar 

  177. 177.

    Glenn, S. M. & Cunningham, C. C. Parents’ reports of young people with Down syndrome talking out loud to themselves. Ment. Retard. 38, 498–505 (2000).

    CAS  Google Scholar 

  178. 178.

    Petersen, R. C. et al. Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308 (1999).

    CAS  Google Scholar 

  179. 179.

    Kryscio, R. J., Schmitt, F. A., Salazar, J. C., Mendiondo, M. S. & Markesbery, W. R. Risk factors for transitions from normal to mild cognitive impairment and dementia. Neurology 66, 828–832 (2006).

    CAS  Google Scholar 

  180. 180.

    Karmiloff-Smith, A. et al. The importance of understanding individual differences in Down syndrome. F1000Res. 5, 389 (2016).

    Google Scholar 

  181. 181.

    Anderson-Mooney, A. J., Schmitt, F. A., Head, E., Lott, I. T. & Heilman, K. M. Gait dyspraxia as a clinical marker of cognitive decline in Down syndrome: a review of theory and proposed mechanisms. Brain Cogn. 104, 48–57 (2016).

    PubMed Central  PubMed  Google Scholar 

  182. 182.

    Chhetri, J. K., Chan, P., Vellas, B. & Cesari, M. Motoric cognitive risk syndrome: predictor of dementia and age-related negative outcomes. Front. Med. 4, 166 (2017).

    Google Scholar 

  183. 183.

    Scherder, E. et al. Gait in ageing and associated dementias; its relationship with cognition. Neurosci. Biobehav. Rev. 31, 485–497 (2007).

    Google Scholar 

  184. 184.

    Beauchet, O. et al. Association between high variability of gait speed and mild cognitive impairment: a cross-sectional pilot study. J. Am. Geriatr. Soc. 59, 1973–1974 (2011).

    Google Scholar 

  185. 185.

    Chen, H. L., Yu, W. H. & Yeh, H. C. Obstacle crossing in 7–9-year-old children with Down syndrome. Res. Dev. Disabil. 48, 202–210 (2016).

    Google Scholar 

  186. 186.

    Tian, Q. et al. The brain map of gait variability in aging, cognitive impairment and dementia-A systematic review. Neurosci. Biobehav. Rev. 74, 149–162 (2017).

    PubMed Central  PubMed  Google Scholar 

  187. 187.

    Menendez, M. Down syndrome, Alzheimer’s disease and seizures. Brain Dev. 27, 246–252 (2005).

    Google Scholar 

  188. 188.

    Gholipour, T., Mitchell, S., Sarkis, R. A. & Chemali, Z. The clinical and neurobehavioral course of Down syndrome and dementia with or without new-onset epilepsy. Epilepsy Behav. 68, 11–16 (2017).

    Google Scholar 

  189. 189.

    Araujo, B. H., Torres, L. B. & Guilhoto, L. M. Cerebal overinhibition could be the basis for the high prevalence of epilepsy in persons with Down syndrome. Epilepsy Behav. 53, 120–125 (2015).

    Google Scholar 

  190. 190.

    d’Orsi, G. & Specchio, L. M. & Apulian Study Group on Senile Myoclonic Epilepsy. Progressive myoclonus epilepsy in Down syndrome patients with dementia. J.  Neurol. 261, 1584–1597 (2014).

    Google Scholar 

  191. 191.

    Lehesjoki, A. E. Molecular background of progressive myoclonus epilepsy. EMBO J. 22, 3473–3478 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  192. 192.

    Lott, I. T. et al. Down syndrome and dementia: seizures and cognitive decline. J. Alzheimers Dis. 29, 177–185 (2012).

    PubMed Central  PubMed  Google Scholar 

  193. 193.

    Vossel, K. A., Tartaglia, M. C., Nygaard, H. B., Zeman, A. Z. & Miller, B. L. Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol. 16, 311–322 (2017).

    PubMed Central  PubMed  Google Scholar 

  194. 194.

    Wu, J. W. et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat. Neurosci. 19, 1085–1092 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  195. 195.

    Vossel, K. A. et al. Incidence and impact of subclinical epileptiform activity in Alzheimer’s disease. Ann. Neurol. 80, 858–870 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  196. 196.

    Shea, Y. F. et al. Novel presenilin 1 mutation (p. F386I) in a Chinese family with early-onset Alzheimer’s disease. Neurobiol. Aging 50, 168.e9–168.e11 (2017).

    CAS  Google Scholar 

  197. 197.

    Kleen, J. K., Wu, E. X., Holmes, G. L., Scott, R. C. & Lenck-Santini, P. P. Enhanced oscillatory activity in the hippocampal–prefrontal network is related to short-term memory function after early-life seizures. J. Neurosci. 31, 15397–15406 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  198. 198.

    Noebels, J. A perfect storm: converging paths of epilepsy and Alzheimer’s dementia intersect in the hippocampal formation. Epilepsia 52 (Suppl. 1), 39–46 (2011).

    PubMed Central  PubMed  Google Scholar 

  199. 199.

    Chan, J., Jones, N. C., Bush, A. I., O’Brien, T. J. & Kwan, P. A mouse model of Alzheimer’s disease displays increased susceptibility to kindling and seizure-associated death. Epilepsia 56, e73–e77 (2015).

    Google Scholar 

  200. 200.

    Salehi, A. et al. Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51, 29–42 (2006).

    CAS  Google Scholar 

  201. 201.

    Trois, M. S. et al. Obstructive sleep apnea in adults with Down syndrome. J. Clin. Sleep Med. 5, 317–323 (2009).

    PubMed Central  PubMed  Google Scholar 

  202. 202.

    Jayaratne, Y. S. N. et al. The facial morphology in Down syndrome: a 3D comparison of patients with and without obstructive sleep apnea. Am. J. Med. Genet. 173A, 3013–3021 (2017).

    Google Scholar 

  203. 203.

    Capone, G. T., Aidikoff, J. M., Taylor, K. & Rykiel, N. Adolescents and young adults with Down syndrome presenting to a medical clinic with depression: co-morbid obstructive sleep apnea. Am. J. Med. Genet. 161A, 2188–2196 (2013).

    Google Scholar 

  204. 204.

    Breslin, J. et al. Obstructive sleep apnea syndrome and cognition in Down syndrome. Dev. Med. Child Neurol. 56, 657–664 (2014).

    Google Scholar 

  205. 205.

    Worley, G. et al. Down syndrome disintegrative disorder: new-onset autistic regression, dementia, and insomnia in older children and adolescents with Down syndrome. J. Child Neurol. 30, 1147–1152 (2015).

    Google Scholar 

  206. 206.

    Fernandez, F. & Edgin, J. O. Poor sleep as a precursor to cognitive decline in Down syndrome: a hypothesis. J. Alzheimers Dis. Parkinsonism 3, 124 (2013).

    PubMed Central  PubMed  Google Scholar 

  207. 207.

    Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    CAS  Google Scholar 

  208. 208.

    Polsek, D. et al. Obstructive sleep apnoea and Alzheimer’s disease: in search of shared pathomechanisms. Neurosci. Biobehav. Rev. 86, 142–149 (2018).

    CAS  Google Scholar 

  209. 209.

    Mander, B. A., Winer, J. R., Jagust, W. J. & Walker, M. P. Sleep: a novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer’s disease? Trends Neurosci. 39, 552–566 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  210. 210.

    Lavigne, J. et al. Thyroid dysfunction in patients with Down syndrome: results from a multi-institutional registry study. Am. J. Med. Genet. 173A, 1539–1545 (2017).

    Google Scholar 

  211. 211.

    King, K., O’Gorman, C. & Gallagher, S. Thyroid dysfunction in children with Down syndrome: a literature review. Ir. J. Med. Sci. 183, 1–6 (2014).

    CAS  Google Scholar 

  212. 212.

    Iughetti, L. et al. Ten-year longitudinal study of thyroid function in children with Down’s syndrome. Horm. Res. Paediatr. 82, 113–121 (2014).

    CAS  Google Scholar 

  213. 213.

    Guaraldi, F. et al. Endocrine autoimmunity in Down’s syndrome. Front. Horm. Res. 48, 133–146 (2017).

    Google Scholar 

  214. 214.

    Carsetti, R. et al. Reduced numbers of switched memory B cells with high terminal differentiation potential in Down syndrome. Eur. J. Immunol. 45, 903–914 (2015).

    CAS  Google Scholar 

  215. 215.

    Chaker, L. et al. Age-dependent association of thyroid function with brain morphology and microstructural organization: evidence from brain imaging. Neurobiol. Aging 61, 44–51 (2018).

    CAS  Google Scholar 

  216. 216.

    Tan, Z. S. & Vasan, R. S. Thyroid function and Alzheimer’s disease. J. Alzheimers Dis. 16, 503–507 (2009).

    CAS  Google Scholar 

  217. 217.

    Kinnear, D. et al. Prevalence of physical conditions and multimorbidity in a cohort of adults with intellectual disabilities with and without Down syndrome: cross-sectional study. BMJ Open 8, e018292 (2018).

    PubMed Central  PubMed  Google Scholar 

  218. 218.

    Maatta, T. et al. Healthcare and guidelines: a population-based survey of recorded medical problems and health surveillance for people with Down syndrome. J. Intellect. Dev. Disabil. 36, 118–126 (2011).

    Google Scholar 

  219. 219.

    Santoro, S. L., Martin, L. J., Pleatman, S. I. & Hopkin, R. J. Stakeholder buy-in and physician education improve adherence to guidelines for Down syndrome. J. Pediatr. 171, 262–268 (2016).

    Google Scholar 

  220. 220.

    Wexler, I. D. et al. Optimizing health care for individuals with Down syndrome in Israel. Isr. Med. Assoc. J. 11, 655–659 (2009).

    Google Scholar 

  221. 221.

    Capone, G. T. et al. Co-occurring medical conditions in adults with Down syndrome: a systematic review toward the development of health care guidelines. Am. J. Med. Genet. 176A, 116–133 (2018).

    Google Scholar 

  222. 222.

    Livingstone, N., Hanratty, J., McShane, R. & Macdonald, G. Pharmacological interventions for cognitive decline in people with Down syndrome. Cochrane Database Syst. Rev. 10, CD011546 (2015).

    Google Scholar 

  223. 223.

    Castro, P., Zaman, S. & Holland, A. Alzheimer’s disease in people with Down’s syndrome: the prospects for and the challenges of developing preventative treatments. J. Neurol. 264, 804–813 (2017).

    Google Scholar 

  224. 224.

    Nelson, L. & Tabet, N. Slowing the progression of Alzheimer’s disease; what works? Ageing Res. Rev. 23, 193–209 (2015).

    Google Scholar 

  225. 225.

    Hefti, E. & Blanco, J. G. Pharmacotherapeutic considerations for individuals with Down syndrome. Pharmacotherapy 37, 214–220 (2017).

    PubMed Central  PubMed  Google Scholar 

  226. 226.

    Hom, C. L. et al. The relationship between living arrangement and adherence to antiepileptic medications among individuals with developmental disabilities. J. Intellect. Disabil. Res. 59, 48–54 (2015).

    CAS  Google Scholar 

  227. 227.

    Rafii, M. S. Improving memory and cognition in individuals with Down syndrome. CNS Drugs 30, 567–573 (2016).

    CAS  Google Scholar 

  228. 228.

    Rockwood, K., Fay, S., Jarrett, P. & Asp, E. Effect of galantamine on verbal repetition in AD: a secondary analysis of the VISTA trial. Neurology 68, 1116–1121 (2007).

    CAS  Google Scholar 

  229. 229.

    Rockwood, K., Howlett, S. E., Hoffman, D., Schindler, R. & Mitnitski, A. Clinical meaningfulness of Alzheimer’s Disease Assessment Scale-Cognitive subscale change in relation to goal attainment in patients on cholinesterase inhibitors. Alzheimers Dement. 13, 1098–1106 (2017).

    Google Scholar 

  230. 230.

    Antonarakis, S. E. Down syndrome and the complexity of genome dosage imbalance. Nat. Rev. Genet. 18, 147–163 (2017).

    CAS  Google Scholar 

  231. 231.

    Herault, Y. et al. Rodent models in Down syndrome research: impact and future opportunities. Dis. Model. Mech. 10, 1165–1186 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  232. 232.

    Choong, X. Y., Tosh, J. L., Pulford, L. J. & Fisher, E. M. Dissecting Alzheimer disease in Down syndrome using mouse models. Front. Behav. Neurosci. 9, 268 (2015).

    PubMed Central  PubMed  Google Scholar 

  233. 233.

    Gardiner, K. et al. Down syndrome: from understanding the neurobiology to therapy. J. Neurosci. 30, 14943–14945 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  234. 234.

    Gardiner, K. J. Pharmacological approaches to improving cognitive function in Down syndrome: current status and considerations. Drug Des. Devel. Ther. 9, 103–125 (2015).

    CAS  Google Scholar 

  235. 235.

    Sasaguri, H. et al. APP mouse models for Alzheimer’s disease preclinical studies. EMBO J. 36, 2473–2487 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  236. 236.

    Wilcock, D. M., Schmitt, F. A. & Head, E. Cerebrovascular contributions to aging and Alzheimer’s disease in Down syndrome. Biochim. Biophys. Acta 1862, 909–914 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by the US National Institute on Aging grants U01AG051412 and P50AG16573 to I.T.L. and the US NIH grant R01HD064993 to E.H. The authors are grateful to N. Schupf and J. Lee at Columbia University, New York, NY, USA, for their helpful comments on this manuscript.

Reviewer information

Nature Reviews Neurology thanks A.C. Granholm, W. Mobley and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ira T. Lott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lott, I.T., Head, E. Dementia in Down syndrome: unique insights for Alzheimer disease research. Nat Rev Neurol 15, 135–147 (2019). https://doi.org/10.1038/s41582-018-0132-6

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing