Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease

Abstract

Brain accumulation of the amyloid-β (Aβ) peptide is believed to be the initial event in the Alzheimer disease (AD) process. Aβ accumulation begins 15–20 years before clinical symptoms occur, mainly owing to defective brain clearance of the peptide. Over the past 20 years, we have seen intensive efforts to decrease the levels of Aβ monomers, oligomers, aggregates and plaques using compounds that decrease production, antagonize aggregation or increase brain clearance of Aβ. Unfortunately, these approaches have failed to show clinical benefit in large clinical trials involving patients with mild to moderate AD. Clinical trials in patients at earlier stages of the disease are ongoing, but the initial results have not been clinically impressive. Efforts are now being directed against Aβ oligomers, the most neurotoxic molecular species, and monoclonal antibodies directed against these oligomers are producing encouraging results. However, Aβ oligomers are in equilibrium with both monomeric and aggregated species; thus, previous drugs that efficiently removed monomeric Aβ or Aβ plaques should have produced clinical benefits. In patients with sporadic AD, Aβ accumulation could be a reactive compensatory response to neuronal damage of unknown cause, and alternative strategies, including interference with modifiable risk factors, might be needed to defeat this devastating disease.

Key points

  • Genetic, biochemical, histopathological, biomarker and cognitive studies have suggested that brain accumulation of the amyloid-β (Aβ) peptide is the initial event in the Alzheimer disease (AD) process.

  • Over the past 15 years, several drugs that decrease Aβ production, antagonize Aβ aggregation or increase brain Aβ clearance have been tested in patients with mild to moderate AD but without success.

  • Anti-Aβ drugs have also produced disappointing results in individuals at earlier stages of the disease who have biomarker evidence of Aβ brain deposition.

  • This series of clinical failures has raised the possibility that Aβ accumulation represents an epiphenomenon rather than a cause of AD, casting doubt on the prevailing amyloid cascade hypothesis of AD.

  • Aducanumab, a potent monoclonal antibody specifically directed against Aβ oligomers, produced encouraging preliminary results in patients with prodromal or mild AD, suggesting that oligomeric Aβ species may represent a valid biological target.

  • As accumulation of Aβ in the brain starts 15–20 years before the onset of clinical symptoms, drugs are now being tested in preclinical or asymptomatic stages of AD and in cognitively healthy individuals at risk of AD.

  • Other promising approaches directed against key elements of the disease, such as CNS inflammation, brain insulin resistance and tau aggregation, must be more intensively pursued to avoid a therapeutic vacuum should the present anti-Aβ therapies fail even in asymptomatic individuals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targets of anti-Aβ drugs.
Fig. 2: Stage of clinical development of anti-Aβ drugs to treat Alzheimer disease.

References

  1. Murphy, S. L., Xu, J., Kochanek, K. D., Curtin, S. C. & Arias, E. Deaths: final data for 2015. Natl Vital Stat. Rep. 66, 1–75 (2017).

    PubMed  Google Scholar 

  2. Alzheimer’s Association. 2017 Alzheimer’s disease facts and figures. Alzheimers Dement. 13, 325–373 (2017).

    Article  Google Scholar 

  3. Beyreuther, K. & Masters, C. L. Amyloid precursor protein (APP) and βA4 amyloid in the etiology of Alzheimer’s disease: precursor–product relationships in the derangement of neuronal function. Brain Pathol. 1, 241–251 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Hardy, J. & Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 12, 383–388 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Selkoe, D. J. The molecular pathology of Alzheimer’s disease. Neuron 6, 487–498 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Hardy, J. A. & Higgins, G. A. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Karran, E., Mercken, M. & De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698–712 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Jonsson, T. et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488, 96–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Mawuenyega, K. G. et al. Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330, 1774 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, L. B. et al. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat. Med. 9, 3–4 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, C. C., Kanekiyo, T., Xu, H. & Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lim, Y. Y. & Mormino, E. C. APOE genotype and early β-amyloid accumulation in older adults without dementia. Neurology 89, 1028–1034 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jack, C. R. Jr et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bennett, D. A. et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66, 1837–1844 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Jansen, W. J. et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313, 1924–1938 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vos, S. J. et al. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol. 12, 957–965 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Villemagne, V. L. et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 12, 357–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Burnham, S. C. et al. Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study. Lancet Neurol. 15, 1044–1053 (2016).

    Article  PubMed  Google Scholar 

  19. Petersen, R. C. et al. Association of elevated amyloid levels with cognition and biomarkers in cognitively normal people from the community. JAMA Neurol. 73, 85–92 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Donohue, M. C. et al. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA 317, 2305–2316 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gomez-Isla, T. et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann. Neurol. 41, 17–24 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T. & Hyman, B. T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42, 631–639 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Bierer, L. M. et al. Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch. Neurol. 52, 81–88 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Bennett, D. A., Schneider, J. A., Wilson, R. S., Bienias, J. L. & Arnold, S. E. Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function. Arch. Neurol. 61, 378–384 (2004).

    Article  PubMed  Google Scholar 

  25. Buckley, R. F. et al. Region-specific association of subjective cognitive decline with tauopathy independent of global β-amyloid burden. JAMA Neurol. 74, 1455–1463 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang, L. et al. Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between β-amyloid and tauopathy. JAMA Neurol. 73, 1070–1077 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sutphen, C. L. et al. Longitudinal decreases in multiple cerebrospinal fluid biomarkers of neuronal injury in symptomatic late onset Alzheimer’s disease. Alzheimers Dement. 14, 869–879 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. McDade, E. et al. Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease. Neurology 91, e1295–e1306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sato, C. et al. Tau kinetics in neurons and the human central nervous system. Neuron 97, 1284–1298 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He, Z. et al. Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat. Med. 24, 29–38 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Hansson, O. et al. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol. 5, 228–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Jack, C. R. Jr et al. Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50–95 years: a cross-sectional study. Lancet Neurol. 16, 435–444 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jones, D. T. et al. Tau, amyloid, and cascading network failure across the Alzheimer’s disease spectrum. Cortex 97, 143–159 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372, 216–223 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Gilman, S. et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64, 1553–1562 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Pasquier, F. et al. Two phase 2 multiple ascending-dose studies of vanutide cridificar (ACC-001) and QS-21 adjuvant in mild-to-moderate Alzheimer’s disease. J. Alzheimers Dis. 51, 1131–1143 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Wiessner, C. et al. The second-generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J. Neurosci. 31, 9323–9331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Winblad, B. et al. Safety, tolerability, and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol. 11, 597–604 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Farlow, M. R. et al. Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimers Res. Ther. 7, 23 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Vandenberghe, R. et al. Active Aβ immunotherapy CAD106 in Alzheimer’s disease: a phase 2b study. Alzheimers Dement. 3, 10–22 (2016).

    Article  Google Scholar 

  41. Langbaum, J. B. et al. Establishing composite cognitive endpoints for use in preclinical Alzheimer’s disease trials. J. Prev. Alzheimers Dis. 2, 2–3 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bouter, Y. et al. Aβ targets of the biosimilar antibodies of bapineuzumab, crenezumab, solanezumab in comparison to an antibody against N-truncated Aβ in sporadic Alzheimer disease cases and mouse models. Acta Neuropathol. 130, 713–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Dodart, J. C. et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nat. Neurosci. 5, 452–457 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. DeMattos, R. B. et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 98, 8850–8855 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mably, A. J. et al. Anti-Aβ antibodies incapable of reducing cerebral Aβ oligomers fail to attenuate spatial reference memory deficits in J20 mice. Neurobiol. Dis. 82, 372–384 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Siemers, E. R. et al. Safety and changes in plasma and cerebrospinal fluid amyloid-β after a single administration of an amyloid-β monoclonal antibody in subjects with Alzheimer disease. Clin. Neuropharmacol. 33, 67–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Uenaka, K. et al. Comparison of pharmacokinetics, pharmacodynamics, safety, and tolerability of the amyloid β monoclonal antibody solanezumab in Japanese and white patients with mild to moderate alzheimer disease. Clin. Neuropharmacol. 35, 25–29 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Farlow, M. et al. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement. 8, 261–271 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Doody, R. S. et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 311–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Honig, L. S. et al. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N. Engl. J. Med. 378, 321–330 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Sperling, R. A. et al. The A4 study: stopping AD before symptoms begin? Sci. Transl Med. 6, 228fs13 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Donohue, M. C. et al. The preclinical Alzheimer cognitive composite: measuring amyloid-related decline. JAMA Neurol. 71, 961–970 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bohrmann, B. et al. Gantenerumab: a novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J. Alzheimers Dis. 28, 49–69 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Jacobsen, H. et al. Combined treatment with a BACE inhibitor and anti-Aβ antibody gantenerumab enhances amyloid reduction in APPLondon mice. J. Neurosci. 34, 11621–11630 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barrow, P. et al. Reproductive and developmental toxicology studies with gantenerumab in PS2APP transgenic mice. Reprod. Toxicol. 73, 362–371 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Ostrowitzki, S. et al. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch. Neurol. 69, 198–207 (2012).

    Article  PubMed  Google Scholar 

  57. Ostrowitzki, S. et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res. Ther. 9, 95 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Nikolcheva, T. et al. CSF and amyloid pet biomarker data from the phase 3 SCarlet RoAD trial, a study of gantenerumab in patients with prodromal AD. Neurobiol. Aging 39(Suppl.), S28–S29 (2016).

    Article  Google Scholar 

  59. Abi-Saab, D. et al. The effect of 6-month dosing on the rate of amyloid-related imaging abnormalities (ARIA) in the Marguerite RoAD study. Alzheimers Dement. 13(Suppl.), P252–P253 (2017).

    Google Scholar 

  60. Abi-Saab, D. et al. MRI findings in the open label extension of the Marguerite RoAD study in patients with mild Alzheimer’s disease [abstract P36]. Presented at the 10th Clinical Trials on Alzheimer’s Disease, Boston, MA, USA (2017).

  61. Adolfsson, O. et al. An effector-reduced anti-β-amyloid (Aβ) antibody with unique Aβ binding properties promotes neuroprotection and glial engulfment of Aβ. J. Neurosci. 32, 9677–9789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao, J., Nussinov, R. & Ma, B. Mechanisms of recognition of amyloid-β (Aβ) monomer, oligomer, and fibril by homologous antibodies. J. Biol. Chem. 292, 18325–18343 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ultsch, M. et al. Structure of crenezumab complex with Aβ shows loss of β-hairpin. Sci. Rep. 6, 39374 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fuller, J. P. et al. Comparing the efficacy and neuroinflammatory potential of three anti-Aβ antibodies. Acta Neuropathol. 130, 699–711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cummings, J. L. et al. ABBY: a phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology 90, e1889–e1897 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Salloway, S. et al. Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind, placebo-controlled, randomized phase II study in mild-to-moderate Alzheimer’s disease (BLAZE). Alzheimers Res. Ther. 10, 96 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Asnaghi, V. et al. Safety and tolerability of crenezumab in mild-to-moderate AD patients treated with escalating doses for up to 25 months. Alzheimers Dement. 13(Suppl.), 602 (2017).

    Google Scholar 

  68. Blaettler, T. Clinical trial design of CREAD: a randomized, double-blind, placebo-controlled, parallel-group phase-3 study to evaluate crenezumab treatment in patients with prodromal-to-mild Alzheimer’s disease. Alzheimers Dement. 12 (Suppl.), 609 (2016).

    Google Scholar 

  69. Tariot, P. N. et al. The Alzheimer’s Prevention Initiative Autosomal-Dominant Alzheimer’s Disease Trial: a study of crenezumab versus placebo in preclinical PSEN1 E280A mutation carriers to evaluate efficacy and safety in the treatment of autosomal-dominant Alzheimer’s disease, including a placebo-treated noncarrier cohort. Alzheimers Dement. 4, 150–160 (2018).

    Article  Google Scholar 

  70. Arndt, J. W. et al. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci. Rep. 8, 6412 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Kastanenka, K. V. et al. Immunotherapy with aducanumab restores calcium homeostasis in Tg2576 mice. J. Neurosci. 36, 12549–12558 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ferrero, J. et al. First-in-human, double-blind, placebo-controlled, single-dose escalation study of aducanumab (BIIB037) in mild-to-moderate Alzheimer’s disease. Alzheimers Dement. 2, 169–176 (2016).

    Article  Google Scholar 

  74. Budd Haeberlein, S. et al. Clinical development of aducanumab, an anti-Aβ human monoclonal antibody being investigated for the treatment of early Alzheimer’s disease. J. Prev. Alzheimers Dis. 4, 255–263 (2017).

    CAS  PubMed  Google Scholar 

  75. Vassar, R. et al. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J. Neurochem. 130, 4–28 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Filser, S. et al. Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions. Biol. Psychiatry 77, 729–739 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Zhu, K. et al. β-Site amyloid precursor protein cleaving enzyme 1 inhibition impairs synaptic plasticity via seizure protein 6. Biol. Psychiatry 83, 428–437 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Kennedy, M. E. et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients. Sci. Transl Med. 8, 363ra150 (2016).

    Article  PubMed  CAS  Google Scholar 

  79. Villarreal, S. et al. Chronic verubecestat treatment suppresses amyloid accumulation in advanced aged Tg2576-AβPPswe mice without inducing microhemorrhage. J. Alzheimers Dis. 59, 1393–1413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Egan, M. F. et al. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 378, 1691–1703 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sur, C. et al. BACE inhibition by verubecestat produces a rapid, non-progressive reduction in brain and hippocampal volume in Alzheimer’s disease [abstract OC13]. Presented at the 11th Clinical Trials on Alzheimer’s Disease, Barcelona, Spain (2018).

  82. Business Wire. Merck announces discontinuation of APECS study evaluating verubecestat (MK-8931) for the treatment of people with prodromal Alzheimer’s disease. Business Wire https://www.businesswire.com/news/home/20180213006582/en/ (2018).

  83. Eketjäll, S. et al. AZD3293: a novel, orally active BACE1 inhibitor with high potency and permeability and markedly slow off-rate kinetics. J. Alzheimers Dis. 50, 1109–1123 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Cebers, G. et al. Reversible and species-specific depigmentation effects of AZD3293, a BACE inhibitor for the treatment of Alzheimer’s disease, are related to BACE2 inhibition and confined to epidermis and hair. J. Prev. Alzheimers Dis. 3, 202–218 (2016).

    CAS  PubMed  Google Scholar 

  85. Cebers, G. et al. AZD3293: pharmacokinetic and pharmacodynamic effects in healthy subjects and patients with Alzheimer’s disease. J. Alzheimers Dis. 55, 1039–1053 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Sakamoto, K. et al. BACE1 inhibitor lanabecestat (AZD3293) in a phase 1 study of healthy japanese subjects: pharmacokinetics and effects on plasma and cerebrospinal fluid Aβ peptides. J. Clin. Pharmacol. 57, 1460–1471 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Sims, J. R. et al. Development review of the BACE1 inhibitor lanabecestat (AZD3293/LY3314814). J. Prev. Alzheimers Dis. 4, 247–254 (2017).

    CAS  PubMed  Google Scholar 

  88. Malone, E. Lilly/AstraZeneca’s lanabecestat becomes latest BACE inhibitor casualty. Scrip https://scrip.pharmaintelligence.informa.com/SC123243/LillyAstraZenecas-Lanabecestat-Becomes-Latest-BACE-Inhibitor-Casualty (2018).

  89. Lai, R. et al. First-in-human study of E2609, a novel BACE1 inhibitor, demonstrates prolonged reductions in plasma beta-amyloid levels after single dosing. Alzheimers Dement. 8(Suppl.), 96 (2012).

    Google Scholar 

  90. Albala, B. et al. CSF amyloid lowering in human volunteers after 14 days’ oral administration of the novel BACE1 inhibitor E2609. Alzheimers Dement. 8 (Suppl.), S743 (2012).

    Google Scholar 

  91. Oneeb, M. et al. Dose-related reductions of CSF amyloid β(1-x) by E2609, a novel BACE inhibitor in patients with mild cognitive impairment due to Alzheimer’s disease (AD and mild-moderate AD dementia [abstract P3-28]. Presented at the 9th Clinical Trials on Alzheimer’s Disease, 2016, San Diego, CA, USA (2016).

    Google Scholar 

  92. Wang, J. et al. ADCOMS: a composite clinical outcome for prodromal Alzheimer’s disease trials. J. Neurol. Neurosurg. Psychiatry 87, 993–999 (2016).

    Article  PubMed  Google Scholar 

  93. Ito, H. et al. Preclinical multi-species pharmacokinetic/pharmacodynamic analysis of the oral BACE inhibitor JNJ-54861911. Alzheimers Dement. 13(Suppl.), P266–P267 (2017).

    Google Scholar 

  94. Timmers, M. et al. Profiling the dynamics of CSF and plasma Aβ reduction after treatment with JNJ-54861911, a potent oral BACE inhibitor. Alzheimers Dement. 2, 202–212 (2016).

    Article  Google Scholar 

  95. Streffer, J. et al. Pharmacodynamics of the oral BACE inhibitor JNJ-54861911 in early Alzheimer’s disease. Alzheimers Dement. 12 (Suppl.), P199–P200 (2016).

    Google Scholar 

  96. Janssen. Update on Janssen’s BACE inhibitor program. Janssen https://www.janssen.com/update-janssens-bace-inhibitor-program (2018).

  97. Neumann, U. et al. The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer’s disease. EMBO Mol. Med. 10, e9316 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Ufer, M. et al. Results from a first-in-man study with the BACE inhibitor CNP520. Alzheimers Dement. 12(Suppl.), 200 (2016).

    Google Scholar 

  99. Lopez Lopez, C. et al. Alzheimer’s Prevention Initiative Generation Program: evaluating CNP520 efficacy in the prevention of Alzheimer’s disease. J. Prev. Alzheimers Dis. 4, 242–246 (2017).

    CAS  PubMed  Google Scholar 

  100. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Giannakopoulos, P. et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60, 1495–1500 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Kuo, Y. M. et al. Water-soluble Aβ (N-40, N-42) oligomers in normal and Alzheimer disease brains. J. Biol. Chem. 271, 4077–4081 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Funato, H., Enya, M., Yoshimura, M., Morishima-Kawashima, M. & Ihara, Y. Presence of sodium dodecyl sulfate-stable amyloid β-protein dimers in the hippocampus CA1 not exhibiting neurofibrillary tangle formation. Am. J. Pathol. 155, 23–28 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang, T., Li, S., Xu, H., Walsh, D. M. & Selkoe, D. J. Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J. Neurosci. 37, 152–163 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, Z. X., Tan, L., Liu, J. & Yu, J. T. The essential role of soluble Aβ oligomers in Alzheimer’s disease. Mol. Neurobiol. 53, 1905–1924 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Polanco, J. C. et al. Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies. Nat. Rev. Neurol. 14, 22–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Zhao, Y. et al. Amyloid β peptides block new synapse assembly by Nogo receptor-mediated inhibition of T-type calcium channels. Neuron 96, 355–372 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lesné, S. E. et al. Brain amyloid-β oligomers in ageing and Alzheimer’s disease. Brain 136, 1383–1398 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Amar, F. et al. The amyloid-β oligomer Aβ*56 induces specific alterations in neuronal signaling that lead to tau phosphorylation and aggregation. Sci. Signal. 10, eaal2021 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Busche, M. A. et al. Decreased amyloid-β and increased neuronal hyperactivity by immunotherapy in Alzheimer’s models. Nat. Neurosci. 18, 1725–1727 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Abbott, A. & Dolgin, E. Failed Alzheimer’s trial does not kill leading theory of disease. Nature 540, 15–16 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Maarouf, C. L. et al. The biochemical aftermath of anti-amyloid immunotherapy. Mol. Neurodegener. 5, 39 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Hara, H. et al. An oral Aβ vaccine using a recombinant adeno-associated virus vector in aged monkeys: reduction of amyloid plaques and increase of Aβ oligomers. J. Alzheimers Dis. 54, 1047–1059 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Townsend, M. et al. Orally available compound prevents deficits in memory caused by the Alzheimer amyloid-β oligomers. Ann. Neurol. 60, 668–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Yamada, J. et al. Aβ immunotherapy: intracerebral sequestration of Aβ by an anti Aβ monoclonal antibody 266 with high affinity to soluble Aβ. J. Neurosci. 29, 11393–11398 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Watts, R. J. et al. Selection of an anti-Aβ antibody that binds various forms of Aβ and blocks toxicity both in vitro and in vivo. Alzheimers Dement. 5 (Suppl.), 426 (2009).

    Google Scholar 

  117. Relkin, R. N. Natural human antibodies targeting amyloid aggregates in intravenous immunoglobulin. Alzheimers Dement. 4 (Suppl.), T101 (2008).

    Google Scholar 

  118. Du, Y. et al. Human anti-β-amyloid antibodies block β-amyloid fibril formation and prevent β-amyloid-induced neurotoxicity. Brain 26, 1935–1939 (2003).

    Article  Google Scholar 

  119. Ma, Q. L. et al. Antibodies against β-amyloid reduce Aβ oligomers, glycogen synthase kinase-3β activation and τ phosphorylation in vivo and in vitro. J. Neurosci. Res. 83, 374–384 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Logovinsky, V. et al. Safety and tolerability of BAN2401 — a clinical study in Alzheimer’s disease with a protofibril selective Aβ antibody. Alzheimers Res. Ther. 8, 14 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Astrén Eriksson, C. et al. BioArctic announces positive topline results of BAN2401 phase 2b at 18 months in early Alzheimer’s disease. BioArctic https://www.bioarctic.se/en/bioarctic-announces-positive-topline-results-of-ban2401-phase-2b-at-18-months-in-early-alzheimers-disease-3600/ (2018).

  122. Kim, J. et al. Normal cognition in transgenic BRI2-Aβ mice. Mol. Neurodegener. 8, 15 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chételat, G. Alzheimer disease: Aβ-independent processes-rethinking preclinical AD. Nat. Rev. Neurol. 9, 123–124 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Morris, G. P., Clark, I. A. & Vissel, B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol. Commun. 2, 135 (2014).

    PubMed  PubMed Central  Google Scholar 

  125. Musiek, E. S. & Holtzman, D. M. Three dimensions of the amyloid hypothesis: time, space and ‘wingmen’. Nat. Neurosci. 18, 800–806 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Braak, H. & Del Tredici, K. The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol. 121, 171–181 (2011).

    Article  PubMed  Google Scholar 

  127. Knopman, D. S. et al. Brain injury biomarkers are not dependent on β-amyloid in normal elderly. Ann. Neurol. 73, 472–480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Knopman, D. S. et al. Short-term clinical outcomes for stages of NIA-AA preclinical Alzheimer disease. Neurology 78, 1576–1582 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jagust, W. J. & Landau, S. M. Apolipoprotein E, not fibrillar β-amyloid, reduces cerebral glucose metabolism in normal aging. J. Neurosci. 32, 18227–18233 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gordon, B. A. et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol. 17, 241–250 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Jack, C. R. Jr et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119–128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 280–292 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Jansen, W. J. et al. Association of cerebral amyloid-β aggregation with cognitive functioning in persons without dementia. JAMA Psychiatry 75, 84–95 (2018).

    Article  PubMed  Google Scholar 

  134. Dubois, B. et al. Cognitive and neuroimaging features and brain β-amyloidosis in individuals at risk of Alzheimer’s disease (INSIGHT-preAD): a longitudinal observational study. Lancet Neurol. 17, 335–346 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 18, 794–799 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Bishop, G. M. & Robinson, S. R. Physiological roles of amyloid-β and implications for its removal in Alzheimer’s disease. Drugs Aging 21, 621–630 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Puzzo, D., Gulisano, W., Arancio, O. & Palmeri, A. The keystone of Alzheimer pathogenesis might be sought in Aβ physiology. Neuroscience 307, 26–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Yu, Y., Jans, D. C., Winblad, B., Tjernberg, L. O. & Schedin-Weiss, S. Neuronal Aβ42 is enriched in small vesicles at the presynaptic side of synapses. Life Sci. Alliance 1, e201800028 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Livingston, G. et al. Dementia prevention, intervention, and care. Lancet 390, 2673–2734 (2017).

    Article  PubMed  Google Scholar 

  140. Butterfield, D. A., Di Domenico, F. & Barone, E. Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim. Biophys. Acta 1842, 1693–1706 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Arnold, S. E. et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol. 14, 168–181 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mielke, J. G. & Wang, Y. T. Insulin, synaptic function, and opportunities for neuroprotection. Prog. Mol. Biol. Transl Sci. 98, 133–186 (2011).

    Article  CAS  Google Scholar 

  143. Chiu, S. L., Chen, C. M. & Cline, H. T. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 58, 708–719 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bruehl, H. et al. Cognitive impairment in nondiabetic middle-aged and older adults isassociated with insulin resistance. J. Clin. Exp. Neuropsychol. 32, 487–493 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. De Felice, F. G. & Ferreira, S. T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63, 2262–2272 (2014).

    Article  PubMed  Google Scholar 

  146. Yarchoan, M. & Arnold, S. E. Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease. Diabetes 63, 2253–2261 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Benedict, C. & Grillo, C. A. Insulin resistance as a therapeutic target in the treatment of Alzheimer’s disease: a state-of-the-art. Front. Neurosci. 12, 215 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Batista, A. F. et al. The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer’s disease. J. Pathol. 245, 85–100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Craft, S. et al. Effects of regular and long-acting insulin on cognition and Alzheimer’s disease biomarkers: a pilot clinical trial. J. Alzheimers Dis. 57, 1325–1334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Abbott, A. Is ‘friendly fire’ in the brain provoking Alzheimer’s disease? Nature 556, 426–428 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Salter, M. W. & Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 23, 1018–1027 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Bu, X. L. et al. A study on the association between infectious burden and Alzheimer’s disease. Eur. J. Neurol. 22, 1519–1525 (2015).

    Article  PubMed  Google Scholar 

  153. Fani, L. et al. Helicobacter pylori and the risk of dementia: a population-based study. Alzheimers Dement. 14, 1377–1382 (2018).

    Article  PubMed  Google Scholar 

  154. Marsh, S. E. et al. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proc. Natl Acad. Sci. USA 113, E1316–E1325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Congdon, E. E. & Sigurdsson, E. M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 14, 399–415 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Esteban, J. A. Living with the enemy: a physiological role for the β-amyloid peptide. Trends Neurosci. 27, 1–3 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Parihar, M. S. & Brewer, G. J. Amyloid-β as a modulator of synaptic plasticity. J. Alzheimers Dis. 22, 741–763 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lawrence, J. L. et al. Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment. J. Neurosci. 34, 14210–14218 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Palmeri, A. et al. Amyloid-β peptide is needed for cGMP-induced long-term potentiation and memory. J. Neurosci. 37, 6926–6937 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Abramov, E. et al. Amyloid-β as a positive endogenous regulator of release probability at hippocampal synapses. Nat. Neurosci. 12, 1567–1576 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Morley, J. E. et al. A physiological role for amyloid-β protein: enhancement of learning and memory. J. Alzheimers Dis. 19, 441–449 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Puzzo, D. et al. Endogenous amyloid-β is necessary for hippocampal synaptic plasticity and memory. Ann. Neurol. 69, 819–830 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. López-Toledano, M. A. & Shelanski, M. L. Neurogenic effect of β-amyloid peptide in the development of neural stem cells. J. Neurosci. 24, 5439–5444 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  165. Plant, L. D., Boyle, J. P., Smith, I. F., Peers, C. & Pearson, H. A. The production of amyloid β peptide is a critical requirement for the viability of central neurons. J. Neurosci. 23, 5531–5535 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Marklund, N. et al. Monitoring of β-amyloid dynamics after human traumatic brain injury. J. Neurotrauma 31, 42–55 (2014).

    Article  PubMed  Google Scholar 

  167. Gatson, J. W. et al. Detection of β-amyloid oligomers as a predictor of neurological outcome after brain injury. J. Neurosurg. 118, 1336–1342 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Johnson, V., Stewart, W. & Smith, D. H. Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nat. Rev. Neurosci. 11, 361–370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Abrahamson, E. E. et al. Simvastatin therapy prevents brain trauma-induced increases in β-amyloid peptide levels. Ann. Neurol. 66, 407–414 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Stein, T. D. et al. β-Amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathol. 130, 21–34 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. McKee, A. C., Stein, T. D., Kiernan, P. T. & Alvarez, V. E. The neuropathology of chronic traumatic encephalopathy. Brain Pathol. 25, 350–364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Dong, Y. et al. The common inhalational anesthetic sevoflurane induces apoptosis and increases β-amyloid protein levels. Arch. Neurol. 66, 620–631 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Perucho, J. et al. Anesthesia with isoflurane increases amyloid pathology in mice models of Alzheimer’s disease. J. Alzheimers Dis. 19, 1245–1257 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Fodale, V., Santamaria, L. B., Schifilliti, D. & Mandal, P. K. Anaesthetics and postoperative cognitive dysfunction: a pathological mechanism mimicking Alzheimer’s disease. Anaesthesia 65, 388–395 (2010).

    Article  CAS  PubMed  Google Scholar 

  175. Jiang, J. & Jiang, H. Effect of the inhaled anesthetics isoflurane, sevoflurane and desflurane on the neuropathogenesis of Alzheimer’s disease (review). Mol. Med. Rep. 12, 3–12 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yu, P., Wang, H., Mu, L., Ding, X. & Ding, W. Effect of general anesthesia on serum β-amyloid protein and regional cerebral oxygen saturation of elderly patients after subtotal gastrectomy. Exp. Ther. Med. 12, 3561–3566 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mäkinen, S. et al. Coaccumulation of calcium and β-amyloid in the thalamus after transient middle cerebral artery occlusion in rats. J. Cereb. Blood Flow Metab. 28, 263–268 (2008).

    Article  PubMed  CAS  Google Scholar 

  178. Li, L. et al. Hypoxia increases Aβ generation by altering β- and γ-cleavage of APP. Neurobiol. Aging 30, 1091–1098 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Garcia-Alloza, M. et al. Cerebrovascular lesions induce transient β-amyloid deposition. Brain 134, 3697–3707 (2011).

    Article  PubMed  Google Scholar 

  180. Pluta, R., Furmaga-Jabłonska, W., Maciejewski, R., Ułamek-Kozioł, M. & Jabłonski, M. Brain ischemia activates β- and γ-secretase cleavage of amyloid precursor protein: significance in sporadic Alzheimer’s disease. Mol. Neurobiol. 47, 425–434 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. ElAli, A., Thériault, P., Préfontaine, P. & Rivest, S. Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral β-amyloid brain entry and aggregation. Acta Neuropathol. Commun. 1, 75 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Pomara, N. et al. Lower CSF amyloid beta peptides and higher F2-isoprostanes in cognitively intact elderly individuals with major depressive disorder. Am. J. Psychiatry 169, 523–530 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Wu, K. Y. et al. Increased brain amyloid deposition in patients with a lifetime history of major depression: evidenced on 18F-florbetapir (AV-45/Amyvid) positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 41, 714–722 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Donovan, N. J. et al. Longitudinal association of amyloid β and anxious-depressive symptoms in cognitively normal older adults. Am. J. Psychiatry 175, 530–537 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Bryson, J. B. et al. Amyloid precursor protein (APP) contributes to pathology in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Hum. Mol. Genet. 21, 3871–3882 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Coan, G. & Mitchell, C. S. An assessment of possible neuropathology and clinical relationships in 46 sporadic amyotrophic lateral sclerosis patient autopsies. Neurodegener. Dis. 15, 301–312 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Zetterberg, H. et al. Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid β levels in humans. PLOS ONE 6, e28263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Palotás, A. et al. Coronary artery bypass surgery provokes Alzheimer’s disease-like changes in the cerebrospinal fluid. J. Alzheimers Dis. 21, 1153–1164 (2010).

    Article  PubMed  CAS  Google Scholar 

  189. Reinsfelt, B., Westerlind, A., Blennow, K., Zetterberg, H. & Ricksten, S. E. Open-heart surgery increases cerebrospinal fluid levels of Alzheimer-associated amyloid β. Acta Anaesthesiol. Scand. 57, 82–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Hu, Y. et al. Effects of heart bypass surgery on plasma Aβ40 and Aβ42 levels in infants and young children. Medicine 95, e2684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ooms, S. et al. Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol. 71, 971–977 (2014).

    Article  PubMed  Google Scholar 

  192. Lucey, B. P. et al. Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann. Neurol. 83, 197–204 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Shokri-Kojori, E. et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl Acad. Sci. USA 115, 4483–4488 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ju, Y. S. et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain 140, 2104–2111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Zhao, H. Y. et al. Chronic sleep restriction induces cognitive deficits and cortical β-amyloid deposition in mice via BACE1-antisense activation. CNS Neurosci. Ther. 23, 233–240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Brothers, H. M., Gosztyla, M. L. & Robinson, S. R. The physiological roles of amyloid-β peptide hint at new ways to treat Alzheimer’s disease. Front. Aging Neurosci. 10, 118 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Lee, H. G. et al. Amyloid-β in Alzheimer disease: the null versus the alternate hypotheses. J. Pharmacol. Exp. Ther. 321, 823–829 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Kokjohn, T. A., Maarouf, C. L. & Roher, A. E. Is Alzheimer’s disease amyloidosis the result of a repair mechanism gone astray? Alzheimers Dement. 8, 574–583 (2012).

    Article  CAS  PubMed  Google Scholar 

  199. Krstic, D. & Knuesel, I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat. Rev. Neurol. 9, 25–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  200. Struble, R. G. et al. Is brain amyloid production a cause or a result of dementia of the Alzheimer’s type? J. Alzheimers Dis. 22, 393–399 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Herrup, K. Reimagining Alzheimer’s disease — an age-based hypothesis. J. Neurosci. 30, 16755–16762 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Castellani, R. J., Lee., H. G., Zhu, X., Perry, G. & Smith, M. A. Alzheimer disease pathology as a host response. J. Neuropathol. Exp. Neurol. 67, 523–531 (2008).

    Article  CAS  PubMed  Google Scholar 

  203. Castello, M. A. & Soriano, S. Rational heterodoxy: cholesterol reformation of the amyloid doctrine. Ageing Res. Rev. 12, 282–288 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. Aisen, P. S. et al. Tramiprosate in mild-to-moderate Alzheimer’s disease — a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch. Med. Sci. 7, 102–111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Green, R. C. et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA 302, 2557–2564 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Salloway, S. et al. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology 77, 1253–1262 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kirk, R. Clinical trials in CNS — SMi’s eighth annual conference. IDrugs 13, 66–69 (2010).

    PubMed  Google Scholar 

  208. Landen, J. W. et al. Multiple-dose ponezumab for mild-to-moderate Alzheimer’s disease: safety and efficacy. Alzheimers Dement. 3, 339–347 (2017).

    Article  Google Scholar 

  209. Doody, R. S. et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N. Engl. J. Med. 369, 341–350 (2013).

    Article  CAS  PubMed  Google Scholar 

  210. Salloway, S. et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 322–333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Coric, V. et al. Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch. Neurol. 69, 1430–1440 (2012).

    Article  PubMed  Google Scholar 

  212. Coric, V. et al. Targeting prodromal Alzheimer disease with avagacestat: a randomized clinical trial. JAMA Neurol. 72, 1324–1333 (2015).

    Article  PubMed  Google Scholar 

  213. Relkin, N. R. et al. A phase 3 trial of IV immunoglobulin for Alzheimer disease. Neurology 88, 1768–1775 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lahiri, D. K., Maloney, B., Long, J. M. & Greig, N. H. Lessons from a BACE1 inhibitor trial: off-site but not off base. Alzheimers Dement. 10(Suppl.), S411–S419 (2014).

    PubMed  PubMed Central  Google Scholar 

  215. Yan, R. Stepping closer to treating Alzheimer’s disease patients with BACE1 inhibitor drugs. Transl Neurodegener. 5, 13 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Schneeberger, A. et al. Results from a phase II study to assess the clinical and immunological activity of AFFITOPE® AD02 in patients with early Alzheimer’s disease. J. Prev. Alzheimers Dis. 2, 103–114 (2015).

    CAS  PubMed  Google Scholar 

  217. Villemagne, V. L. et al. A randomized, exploratory molecular imaging study targeting amyloid β with a novel 8-OH quinoline in Alzheimer’s disease: the PBT2-204 IMAGINE study. Alzheimers Dement. 3, 622–635 (2017).

    Article  Google Scholar 

  218. Carroll, J. Eli Lilly shutters the last PhIII sola study, certain of failure. Endpoints News https://endpts.com/eli-lilly-shutters-the-last-phiii-sola-study-certain-of-failure/ (2017).

  219. Grifols. Grifols AMBAR results demonstrate a significant reduction in the progression of moderate Alzheimer’s disease. https://www.grifols.com/en/view-news/-/new/grifols-ambar-results-demonstrate-a-significant-reduction-in-the-progression-of-moderate-alzheimers-disease (2018).

  220. Xiao, S. et al. Phase 3 clinical trial for a novel and multi-targeted oligosaccharide in patients with mild-moderate AD in China [abstract OC3]. Presented at the 11th Clinical Trials on Alzheimer’s Disease, Barcelona, Spain (2018).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook the review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Francesco Panza.

Ethics declarations

Competing interests

B.P.I. is an employee at Chiesi Farmaceutici and has developed anti-Alzheimer disease (AD) drugs. He is co-inventor of patents on anti-AD drugs. He does not hold stock options. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Databases

ClinicalTrials.gov: https://www.clinicaltrials.gov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panza, F., Lozupone, M., Logroscino, G. et al. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 15, 73–88 (2019). https://doi.org/10.1038/s41582-018-0116-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-018-0116-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing